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Abstract: Remote sensing image change detection (CD) is an important means in remote sensing data
analysis tasks, which can help us understand the surface changes in high-resolution (HR) remote
sensing images. Traditional pixel-based and object-based methods are only suitable for low- and
medium-resolution images, and are still challenging for complex texture features and detailed image
detail processing in HR images. At present, the method based on deep learning has problems
such as inconsistent fusion and difficult model training in the combination of the difference feature
information of the deep and shallow layers and the attention mechanism, which leads to errors
in the distinction between the changing region and the invariant region, edge detection and small
target detection. In order to solve the above problems of inconsistent fusions of feature information
aggregation and attention mechanisms, and indistinguishable change areas, we propose a multi-scale
feature fusion Siamese network based on attention mechanism (ABMFNet). To tackle the issues
of inconsistent fusion and alignment difficulties when integrating multi-scale fusion and attention
mechanisms, we introduce the attention-based multi-scale feature fusion module (AMFFM). This
module not only addresses insufficient feature fusion and connection between different-scale feature
layers, but also enables the model to automatically learn and prioritize important features or regions
in the image. Additionally, we design the cross-scale fusion module (CFM) and the difference feature
enhancement pyramid structure (DEFPN) to assist the AMFFM module in integrating differential
information effectively. These modules bridge the spatial disparity between low-level and high-level
features, ensuring efficient connection and fusion of spatial difference information. Furthermore, we
enhance the representation and inference speed of the feature pyramid by incorporating a feature
enhancement module (FEM) into DEFPN. Finally, the BICD dataset proposed by the laboratory
and public datasets LEVIR-CD and BCDD are compared and tested. We use F1 score and MIoU
values as evaluation metrics. For AMBMFNet, the F1 scores on the three datasets are 77.69%, 81.57%,
and 77.91%, respectively, while the MIoU values are 84.65%, 85.84%, and 84.54%, respectively. The
experimental results show that ABMFNet has better effectiveness and robustness.

Keywords: remote sensing image change detection; multi-branch attention mechanism; feature
extraction; multi-scale feature fusion

1. Introduction

Remote sensing CD has always been an important technology in image processing
related to remote sensing. It detects two remote sensing photos at different times in the
same area, identifies the pixels with semantic changes between them, and finally presents
the detection results in the form of black and white images.
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The ability and means of obtaining picture data have improved, as evidenced by
the emergence of satellite remote sensing technology, the steady maturation of remote
sensing imaging technology, and other developments. A large number of high-resolution
(HR) remote sensing images need to be processed. HR remote sensing photos provide
better geometric and spatial information when compared to medium-resolution and low-
resolution images. This makes it easier for people to monitor surface changes with greater
accuracy. Remote sensing CD has also become a rising star in the field of remote sensing
images, but the results of CD will be disturbed by many factors [1]. On the one hand,
there is the influence of remote sensing system, on the other hand, there is the interference
of environmental factors, such as the movement, deformation, occlusion of the detected
object, or the recognition error caused by camera movement, light change and seasonal
change. How to resist the influence of these interference factors and detect the actual
changes is very challenging for remote sensing CD tasks. In numerous domains, such as
land management [2,3], urban development planning [4,5], environmental monitoring [6,7],
disaster prediction [8], and others, remote sensing CD has been extensively employed. In
recent years, the research on remote sensing CD has received more and more attention.

So far, different authors have proposed many CD techniques from different per-
spectives. In general, these technologies can be divided into two categories: traditional
technologies and deep learning-based technologies.

The traditional remote sensing CD technology is mainly divided into the pixel-based
method and object-based method. The pixel-based method refers to the analysis of each
pixel to determine its changes at different time points. The classical method is the difference
map method. It obtains the difference map by subtracting the remote sensing images
at two time points, and then determines the change area according to the threshold or
other methods [9]. The ratio map method divides the remote sensing images at two time
points to obtain the ratio map, and then determines the change area according to the
threshold or other methods [10]. With the regression analysis method, the basic idea is
to obtain the change of image pixels by regression analysis of two remote sensing image
data, so as to detect the change of the surface [11]. These methods are simple in theory and
easy to quickly identify the change area. However, due to the difficulty in determining
the change threshold, the difficulty in extracting the change properties of the target area
and the limitation of the surface detection ability, these methods usually cannot obtain
complete change information. In order to make better use of the spectral information of
the image, multivariate change detection (MAD) [12], iterative reweighted multivariate
change detection (IRMAD) [13], principal component analysis (PCA) based on k-means
clustering [14], and change vector analysis (CVA) as proposed by Malila [15], came into
being. Most of these methods are unsupervised and have achieved good results in ground
remote sensing CD tasks. The essence of MAD is canonical correlation analysis (CCA) in
multivariate statistical analysis, but this algorithm cannot deal with multi-element remote
sensing images better. Therefore, the IR-MAD algorithm is studied and proposed. The core
idea of the algorithm is to set the initial weight of each pixel to 1, and assign new weights to
the pixels in the two images by iteration. Phase angle data are used by the CVA technique
to partition the changes. However, the stability of the algorithm cannot be guaranteed, and
the effectiveness of this approach mostly relies on the caliber of the spectral bands used in
the computation. Another common algorithm is principal component analysis (PCA) [16].
PCA transforms the image into a set of linear independent representations through linear
transformation, which can be used to extract the main feature components of the data.
However, PCA depends on the statistical characteristics of the image, so whether the data
in the changing region and the invariant region are balanced will have a great impact on the
performance of the model. Based on this, Celik [17] proposed an unsupervised CD method
that integrates PCA and K-means clustering. However, the pixel-level method is sensitive to
high-frequency information in high-resolution remote sensing images, and is easily affected
by image geometric correction and radiometric correction errors, and its applicability is
limited. Therefore, it is mainly suitable for low- and medium-resolution images. Therefore,
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the object-based method is often used in HR remote sensing image CD. It allows richer
information representation. The ground features or surface features in the image are used
as objects, and their shapes, sizes, and positions at different time points are compared to
determine the change. Ma et al. [18] used different segmentation strategies and a series of
segmentation scale parameters to test four common unsupervised CD algorithms on urban
area images, and studied the influence of several factors on the object-based CD method.
Subsequently, by merging multi-scale uncertainty analysis, Zhang et al. [19] presented an
object-based unsupervised CD technique. Zhang et al. [20] proposed a method based on the
law of cosines with a box–whisker plot to solve the problem that the sample data does not
obey the Gaussian distribution, which is superior to the traditional CD method. To some
extent, traditional methods that rely on pixels and objects have aided in the development of
remote sensing CD. For high-resolution bitemporal images, which contain complex texture
features and detailed image detail processing, it is still challenging. Image processing for
remote sensing requires new CD approaches.

Natural language processing [21], audio recognition [22,23], and image processing [24–27]
have all made extensive use of deep learning techniques in recent years. In order to extract
features, the deep learning method does not require the manual creation of feature elements,
and it has good learning capabilities [28,29]. Researchers’ interest in deep learning-based
remote sensing image CDs has grown rapidly as a result of deep learning’s achievements
in the field of image processing. Convolutional neural networks (CNNs) have been the
subject of some outstanding research in the field of remote sensing CD [30,31], thanks to the
ongoing advancements in technology. UNet [32], fully convolutional network (FCN) [33],
and ResNet [34] structures are commonly employed in the remote sensing CD domain for
feature map extraction. In 2016, Gong [35] applied deep neural network to remote sensing
image CD for the first time. This method consists of two parts. Firstly, the pre-classification
results are obtained by FCM joint clustering, and the training sample set is selected from
the pre-classification results. Then, the Restricted Boltzmann Machine (RBM) is used as
a tool to construct a deep neural network, and the network parameters are fine-tuned by
the back propagation algorithm. Finally, the trained deep neural network outputs the CD
results. In 2017, Zhan [36] proposed an optical remote sensing image CD method based on
deep twin convolutional neural network.This method transforms the CD problem into an
image segmentation problem, and inputs two time images into two deep convolutional
neural networks with shared weights to extract image features. Then, the feature distance
map is obtained by calculation, and the CD results are obtained directly by clustering
or threshold segmentation method. This method effectively improves the high time cost
problem brought by the traditional CD method based on deep neural network, and realizes
end-to-end remote sensing image CD. With the deepening of research, the remote sensing
CD model has been continuously optimized and improved. Wang et al. [37] introduced the
attention mechanism into the deep supervised network to capture the link between different
scale changes between each module of encoding and decoding to achieve more accurate
CD. Yin et al. [38] used the attention fusion module to refine layer by layer in the decoding
stage for the reconstruction of the change map, which proved that the introduction of
the attention mechanism in the deep learning model can improve the performance and
robustness of the model.

The method of image fusion based on deep learning has been widely applied in image
processing. The fundamental idea of multi-scale fusion is to utilize features from different
scales to complement and enhance each other’s information, thereby improving the under-
standing and description of targets or scenes. Li et al. [39] proposed a novel multi-focus
image fusion method using local energy and sparse representation in the Shearlet domain.
This method first decomposes the source image into low-frequency and high-frequency sub-
bands through Shearlet transform. Then, it fuses the low-frequency subbands using sparse
representation and the high-frequency subbands using local energy. Finally, the fusion
image is reconstructed through inverse Shearlet transform. Zhang et al. [40] introduced a
Dimension-Driven Multi-Path Attention Residual Block (DDMARB) to effectively capture
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multi-scale features. Through the Channel Attention (CA) mechanism, these features are
processed differently to better express the depth features of the data. Zhang et al. [41]
introduced a compact structure feature distillation block (FD-Block) for high-dimensional
information in the encoder stage. The FD module adopts a multi-path feature extraction
method, which can fully utilize features from different levels in the high-dimensional input.
Based on this, we propose to integrate multi-scale fusion with attention mechanism to
fully utilize multi-scale information in images. This not only enhances the understanding
and description of image content but also preserves the sharpness of all images in the
fused image. However, due to the full integration of different scales of different features
and the combination of attention mechanisms, a series of problems such as inconsistent
feature fusion, alignment problems, and model complexity and training difficulties will
be brought about. The current deep learning algorithm cannot achieve good results in the
use of these two, so it cannot guarantee the accuracy of distinguishing between changing
regions and invariant regions and the problem of false detection and missed detection of
small targets and edge detection. Based on this, we propose a multi-scale feature fusion
Siamese network based on an attention mechanism (ABMFNet) in high-resolution remote
sensing image CD tasks to solve the above problems. This network contains three modules
to assist the network in training. In order to realize the connection between the low-level
features and high-level features of spatial difference information, we propose a cross-scale
fusion module (CFM) and a bottom-up difference enhancement feature pyramid structure
(DEFPN). These two modules are used to fuse the output of different levels of feature
difference information to ensure the recovery of the original image detail features during
the subsequent upsampling process. In the process of fusing the difference information
of the adjacent two layers, we add the feature enhancement module (FEM). This module
enhances the representation of the feature pyramid and accelerates the inference speed,
while achieving the most advanced performance. In order to solve the problem of insuf-
ficient feature fusion and feature connection caused by feature layers of different scales
in the fusion process, we designed an attention-based multi-scale feature fusion module
(AMFFM). The main contributions of this paper are as follows:

1. To address a series of challenges in change detection tasks for dual-temporal high-
resolution remote sensing images, including handling complex texture features, intri-
cate image details, and effectively integrating differing scale features with attention
mechanisms, while mitigating issues such as inconsistent fusion, alignment problems,
model complexity, and training difficulties, we propose ABMFNet. This method is
end-to-end trainable and makes full use of the rich difference information in high-
resolution remote sensing images. It can better improve the detection of edges and small
targets, and provides a more effective solution for CD in HR remote sensing images.

2. We propose the Attention-based Multi-scale Feature Fusion Module (AMFFM), which
not only addresses the issue of insufficient feature fusion and connection between
different-scale feature layers, but also enables the model to automatically learn and
select important features or regions in the image, concentrating more attention on
these areas. Additionally, to better assist the AMFFM module in integrating dif-
ferential information based on the attention mechanism, we design the Cross-scale
Fusion Module (CFM) and the Difference Feature Enhancement Pyramid Structure
(DEFPN), facilitating the connection of spatial differential information between low-
level and high-level features. Furthermore, the Feature Enhancement Module (FEM)
is incorporated into DEFPN to enhance the representation and inference speed of
the pyramid.

3. We tested on three datasets; one is the dataset BICD proposed by our laboratory, and
the other two public benchmark datasets LEVIR-CD and BCDD. The experimental
results show that our proposed model has better improvement and resolution accuracy
than the previous algorithms for HR remote sensing image CD.

The rest of the article is divided into the following: The Section 2 introduces the
detailed composition and selection advantages of each module of the entire network.
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Section 3 introduces three datasets, the ablation experiment on the BICD dataset and proves
the performance of the model through experiments. Section 4 discusses the effectiveness of
the proposed modules and future prospects. Section 5 is the final summary.

2. Methodology

With the wide attention of remote sensing image CD in the field of image processing,
many high-quality algorithms based on CNNs have been applied to this task in recent
years [42,43]. The task of remote sensing image CD is essentially a two-class semantic
segmentation process, and CNNs perfectly meet this task. Furthermore, CNNs possess
advantages such as automatic feature extraction and shared convolutional kernels. These
characteristics enable CNNs to effectively capture local patterns and abstract features
within images, thereby demonstrating outstanding performance in tasks such as image
classification [44]. Therefore, in the coding stage of the network, we select ResNet for feature
extraction, and then perform a simple element subtraction operation on the extracted
features. The two modules of CFM and DEFPN are used to fuse the difference feature
information of different sizes at different stages for subsequent cross-scale fusion. Next,
AMFFM is introduced in detail for cross-scale fusion, and the attention mechanism is used
to pay more attention to the changing region, while suppressing the process of the invariant
region. Finally, the final prediction map is obtained by upsampling. Figure 1 shows the
whole network structure.

Classifier head

FEM FEM FEMFEM

Feature Extraction Module(ResNet34)

DEFPN

(a)
(c)

Feature Fusion

(b)

AMFFM

Decoder Stage

(d)

2T

1T

Output

CFM

FEM AMFFM

Addition Cross-scale Fusion Module

Feature Enhanced Module Attention-Based Multi-scale Feature Fusion Module

DEFPN Difference-enhancing feature pyramid network
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Conv1×1 Conv3×3Dropout
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CFM

Classifier head

FEM FEM FEMFEM

Feature Extraction Module(ResNet34)

DEFPN

(a)
(c)

Feature Fusion

(b)

AMFFM

Decoder Stage

(d)

2T

1T

Output
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FEM AMFFM

Addition Cross-scale Fusion Module

Feature Enhanced Module Attention-Based Multi-scale Feature Fusion Module

DEFPN Difference-enhancing feature pyramid network

Element-wise subtraction
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Conv1×1 Conv3×3Dropout

×2

CFM

Figure 1. Attention-based multi-scale feature fusion Siamese network (ABMFNet) framework. (a) is
the feature extraction stage, the backbone network is ResNet34, (b) is the feature fusion module,
including cross-scale fusion module (CFM) and (c) difference enhancement feature pyramid struc-
ture (DEFPN), (d) is the decoding stage, mainly is the attention-based multi-scale feature fusion
module (AMFFM).

2.1. Backbone

The task of the main network is to extract the image feature information of the bitempo-
ral remote sensing image pairs. In the image classification task, the size of the receptive field
has an important influence on the classification effect. In order to expand the receptive field,
some methods use spatial pyramid pooling [45]. However, the disadvantage of this method
is that the calculation speed is slow and the memory consumption is large. Consequently,
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as backbone networks, we take into consideration some models that perform better in
image classification tasks, like the visual geometry group network (VGG) [46], the densely
connected convolutional network (DenseNet) [47], the residual network (ResNet) [34], and
the deep learning of deep separable convolution (Xception) [48]. In the CD task, due to
the high resolution of the image, the shallow network is generally not used, Thus, the
shallow network is unable to adequately extract the image’s feature information. The
general idea is to design a network as deep as possible. However, as the number of network
layers increases, deeper redundant layers will be generated, and it is difficult to train the
network. In addition, as the depth of a neural network increases, the problem of vanishing
or exploding gradients may arise. However, some network architectures such as ResNet
have addressed this issue to a certain extent. Nevertheless, overly deep network structures
may increase the risk of overfitting rather than solely reducing the effectiveness of training
due to gradient vanishing. Therefore, when designing a network, it is essential to strike a
balance between network depth and model complexity, avoiding overly deep structures.
Through experimental comparisons, we choose ResNet34 as the backbone network, because
ResNet34 effectively tackles the problem of gradient vanishing through residual modeling.
The advantage of the residual model is that it can better adapt to the classification function
to obtain higher classification accuracy. This structure makes the network very deep, and
the training performance is still very good. The core idea is jump connection. As shown in
Figure 1a, ResNet generates five feature maps from shallow to deep in the process of feature
extraction, but we only use the last four layers, which are 4, 8, 16, 32 times downsampling,
and 64, 128, 256, 512 channels of shallow and deep feature maps. The Siamese structure
is used to extract the features of the bitemporal remote sensing images T1, T2 at the same
time, and the feature maps of different sizes T1i, T2i, i = {1, 2, 3, 4} are obtained.

2.2. Difference Enhances Feature Pyramid Networks

For the extraction of difference features, we directly use the element subtraction
operation after backbone. The four different scale feature maps obtained directly by this
operation contain shallow and deep difference information, respectively. However, if we
directly use the information from these four difference features for subsequent upsampling
prediction, it will lead to a smaller size of the deep network and relatively less geometric
information. At the same time, the shallow information contains few image semantic
features, which is not conducive to CD. So, after the backbone, we incorporated a feature
fusion step. In computer vision tasks, feature pyramids [49] are usually used to fuse feature
maps with different resolutions, reflecting certain advantages. Based on this, this paper
proposes a bottom-up difference enhancement feature pyramid structure for encoding.

The structure of this module is shown in Figure 1c. Figure 2a shows the operation of
one layer; we fuse the difference feature maps of different sizes by pooling convolution
for down-sampling and element addition. The feature enhancement module is added to
the fusion process of the difference information of the adjacent two layers, which enhances
the inference speed of the feature pyramid and improves the performance of the model.
Figure 2b shows the structure diagram of the feature enhancement module. The difference
feature size obtained by subtracting the elements is fin ∈ RC×H×W; we adopt a two-branch
structure, where one is responsible for extracting channel change information, and the
other is responsible for guiding the original features. The upper branch obtains the useful
channel information of the differential features through the Global Average Pooling layer,
and the obtained feature map is C × 1 × 1, which is then multiplied by the original feature
information of the lower branch to restore the feature size, and then the elements are
added to the original features and, finally, the output features fout ∈ RC×H×W are obtained
through the 1 × 1 convolution layer. The calculation formula of the above process is:

fout = RELU
(

B
(

f 1×1( fin + σ( fin ⊗ GAP( fin)))
))

(1)

In this formula, RELU(•) represents the RELU activation function, B(•) indicates
batch standardization processing, f 1×1 denotes two-dimensional convolution with convolu-
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tion kernel of 1, σ(•) is the Sigmoid activation function, ⊗ represents element multiplication,
and GAP(•) is global average pooling.

GAP

Conv1×1 BN+ReLU

outf

GAP

Conv1×1 BN+ReLU

outf

FEM

Conv1×11F

2F

Fout

Feature Enhancement Module

Pooling

(a)

(b)

inf
GAP

Conv1×1 BN+ReLU

outf

FEM

Conv1×11F

2F

Fout

Feature Enhancement Module

Pooling

(a)

(b)

inf

Figure 2. Structure of the difference enhancement feature pyramid. (a) shows a layer of display of the
difference enhancement feature pyramid module, and (b) shows a feature enhancement module.

The difference features of multiple scales obtained by element subtraction are fi,
i = {1, 2, 3, 4}; firstly, it is fused with the previous layer of difference features adopted under
feature enhancement and pooling. On the one hand, the feature enhancement features are
obtained as output f ,

i , i = {1, 2, 3, 4} and, on the other hand, they are transmitted to the
next layer as input through the same operation. The calculation formula of the difference
enhancement feature pyramid is as follows:

f ,
1 = F( f1) (2)

f ,
i = F( fi + AvgPool( f ,

i−1)), i = {2, 3, 4} (3)

In this formula, F(•) represents FEM, AVGPool(•) represents a 2-fold average pooling
downsampling layer. The difference characteristic formula is as follows:

fi = abs(T1i − T2i), i = {1, 2, 3, 4} (4)

Here, abs(•) is element subtraction.

2.3. Cross-Scale Fusion Module

In the process of DEFPN module’s fusion of different features at different stages, the
output of shallow feature information is not accurately modeled due to the relationship
with deep features, resulting in that the subsequent feature fusion related to each semantic
class does not reach the best state. Currently, there are many cross-scale fusion architectures.
The CSFF module proposed by Chen et al. [50] integrates contextual information of
features to better achieve target feature extraction, addressing the issue of inter-class
similarity. Inspired by this, we design a cross-scale fusion module, which captures the
context dependencies of different stages through a guiding mechanism, and adds semantic
and detailed information to shallow features to generate richer representations. The
structure is shown in Figure 3.

Multiple scale feature maps obtained by element subtraction are fi, i = {1, 2, 3, 4};
since the features of each stage have different channel numbers and resolutions, we first
use the 1 × 1 convolution layer to sample them up to the same size 64 × 128 × 128 by
bilinear interpolation. The expanded feature map is f ,

i , i = {1, 2, 3, 4}; then, the adjacent
feature maps f ,

i are densely linked to obtain four new features Fi, i = {1, 2, 3, 4}. Finally,
the concat operation is used to stitch on the channel dimension, and then the number



Remote Sens. 2024, 16, 1665 8 of 25

of channels is restored through the 1 × 1 convolutional layer to obtain the final output
feature. Therefore, fi encodes the detailed information from the shallow layer and the deep
semantic information jointly and, finally, a feature map with richer context information
and stronger representation is obtained. The calculation formula of the above process is
as follows:

f ,
i = Upsample( f 1×1( fi)), i = {1, 2, 3, 4} (5)

F1 = f ,
1 + f ,

2 (6)

F2 = f ,
1 + f ,

2 + f ,
3 (7)

F3 = f ,
2 + f ,

3 + f ,
4 (8)

F4 = f ,
3 + f ,

4 (9)

fout = f 1×1([F1; F2; F3; F4]) (10)

Figure 3. Cross-scale fusion module structure diagram.

In this formula, Upsample(•) represents the bilinear interpolation upsampling, batch
normalization and ReLU activation function, and [•] refers to the Concat splicing operation.

2.4. Attention-Based Multi-Scale Feature Fusion Module

In recent years, with the in-depth study of remote sensing CD tasks, many deep learn-
ing approaches solely use basic feature extraction networks, which produces unsatisfactory
results for CD tasks. On the one hand, simple feature extraction networks are heavily
influenced by semantic interferences such as shooting angles, seasonal changes, and light-
ing variations. They often struggle to accurately label changing regions in scenarios with
densely arranged objects or complex shapes. On the other hand, they fail to fully leverage
multi-scale information. The fusion of multi-scale features can help establish connections
between them, thereby enhancing the performance of our network. There are two common
types of multi-scale feature fusion networks: parallel multi-branch networks, as seen in
Inception [51], SPPNet [52], DeepLabV2 [53], and PSPNet [54]; and serial skip-connection
structures, as used in FPN [49], UNet [32], HRNet [55], PANet [56], and BiFPN [57]. These
architectures perform feature extraction at different receptive fields. Although multi-scale
fusion adequately considers features at different scales to merge local details and global
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structures, they cannot automatically learn and select important features or regions in
the image and focus more attention on these areas. Therefore, we introduce attention
mechanisms into multi-scale fusion. The edge information of the changing region can be
better obtained by using the layer-by-layer fusion of adjacent features, and the attention
mechanism [58] can better focus on the changing region and suppress the invariant region.
Based on this, we propose an attention-based multi-scale feature fusion module (AMFFM).

Figure 4 describes the detailed content of the entire module. The input is the
four different scale difference feature maps f ,

i , i = {1, 2, 3, 4} obtained by the DEFPN
module. The feature maps of the adjacent scales are input into the AFFM for feature fusion.
In the fusion process, the resolution of the semantic features in the multi-scale feature map
is continuously restored, and the attention to the changing region is enhanced. Therefore,
we use 6 AFFMs to obtain a feature map that is restored to the 1/4 size of the input image.
In the subsequent use of 4-times upsampling and a classification head composed of convo-
lution to obtain classification results. AFFM is shown in Figure 4b. The feature maps of
different stages have different channel numbers and sizes, therefore, a 2-times upsampling
operation is performed for deep features, and then spliced with the adjacent upper layer
features to obtain the feature map of 2C×H×W. Since the direct cross-level feature fusion
method does not take into account the importance and interactivity of the channel and
spatial dimension, we send the obtained feature map to the attention module. The feature
map is recalibrated by space and channel, which enhances the network’s attention to more
noteworthy feature information. Based on CAM and SAM in CBAM, we propose a new
attention module, whose structure is shown in Figure 4c. Different from CBAM’s method
of connecting CAM and SAM in series, we adopt the idea of three branches and parallel
connection. One branch is used to guide the original features, and the other two are used to
extract the change information of the channel and spatial dimension of the original feature
map, respectively. The three branches are fused by jump connection to achieve mutual
guidance. That is, the original feature map is first refined by CAM and SAM to obtain the
channel and space, and then multiplied by the elements of the original feature to restore
the size, and then spliced with the original feature. Next, the consistency of the number of
channels is maintained by 1 × 1 convolution. Finally, the three branch elements are added
to obtain the final output feature map. The formulae of the above process are:

fc = [ fin; CAM( fin)⊗ fin] (11)

fs = [ fin; SAM( fin)⊗ fin] (12)

fout = f 1×1( f 1×1( fin + f 1×1( fc) + f 1×1( fs))) (13)

UpC
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Figure 4. (a) shows the Attention-based Multi-scale Fusion Module (AMFFM), (b) shows the
Attention-based Feature Fusion Module (AFFM), (c) shows the details of three-branch attention.

Here, f 1×1 represents a two-dimensional convolution with a convolution kernel of 1,
batch normalization and ReLU activation function, fin represents the input feature map,
CAM represents channel attention, SAM represents spatial attention, fc is the feature map
after CAM and fin processing, and fs is the feature map after SAM and fin processing.
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The size of the output feature map is 2C × H × W. Then, we use the 3 × 3 convolution
block to keep the number of channels of the feature map consistent. The formula below
illustrates the aforementioned computation process:

Fout = f 3×3(Atten([ f 1×1(F1); f 3×3(Up(F2))])) (14)

In the formula, f 3×3 is a 3 × 3 convolution block, Atten represents a new attention
module, and Up is a bilinear interpolation 2-times upsampling.

Figure 5 shows the heat map after we use the AFFM module. (a) and (b) are the original
images, (c) is the label, (d) is the heat map of the backbone network without the AFFM
module, and (e) is the heat map with the AFFM module. Areas where the original attention
is not obvious, or there is a large area of focus error, can be seen; that is, the red in the
feature map represents a highly concerned area, and the blue and green represent a lower
weight area. After the introduction of the AFFM module, the feature map is more effective
and accurate for these areas. Next, the two modules of CAM and PAM are introduced.

（a） （b） （c） （d） （e）（a） （b） （c） （d） （e）

Figure 5. Comparison of heat maps with AFFM module and without AFFM module. (a,b) original
bitemporal image, (c) label, (d) heat map without AFFM module, (e) heat map with AFFM module.

2.4.1. Channel Attention Module

Figure 6 shows the structure of the channel attention module, which keeps the channel
dimension unchanged, compresses the spatial dimension, and focuses on the meaningful
information in the input features. The size of the input feature map is 2C × H × W. Firstly,
the spatial information is squeezed by average pooling and maximum pooling operations
to refine the channel, the feature map is compressed into two tensors of 2C × 1 × 1. Then, the
two tensors are input into a shared multi-layer perceptron (MLP) with a hidden layer, and
the obtained output is combined into a feature vector by element-by-element summation.
Finally, the importance of each channel is obtained by assigning different weights to each
channel through sigmoid function excitation. The formula can be described as:

Fca = σ(MLP(AvgPool( fin)) + MLP(MaxPool( fin))) (15)

Here, σ(•) represents the sigmoid activation function, fin represents the input feature
map, and Fca refers to the feature map obtained by CAM.
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Figure 6. Channel attention module.

2.4.2. Spatial Attention Module

Figure 7 is the spatial attention module structure, which keeps the spatial dimension
unchanged, compresses the channel dimension, and focuses on the position information of
the target. Its input is the output after multiplying the original feature elements by CAM.
Firstly, the channel information is squeezed by average pooling and maximum pooling
operations to refine the spatial dimension, and the feature map is compressed into two
tensors of 1 × H × W. Then, the Concat splicing operation is performed on two layers, and
the feature map of 1 channel is transformed by 7 × 7 convolution. Finally, the feature map
output of SAM is obtained by a sigmoid function. The formula is as follows:

Fsa = σ( f 7×7([AvgPool( fin)); MaxPool( fin)])) (16)

Here, σ(•) represents the sigmoid activation function, and f 7×7 represents the
two-dimensional convolution with a convolution kernel of 7, batch normalization, and
ReLU activation function. Fsa refers to the feature map obtained by SAM.

Spatial Attention Module

C Conv7x7

Maxpool

Avgpool



2C×H×W 2×H×W
1×H×W

Spatial Attention Module

C Conv7x7

Maxpool

Avgpool



2C×H×W 2×H×W
1×H×W

Figure 7. Spatial attention module.

2.5. Loss Function

In the training phase, we use the BCEWithLogitsLoss binary classification loss function.
BCEWithLogitsLoss is a combination of binary cross entropy loss function and sigmoid
function. It not only solves the problem of instability of sigmoid function, but also avoids
the problem of gradient disappearance in training. Its calculation method is to process the
real label and the predicted score by the sigmoid function first, and then use the two-class
cross entropy to calculate the loss. The formula is as follows:

li = yi · log(σ(pi)) + (1 − yi) · log(1 − σ(pi)) (17)

BCEWithLogitsLoss =
1
N

N

∑
i=1

(li) (18)

This function compares the input-predicted value with the real value, and calculates
the difference between the predicted value and the real value. In the formula, log(•) is the
natural logarithm, pi is the predicted value of the model output, and yi is the true value of
the label. This function helps the model gradually improve the prediction ability and better
predict the target.



Remote Sens. 2024, 16, 1665 12 of 25

2.6. Learning Rate and Evaluation Index

We use Adam gradient descent as our network optimizer and BCEWithLogitsLoss
as our network loss function. The selection of learning rate in deep learning task is very
important. The model will not converge and the loss value will skyrocket if the learning
rate is too high. If the learning rate is too low, the complexity of the fusion network
will be greatly increased, and the model will be difficult to converge. We have set the
attenuation index to 0.9, the batch size to 6, the learning rate to 0.001 at the beginning, and
a maximum of 200 training iterations, as per our experiment. The assessment metrics that
were employed were joint average intersection (MIoU), precision (PR), recall rate (RC), pixel
accuracy (PA) and F1 score (F1). PA represents the proportion of correctly predicted change
regions in all pixels, the ratio of successfully predicted change regions in the prediction
map to the total number of pixels in all true reference change regions is represented by
PR, whereas the proportion of correctly detected change regions in the original picture is
represented by RC. The prediction results’ total assessment metrics are represented by the
F1 score. The better the forecast outcomes, the higher their values. MIoU is to calculate the
ratio between the intersection and union of two sets, which represents the change region
and the invariant region in the CD task. By combining different evaluation indicators, the
performance of the model can be evaluated more comprehensively. The above formulae
are as follows:

PA =
TP + TN

TP + TN + FP + FN
(19)

Recall =
TP

TP + FN
(20)

Precision =
TP

TP + FP
(21)

F1 =
2 × PR × RC

PR + RC
(22)

MIoU =
TP

TP + FP + FN
(23)

In the formulae, TP represents true positive and is a correctly predicted change area;
FP represents false positive, which is that the invariant region is incorrectly predicted
as the change region; TN represents true negative, and is an invariant region for correct
prediction; and FN represents false negative, which refers to the wrong prediction of the
changing region as the invariant region.

3. Experiment

All the experiments in this section are completed on pytorch and RTX3070Ti. In order
to verify the effectiveness and robustness of the model, we designed ablation experiments
and comparative experiments; that is, we completed the selection and ablation experiments
of the backbone network on the BICD dataset, and completed comparative experiments on
the LEVIR-CD dataset and the BCDD dataset. Experiments show that our model is more
effective and advanced than other algorithms in CD tasks.

3.1. Dataset

To validate its effectiveness, we conducted tests on our in-house dataset and two pub-
licly available benchmark datasets. In this section, we first analyze the three datasets. By
examining the change regions in each image, we can gain a comprehensive understanding
of the dataset composition. As shown in Table 1, the proportion of change regions in the
three datasets is relatively small compared to unchanged areas. To provide a more intuitive
representation, we counted the number of images at different proportions. As illustrated
in Figure 8, the horizontal axis represents the proportion of change area to the overall
image, while the vertical axis indicates the number of images within each proportion. From
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the data analysis graph, it can be observed that the majority of images have change area
proportions within 20%.

Table 1. Statistics of the number of changed pixels and the number of invariant pixels in BICD,
LEVIR-CD and BCDD datasets.

Dataset Changed Pixels Unchanged Pixels Ratio

BICD

train 33,311,501 613,798,899 0.054

val/test 21,277,278 128,144,802 0.166

total 54,588,779 741,943,701 0.074

LEVIR-CD

train 21,412,971 445,203,349 0.048

val/test 6,837,404 127,380,324 0.054

total 28,250,375 572,583,673 0.049

BCDD

train 15,422,878 82,029,154 0.188

val/test 3,751,149 20,562,707 0.182

total 19,174,027 102,591,861 0.187

Figure 8. Data analysis. The ratio of the area of change in each image in the dataset to the whole.

3.1.1. BICD Dataset

The BICD dataset contains 3420 pairs of 512 × 512 resolution bitemporal remote
sensing images. It is a data set collected by our laboratory from Google Earth to verify the
validity of the model. Among them, 2280 were used for training, 570 for verification, and
570 for testing. Compared with other datasets, the remote sensing images in this dataset
are composed of photo pairs taken at different locations in eastern China from 2010 to 2019,
including various industries, farms, highways and various buildings. The label of the data
set is manually completed by us and a unified clipping is performed. In order to avoid the
partial change area being cut into small sub-regions during the cutting process, it is ensured
that each complete change area has a corresponding slice, and some areas between the slices
overlap to ensure that the information of the change area is accurate enough. As shown
in Figure 9, we show some representative samples from various categories of the dataset.
We can observe that our dataset has more objects, environmental information, and more
types of changes. In order to replicate the actual application settings as close as possible,
we intentionally include several image pairs with high angle deviations. We also selected
some image pairs captured in various seasons to consider seasonal variations. In addition,
the image pairs of the unaltered regions are added to the data set to appropriately increase
the imbalance between the samples in order to more clearly distinguish the advantages
and disadvantages of the model.
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Figure 9. The BICD dataset map shows the changing areas and invariant areas of factories, highways,
and farmland. (a–e) denote factory, farmland, road, building and unchanged area, respectively.

Model training is a complex and time-consuming process that requires a large number
of diverse samples to improve its generalization performance. To increase the diversity
and quantity of data samples, it is often necessary to perform data augmentation on
training images. Data augmentation plays a crucial role in deep learning, as it effectively
enhances the model’s generalization performance by introducing various transformations
and noise. Common image data augmentation methods include rotation, flipping, scaling,
cropping, translation, adding noise, adjusting HSV saturation, and sharpening images.
These methods enable the model to better understand images, thereby improving its
ability to generalize across various scenarios. During the data augmentation process, it is
important to pay attention to certain parameter settings to ensure the effectiveness of the
augmentation effects. As shown in Table 2, the probability of horizontal or vertical rotation
of images is typically set to 50%, and the variation range of HSV saturation is also 50%.
Additionally, to avoid introducing too many negative samples, rotational enhancement
is generally limited to plus or minus 10 degrees, while translation augmentation should
be within 20% of the image’s own length. It is worth emphasizing that all these data
augmentation methods are only used during the training phase, and no data augmentation
should be applied during model testing to ensure the accuracy and reliability of the test
results. Ultimately, through these data augmentation methods, the image samples during
the training process can be effectively enriched, as shown in Figure 10, thereby improving
the model’s generalization performance and enabling it to better adapt to different input
conditions and scenarios.

Table 2. The parameters of data augmentation.

Method Parameter

Random Rotation −10°~10°
Translation −20°~20°

HSV Saturation −50°~50°
Random Horizontal Flip 50%

Random Vertical Flip 50%
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(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 10. Charts of different data augmentation methods. (a) is the original image; (b) is the original
image rotated by 10 degrees; (c) is the translated image; (d) is the image after HSV transformation;
(e) is a horizontally flipped image; (f) is a vertically flipped image.

3.1.2. LEVIR-CD Dataset

LEVIR-CD is a massive dataset with 637 pairs of extremely high-resolution
(1024 × 1024 pixels) Google Earth pictures that are used to identify changes in buildings.
LEVIR-CD focuses on photos taken between five and fourteen years ago that show notable
changes in land use, particularly in the area of structures. These images include a variety of
building types, including high-rise flats, villas, modest garages, and enormous warehouses.
In addition, the effects of light and seasonal variations are particularly pronounced in
this dataset. The completely annotated LEVIR-CD has 31,333 unique examples of change
construction. As shown in Figure 11, we selected three types of building image display,
namely building additions, disappearances, and no changes. Each sample is reduced to
16 small blocks with a size of 256 × 256, generating 7120 image block pairs for training and
2048 for verification and testing.
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Figure 11. LEVIR-CD dataset. (a–c) shows the areas of added buildings, (d) shows the areas of
removed buildings, and (e) shows the unchanged areas.
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3.1.3. BCDD Dataset

The BCDD dataset was published by Ji et al. [59] from Wuhan University, as shown in
Figure 12. It covers the 6.3 magnitude earthquake area in Christchurch, New Zealand, in
February 2011, and the subsequent reconstruction area. The dataset contains aerial images
obtained in April 2012, including 12,796 buildings of 20.5 square kilometers (16,077 build-
ings in the same area of the 2016 dataset). By manually selecting 30 GCPs on the ground,
the sub-dataset is geographically corrected into an aerial image dataset with an accuracy
of 1.6 pixels. Since the size of the image is 32,507 × 15,324, we divide the two images into
non-overlapping 256 × 256 pixel image pairs. Then, we select 1487 image pairs in the
cropped image as the training set and 371 as the validation set and test set.
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Figure 12. BCDD dataset graph; the first line is the unchanged graph, the second line is the changed
graph, and the third line is the labels. (a–d) shows the changing areas, (e) shows the unchanged areas.

3.2. Selection of Backbone Network

With all training parameters set the same, we tested several different backbone net-
works, as shown in Table 3. We selected VGG_16, VGG_19, DenseNet_121, ResNet_18,
ResNet_34, and ResNet_50 as backbone networks for experimentation. The best-performing
data are highlighted in bold. It can be observed that ResNet34 performs the best, so we
chose ResNet_34 as the backbone network for subsequent experimental testing.

Table 3. Selecting the test results of different backbone networks (bold represents the best result).

Method PA (%) RC (%) PR (%) F1 (%) MIoU (%)

VGG_16 91.28 65.01 72.78 66.28 76.11
VGG_19 92.35 67.24 74.05 68.17 78.32

DenseNet_121 94.61 73.42 78.72 72.04 82.68
ResNet_18 95.93 74.51 80.92 75.86 83.56
ResNet_34 96.15 76.36 81.81 77.69 84.65
ResNet_50 96.01 74.63 81.12 76.01 83.74

3.3. Ablation Experiments on BICD Dataset

In this section, we can better understand and verify whether the proposed module
can effectively improve the accuracy of the model by adding and deleting some modules
on the ResNet_34 backbone network. Table 4 shows the results of ablation experiments.
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Table 4. Ablation experiment of ABMFNet (bold represents the best result).

Method PA (%) RC (%) PR (%) F1 (%) MIoU
(%)

ResNet34 95.44 73.1 80.2 74.62 82.28
ResNet34 + CBAM 95.67 75.29 79.04 75.41 82.85
ResNet34 + AMFFM 95.92 75.76 81.27 76.64 83.92
ResNet34 + AMFFM + DEFPN 96.09 75.89 81.8 77.26 84.39
ResNet34 + AMFFM + DEFPN + FEM 96.11 76.28 81.33 77.39 84.49
ResNet34 + AMFFM + DEFPN + FEM + CFM 96.15 76.36 81.81 77.69 84.65

Attention mechanisms can adaptively calibrate changes in channel and spatial dimen-
sions. By utilizing attention fusion modules, the network can better focus on changing
regions while suppressing invariant areas, making it one of the important methods to
improve the accuracy and effectiveness of the network. Experimental results in Table 4
show that after adding the AMFFM module, the F1 score and MIoU values increased by
2.02% and 1.64%, respectively. Furthermore, compared to the CBAM module, it can be
observed that the network with the AMFFM module performs better, with the F1 score
and MIoU increasing by 1.23% and 1.07%, respectively, demonstrating the effectiveness
of AMFFM. To establish connections between low-level and high-level features regarding
spatial differences, we proposed the DEFPN module to facilitate better hierarchical con-
nections during the encoding stage and fuse the output of feature difference information
across different levels. The data in Table 4 indicate that the DEFPN module shows a decent
improvement in fusion, with the F1 score and MIoU values increasing by 0.64% and 0.47%,
respectively. Adding the FEM module during the fusion process not only accelerates the
inference speed of the pyramid, but also effectively improves the model’s performance.
Experimental results in Table 4 show that the F1 score and MIoU increase by 0.13% and
0.1%, respectively. The CFM module captures contextual dependency relationships across
different stages through guidance mechanisms, adding semantic and detail information to
shallow features to produce richer representations. The data in Table 4 demonstrate that the
proposed CFM module enhances the F1 score and MIoU by 0.3% and 0.16%, respectively.

The ablation experiment clearly shows that the proposed auxiliary module has a
significant improvement and optimization on the performance and evaluation indicators
of the overall network. When the three modules jointly guide the backbone network, the
final network indicators PA, RC, PR, F1 and MIoU are proposed, respectively.

3.4. Model Performance Comparison

In this section, we conduct a comprehensive comparison between our proposed model
ABMFNet and a range of existing change detection models, including traditional ones such
as FC_EF, FC-Siam-Diff, FC-Siam-Conc [60], SNUNet [61], ChangeNet [62], TCDNet [63],
DASNet [64], MFGAN [43], TFI-GR [65], and SAGNet [38], as well as deep learning models
like FCN8s [33], SegNet [66], UNet [32], HRNet [55], DeepLabV3+ [67], and BiseNet [68]. We
evaluate these models based on several criteria, including their complexity and parameter
count, as well as F1 score and MIoU values. To provide a more intuitive representation,
we present scatter plots in Figure 13. Our analysis reveals that ABMFNet demonstrates
moderate levels of complexity and parameter count. More importantly, compared to both
traditional and deep learning-based models, ABMFNet achieves significant improvements
in both the F1 score and MIoU values. Furthermore, when compared to recent effective
models such as MFGAN, TFI-GR, and SAGNet, ABMFNet outperforms them in terms of F1
score and MIoU values while adding only a minimal amount of FLOPs and reducing the
parameter count. This highlights the effectiveness and efficiency of our proposed ABMFNet
model in remote sensing change detection tasks.
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(a) (b)

(c) (d)

Figure 13. Comparison of the performance of different models. (a) shows the model’s complexity
and MIoU Score, (b) shows the model’s parameter count and MIoU Score, (c) shows the model’s
complexity and F1 Score, (d) shows the model’s parameter count and F1 Score.

3.5. Analysis of Experimental Results
3.5.1. Comparative Experiments on BICD Dataset

Table 5 presents the evaluation metrics of various algorithms on the BICD dataset,
where all deep learning models use consistent training parameters to ensure the objectivity
of comparative experiments. From Table 5, it can be observed that the FC_EF model
has the lowest F1 score and MIoU indicator, with only 45.67% and 64.83%, respectively.
Considering the characteristics of change detection tasks, we optimized the model. After
integrating multi-scale fusion with multi-branch attention mechanisms, the evaluation
metrics improved significantly, with PA, RC, PR, F1, and MIoU reaching 96.15%, 76.36%,
81.81%, and 84.65%, respectively. This confirms the effectiveness of ABMFNet.

Table 5. Comparing the experimental results of different algorithms, the input image size of the
model is (3 × 512 × 512) (bold numbers represent the optimal results).

Method PA (%) RC (%) PR (%) F1 (%) MIoU (%) FLoPs (G) Time (s)
FC_EF 90.32 40.4 69.3 45.67 64.83 5.52 8.42

FC-Siam-Diff 91.55 46.56 73.30 52.46 68.36 9.29 8.09
FC-Siam-Conc 91.51 53.79 69.21 56.62 69.97 9.34 7.67

FCN8s 92.93 64.44 67.41 63.91 74.41 80.68 4.91
SNUNet 92.98 64.02 69.24 64.22 74.41 175.76 10.24
SegNet 93.75 64.38 72.75 66.62 76.28 160.72 5.99

ChangeNet 94.02 61.08 75.24 65.35 76.29 42.73 15.87
UNet 93.89 65.11 73.53 67.15 76.86 124.21 4.27

HRNet 94.10 66.8 74.21 68.18 77.61 85.62 18.34
DeepLabV3+ 94.39 67.63 74.62 68.92 78.17 89.15 15.38

TCDNet 94.38 68.24 77.22 70.11 79.03 27.56 9.79
BiseNet 94.81 67.86 77.6 70.59 79.71 24.87 8.95
DASNet 95.08 69.12 79.42 72.35 81.23 115.79 18.72
MFGAN 95.7 73.92 81.14 75.73 83.15 52.82 11.53
TFI-GR 95.95 71.67 81.06 75.56 83.52 38.79 13.91
SAGNet 95.96 75.24 81.40 76.76 83.99 48.94 19.34

ABMFNet 96.15 76.36 81.81 77.69 84.65 66.17 22.35
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Figure 14 shows the prediction diagrams of various models on the Google Earth images
in Double Time. Through the comparison of the renderings, it can be found that although
the other 13 deep learning and changing detection algorithms can basically determine the
changing areas, there is still a situation of detection misunderstanding or missed inspection.
Especially in the coding stage, algorithms of upper samples such as FC_EF, FC-SIAM-Diff,
FC-SIAM-Conc, thanks to the new fusion method, result in SNUNet, TCDNet, and MFGAN
having achieved good results.

TFI-GR performed well in it, and it can extract and fuse different characteristics of
different features. The addition of attention mechanisms has made SAGNet more effective
in identifying change areas. However, compared with the predictive diagram of ABMFNET,
these methods have not solved the problem of attention mechanism and multi-scale fusion,
so there are still some errors in the prediction of the edge details. The ABMFNET structure
we use adds three modules: CFM, DEFPN, and AMFFM on the basis of ResNet_34. It pays
targeted attention to changing areas and constant areas, and distinguish them. In contrast,
our method has more effectively identified the change area, especially the optimization
of the edge details, making the prediction results closer to the real label. In summary,
ABMFNet effectively addresses some of the issues existing in traditional algorithms in
change detection by introducing attention mechanisms and multi-scale fusion, thereby
improving the recognition ability of changing areas. It particularly demonstrates significant
advantages in handling edge details.
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Figure 14. The prediction graphs of several algorithms are compared on the BICD dataset. Different
remote sensing images are shown in (I–IV). Image 1 and Image 2 are bitemporal remote sensing
images from different periods. (a–n) represent the prediction maps of FC_EF, FC-Siam-Diff, FC-Siam-
Conc, SNUNet, ChangeNet, HRNet, DeepLabV3+, TCDNet, BiseNet, DASNet, MFGAN, TFI-GR,
SAGNet, and ABMFNet, respectively.
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3.5.2. Generalization Experiments on LEVIR-CD Dataset and BCDD Dataset

To validate the generalization ability of ABMFNet across different datasets, we con-
ducted comparative experiments using the public datasets LEVIR-CD and BCDD, compar-
ing them with recent change detection algorithms. The experimental results presented in
Tables 6 and 7 clearly demonstrate that the performance of deep learning algorithms on the
LEVIR-CD and BCDD datasets has been consistently improving with model optimization.
In our experiments, the inclusion of multi-scale fusion modules and attention mechanisms
led to the most significant improvement in network performance. Specifically, on the
LEVIR-CD dataset, our model performed remarkably well, achieving pixel accuracy (PA),
recall (RC), precision (PR), F1 score, and mean Intersection over Union (MIoU) of 98.15%,
82.06%, 83.02%, 81.57%, and 85.83%, respectively. Similarly, on the BCDD dataset, our
model also achieved satisfactory results, with metrics including PA of 97.38%, RC of 80.36%,
PR of 79.67%, F1 of 77.91%, and MIoU of 84.54%. These results fully demonstrate the out-
standing performance and generalization ability of the proposed ABMFNet model across
different datasets. By incorporating multi-scale fusion modules and attention mechanisms,
our model can better capture the dataset’s feature information and achieve remarkable
performance in change detection tasks. These achievements provide valuable insights and
references for future research in remote sensing image change detection.

Table 6. Different algorithm experiments on the LEVIR-CD dataset (bold numbers represent the
optimal results).

Method PA (%) RC (%) PR (%) F1 (%) MIoU (%)
ChangeNet 97.59 79.57 76.30 76.51 82.47

FC_EF 97.73 77.08 77.43 75.75 82.54
TCDNet 97.66 77.24 79.36 77.26 82.93
BiseNet 97.75 77.75 79.97 77.91 83.38
SegNet 97.91 78.18 79.93 77.52 83.53

MFGAN 97.82 76.85 81.61 78.34 83.59
FC-Siam-Diff 97.99 78.15 80.74 78.60 84.24

FC-Siam-Conc 97.96 81.09 80.73 79.59 84.56
SAGNet 97.98 77.01 84.87 79.62 84.63
HRNet 98.13 78.37 82.17 79.14 84.78
PSPNet 98.03 80.33 81.43 79.87 84.79
FCN8s 98.11 79.29 82.18 79.71 84.96

DeepLabV3+ 98.07 80.08 82.13 80.12 85.06
TFI-GR 98.23 79.35 81.17 79.4 85.15

SNUNet 98.16 82.44 82.21 81.13 85.58
ABMFNet 98.15 82.06 83.02 81.57 85.83

Table 7. Different algorithm experiments on the BCDD dataset (bold numbers represent the optimal
results).

Method PA (%) RC (%) PR (%) F1 (%) MIoU (%)
FC-Siam-Conc 91.93 76.55 58.06 62.05 72.31
FC-Siam-Diff 94.06 71.99 63.97 64.61 75.41

FC_EF 95.77 65.83 70.04 65.13 77.14
ChangeNet 95.39 73.52 66.77 67.02 77.56

BIT [69] 95.99 71.62 73.08 69.57 78.95
SNUNet 96.01 77.38 69.86 70.45 79.47
DASNet 96.15 72.23 74.36 71.24 80.72
MFGAN 96.95 74.52 75.08 73.01 81.77
TCDNet 96.97 74.83 75.47 73.12 81.79
BiseNet 97.26 75.14 74.61 73.17 82.11

DeepLabV3+ 97.31 74.41 75.68 73.31 82.16
SAGNet 97.09 75.96 75.08 73.91 82.50
TFI-GR 97.22 76.37 77.22 74.91 83.04

ABMFNet 97.38 80.36 79.67 77.82 84.54
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Figure 15 illustrates three classic images selected from the LEVIR-CD dataset, show-
casing the predictive performance of different algorithms. These images represent various
scenes and difficulty levels: (I) depicts a relatively simple background with a significant
number of changing buildings in dual-temporal images; (II) presents an image with moder-
ate interference and a suitable amount of changing areas; and (III) shows an image with
fewer changing building areas, but strong interference in the background. Observing the
predictive results of different algorithms, we find serious issues in small object detection
and edge detail accuracy, as well as ambiguous predictions of changing areas. Particu-
larly for type (III) images with stronger interference, the errors of other algorithms are
more pronounced. We have highlighted specific misjudged areas in the images using red
boxes. In comparison to other algorithms, although SNUNet performs well in terms of
metrics, its effectiveness in detecting object details is not satisfactory. With the assistance
of attention mechanisms, TFI-GR shows some improvement in detail and edge detection.
ABMFNet demonstrates fewer errors and closer approximation to the ground truth labels
in predictions. Even when facing significant interference, our model accurately predicts the
locations of changing areas and refines edge details.
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Figure 15. Several deep learning algorithms are compared on the LEVIR-CD dataset. The remote
sensing images of different periods are shown in (I–III). (a–n) represent the prediction maps of
ChangeNet, FC_EF, TCDNet, BiseNet, MFGAN, FC-Siam-Diff, FC-Siam-Conc, SAGNet, DASNet,
HRNet, DeepLabV3+, TFI-GR, SNUNet, and ABMFNet, respectively.

As shown in Figure 16 (where red indicates missed detections and blue represents
false alarms), it can be observed that, under the interference of similar objects, most mod-
els exhibit false detection issues, with FC-Siam-Conc, FC-Siam-Diff, and FC_EF showing
relatively severe false detections. Even though SAGNet and TFI-GR incorporate attention
mechanisms, the fusion results are not satisfactory, resulting in detection errors as well.
our approach pays more attention to changes in regions of interest and effectively handles
the interference of pseudo-changes, which is particularly prominent in the BCDD dataset.
This dataset only requires the identification of changes in buildings, while other changes
such as vehicles and roads can be considered pseudo-changes. It is evident from the predic-
tion images that ABMFNet achieves good change detection results even in the presence
of pseudo-changes interference. In conclusion, our model exhibits good performance,
robustness, and generalization ability on both the LEVIR-CD and BCDD datasets.
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Figure 16. Comparing several deep learning algorithms on the BCDD dataset. The remote sensing
images of different periods are shown in (I–III). (a–j) represent the prediction maps of FC_EF, FC-
Siam-Diff, FC-Siam-Conc, ChangeNet, DASNet, MFGAN, TCDNet, SAGNet, TFI-GR, and ABMFNet
(color interpretations are provided in Section 3.5.2).

4. Discussion

For remote sensing change detection tasks, this paper introduces a multi-scale fea-
ture fusion Siamese network (ABMFNet) based on an attention mechanism. The network
comprises three modules that aid in the training process. To bridge the spatial dispari-
ties between low-level and high-level features, we introduce a cross-scale fusion module
(CFM) and a bottom-up difference enhancement feature pyramid structure (DEFPN). These
modules effectively integrate feature differences at various levels, ensuring the restoration
of original image detail features during subsequent upsampling processes. Additionally,
we introduce a feature enhancement module (FEM) to strengthen the expression of the
feature pyramid, thereby improving inference speed and achieving state-of-the-art per-
formance. What sets our model apart is the attention-based multi-scale feature fusion
module (AMFFM). It not only addresses insufficient feature fusion and connection between
different-scale feature layers, but also enables the model to automatically learn and select
important features or regions in the image, focusing more attention on these areas. On
the BICD, LEVIR-CD, and BCDD datasets, ABMFNet demonstrates superior performance
in change area recognition and interference resistance compared to other state-of-the-art
algorithms. However, this study solely focuses on identifying change regions and targets.
In the future, we aim to delve deeper into identifying multi-category change regions. Addi-
tionally, in the model comparison section, although ABMFNet achieves promising results,
its model complexity poses challenges in reducing model complexity while maintaining
detection accuracy and effectiveness. Going forward, we also plan to further explore semi-
supervised or unsupervised learning to facilitate the broader application of remote sensing
change detection.
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5. Conclusions

This paper presents a method for high-resolution remote sensing image change detec-
tion tasks based on the multi-scale feature fusion Siamese network (ABMFNet). By intro-
ducing key technologies such as the attention-based multi-scale fusion module (AMFFM),
cross-scale fusion module (CFM), and bottom-up difference enhancement feature pyramid
structure (DEFPN), ABMFNet successfully improves the accuracy and efficiency of change
detection. On the BICD, LEVIR-CD, and BCDD datasets, ABMFNet achieves F1 scores of
77.69%, 81.57%, and 77.91%, respectively, as well as MIoU evaluation metrics of 84.65%,
85.84%, and 84.54%, respectively. Experimental results demonstrate the outstanding perfor-
mance of ABMFNet on these datasets, particularly in the recognition of change areas and
resistance to interference, where ABMFNet outperforms other algorithms.
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