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Abstract: In this paper, a novel hyperspectral denoising method is proposed, aiming at restoring clean
images from images disturbed by complex noise. Previous denoising methods have mostly focused
on exploring the spatial and spectral correlations of hyperspectral data. The performances of these
methods are often limited by the effective information of the neighboring bands of the image patches
in the spectral dimension, as the neighboring bands often suffer from similar noise interference. On
the contrary, this study designed a cross-band non-local attention module with the aim of finding the
optimal similar band for the input band. To avoid being limited to neighboring bands, this study
also set up a memory library that can remember the detailed information of each input band during
denoising training, fully learning the spectral information of the data. In addition, we use dense
connected module to extract multi-scale spatial information from images separately. The proposed
network is validated on both synthetic and real data. Compared with other recent hyperspectral
denoising methods, the proposed method not only demonstrates good performance but also achieves
better generalization.

Keywords: memory augmentation; non-local attention; multi-scale information; hyperspectral
denoising

1. Introduction

Unlike natural images and traditional grayscale images, hyperspectral images (HSIs)
collected through hyperspectral sensors contain over a hundred spectral bands for the
same scene [1–3]. Benefiting from the richness of spectral information, HSIs play a crucial
role in earth observation, such as target detection [4], mineral exploration [5], image
classification [6], and more. However, due to the complexity and uncertainty of imaging,
HSIs inevitably suffer from noise interference, including Gaussian noise, striping noise,
and mixed noise [7]. The presence of image noise reduces image quality and affects the
interpretation of target information, which greatly hinders the application of hyperspectral
images. Therefore, hyperspectral denoising algorithms have emerged to enhance image
quality as much as possible.

In recent years, a large number of denoising algorithms have been proposed for HSIs
disturbed by noises. According to the solution method, these can be divided into three
categories, which are filtering-based denoising methods, optimization-based denoising
methods, and deep learning-based denoising methods [7–9].

1.1. Filtering-Based Methods

Filtering-based methods comprise spatial filtering denoising approaches and trans-
form domain-denoising methods [10]. Specifically, spatial filtering methods employ various
operators in the spatial domain to eliminate image noise [11–15]. In [13], a multidimen-
sional Wiener filtering was designed for hyperspectral denoising, treating an HSI as a
third-order tensor and utilizing filtering along different directions to remove noise in differ-
ent dimensions of the image. A Gabor filter was employed to detect stripe patterns in each
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band [14]. Simultaneously, transform-based denoising methods utilize various projection
transformations to recover a clean image from the contaminated image, including Fourier
transform [16], Wavelet transform [15], and Principal Component Analysis (PCA) [17],
among others. To be specific, the proposed approach HSSNR [15] uses Wavelet transform
to learn the signal variation in the spectral and spatial dimensions of hyperspectral data.
PCA was introduced in [17], in which a 2-D bivariate wavelet threshold and 1-D dual-tree
complex wavelet transform method are introduced to improve image quality. Additionally,
the well-known BM4D [18] implements the group collaborative filtering paradigm, in
which similar patches are stacked in a high-dimensional array, and the image quality is
improved via joint filtering in the transform domain.

1.2. Optimization-Based Methods

Recently, optimization-based denoising methods have been greatly developed, which
use a variety of optimization methods to improve the stability and effectiveness of algo-
rithms, including low-rank [19], sparse representation [20,21] and self-similarity [22,23]
methods. Specifically, due to the limited distribution of spatial ground objects and the
correlation of multiple adjacent spectra, low-rank attributes widely exist in the spatial and
spectral dimensions of hyperspectral images. So far, a large number of methods based
on low-rank constraints and subspace learning have been applied to HSI denoising [24].
Meanwhile, a KBR-based tensor sparsity measure was proposed in [25], where a tensor is
sparsely represented using Tucker decomposition and CP decomposition. In [26], a strategy
utilizing low-rank matrix recovery (LRMR) was proposed, which focuses on learning the
features of stripe noise. Considering that each band in an HSI may be affected by differ-
ent levels of noise interference, an adaptive iterative factor selection strategy combining
low-rank matrix factorization was proposed (NAILRMA) in [27]. Its main innovation
was to optimize and solve the problem of noise inconsistency in different bands. In ad-
dition, due to the continuity and universality of the distribution of hyperspectral objects,
self-similarity is an inherent property of hyperspectral images, which has been widely
used in many popular denoising methods. At present, the development trend of spectral
denoising methods is to combine the spatial and spectral similarity of images to improve
the quality of images [28,29]. In [30], the authors proposed a low-rank restoration method
that combines spatial and spectral information for image denoising, which simultaneously
embeds the TV regularization, nuclear norm, and L1 norm (LRTV). TV regularization is
used to maintain the spatial structural information of the image, while the nuclear norm
is used to learn the low-rank attributes of the spectrum. This method has a good effect
on removing multiple types of noise. Unfortunately, optimization-based methods usually
require hand-crafted priors and iterative solutions, which hinders the performance of HSI
denoising to a certain extent.

1.3. Deep Learning-Based Methods

Due to the automatic learning of features, deep learning-based denoising methods
have attracted increasing attention [31]. As is well known, there is the strong correlation in
the spatial and spectral dimensions of HSIs; hence, various methods have been dedicated
to learning the spatial and spectral information. For instance, Chang et al. proposed a
denoising method based on convolutional neural networks (HSIDeNet) [32] that aggregates
the multi-scale contextual information of images through dilated convolution and multi-
channel filters. Ref. [33] proposed a spectrally enhanced rectangular transformer to explore
the non-local similarity and the low-rank properties of HSIs (SERT). A model with noise
intensity estimation (Partial-DNet) was designed for HSI blind denoising in [34]. The noise
intensity of each frequency band is estimated, and the channel attention mechanism is
introduced, which is subsequently fused with the observed image to generate a feature
map. In [35], a recursive neural network (QRNN3D) was used for denoising that can
simultaneously explore the spatial spectral correlation and global correlation of images.
Dong et al. proposed a separable 3-D denoising method that can significantly reduce
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computational costs [36]. Yuan et al. proposed a single-band deep convolutional neural
network denoising method (HSI-DCNN) that takes into account the spatial and spectral
information of HSIs [37]. HSI-DCNN uses a single band and its adjacent bands as inputs to
the network, while utilizing multi-scale features to improve feature-expression capabilities.
In addition, Maffei et al. proposed an image denoising method (HSI-SDeCNN) based
on a single-model convolutional neural network [38]. HSI-SDeCNN uses noise level
mapping to balance denoising results, and the raw data detail information. Unfortunately,
these methods only consider the relationships among adjacent bands and fail to capture
the inter-relationships on a global scale in the spectral dimension. The above methods
all fail to consider the non-local and global similarity of hyperspectral images in the
spectral dimension.

To alleviate the above problems, this paper proposes a novel hyperspectral denoising
method based on non-local memory-augmented spectral attention. Specifically, the pro-
posed network consists of two stages. In the first stage, a Dense Connected Module (DCM)
is used to extract local spatial information from hyperspectral images. In addition, this
method utilizes the multi-layer spatial information of HSIs as much as possible by inputting
three different scales. The second stage of the network mainly explores spectral similarity
information in the HSIs, which includes two modules: a non-local spectral attention and a
global spectral memory-augmented module (MAN). Among them, the non-local attention
module aims to extract useful information from adjacent band features to supplement the
current band information and remove noise. In this module, similar band features in the
neighborhood are queried based on the current band features, which can explore non-local
structural information in the spectral dimension. However, this approach ignores the global
structural relationship of the spectrum. To address this issue, this study designed a global
memory-augmented attention module. This module sets up a global memory library to
remember the information of all bands in the data and uses the features of the current band
to directly query all useful information in the memory library for restoring the current band.
Subsequently, combining the outputs of the two spectral attention modules and processing
them further through convolutional layers before fusing them with the original features
can help the model capture different spectral aspects of the input data and integrate them
effectively. Finally, the upsampling module is used to fuse the information from three scales
and output the denoising result. The denoising performance of our proposed method
conducted on synthetic and real data demonstrates its superiority over state-of-the-art
methods. In summary, the contributions of this study can be concluded as follows:

• Using the current band and its adjacent K bands as inputs to the network, the DCM is
used to extract spatial information from the inputs, and it is applied on multi-scale
spaces to fully learn the spatial structure of the image.

• The non-local memory-augmented spectral attention module is designed to learn the
non-local and global correlations among data spectra at each scale.

• A series of ablation experiments were conducted, and the results were compared with
those of existing methods on both synthetic and real data, which demonstrate the
superiority of the proposed method.

The remainder of this paper is arranged as follows. Section 2 introduces the concepts
related to hyperspectral denoising. The proposed network is described in detail in Section 3.
The experimental results are discussed in Section 4. A summary of this paper is presented
in Section 5.

2. Related Work

Due to the instability of sensors and the influence of the atmosphere, the collected
HSIs often contain various types of noise. The purpose of the hyperspectral denoising task
is to restore clean images X from noisy images Y, and the noise model can be expressed
as follows:

Y = X + N (1)
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where Y represents a noisy HSI with the size of H × W × B, and B is the band number of
the hyperspectral data. X is the clean image, and N denotes all random noise in the image.
As previously studied [39], N may be the stripe noise, Gaussian noise, and the impulse
noise, as well as various complex mixed noises.

To obtain clean images X, a large number of hyperspectral denoising methods have
been proposed. Specifically, deep learning-based methods are widely used to learn the
deep features of images. The mainstream idea of deep learning-based denoising methods
is to explore the spatial and spectral information of the hyperspectral data, which can
compensate for the information loss of the input spectral band and improve the denoising
performance [40–43]. However, most of these methods are unable to fully learn the spectral
structure of the data. In particular, when adjacent bands are affected by similar noise
interference, the learned neighborhood band information cannot provide more effective
information supplementation for the input band, resulting in a low denoising performance.

3. Proposed Method

Most of the existing denoising methods do not consider the non-local relationship
among spectral bands. When facing complex noise, the performance of most methods
is significantly reduced, affecting the performance of image quality improvement. To
solve the above problems, this study also set up a memory library that can remember
the detailed information of each input band during denoising training, fully learning the
spectral information of the data. In addition, we use a dense connected module to extract
multi-scale spatial information from images separately. This method can learn the non-local
structural relationship between the space and spectrum to improve the denoising effect.

3.1. Overall Network Architecture

As shown in Figure 1, the network mainly includes two stages, which are spatial
information extraction and non-local spectral information augmentation.

Figure 1. Structure of the denoising method proposed in this paper.

In the first stage of the network, a Dense Connected Module (DCM) is used to extract
the spatial multi-scale features of the input current band and its adjacent K bands, aiming
to fully utilize the spatial multi-scale information of the data in the denoising process. The
second stage of the network consists of two modules: a non-local spectral attention module
and a global spectral memory-augmented module. The non-local spectral module aims to
extract useful spectral information from adjacent band features. In this module, the current
band feature Fb is used to query neighboring band features. The memory-augmented
attention module utilizes a global memory library to remember useful information from
adjacent bands in the training set and then uses the current band features to directly query
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the memory library for useful information when restoring the current band. Subsequently,
convolving with a kernel size of 1 and fusing two spectral attention outputs Xb and Yb
with the current band feature can further improve the model’s ability to extract relevant
information from the input data. Finally, the upsampling module is used to fuse the
information from three scales and output the final denoising result.

3.2. Spatial Information Extaction Module

Due to the fact that traditional convolutional neural networks can capture the features
of similar objects in different local regions using stacked convolutional layers to extract
hierarchical features, we use a dense connected network [44] to extract local features, as
shown in Figure 2. According to Figure 2, the output of the DCM module can be obtained
as follows:

Fl = Relu(Wl ⊗ f use(Fin, F1, . . . Fl−1)), l = 1, . . . L (2)

where l denotes the layer of network, and the activation function Relu is used here. Wl
represents the convolutional kernel size, and f use (.) is a fusion operation. Then, the features
Fl extracted from each layer are fused as the final extracted features. The advantage is
that multiple layers of local spatial feature representations can be obtained. The fusion
operation can be obtained through a 1 × 1 convolution operation, which can be expressed
as follows:

FDCM = W f use ⊗ f use(Fin, F1, . . . FL) (3)

where FDCM is the output of the spatial information extraction module. W f use is the weight
parameter during fusion.

Figure 2. Architecture of DCM.

3.3. Non-Local Memory-Augmented Attention Module

Given the current band I ∈ RH×W of the image, its adjacent bands are {Ib−τ,..., Ib+τ},
where H and W are the height and width of the HSI, and T = 2τ + 1 represents the
neighboring band span of the current band. In the first stage of our network, each band
is passed through a DCM in the feature space to obtain a feature map {Fb−τ,...,Fb+τ}. To
model the non-local spectral correlation of the HSI, we designed a cross-band non-local
spectral memory-augmented attention network (MAN), as shown in Figure 3.

The MAN consists of two parts, namely, the non-local spectral attention module and
the global spectral memory-augmented attention module.

Firstly, the output feature Fb ∈ RC
′×H×W in the first stage of the current band is used

as the query tensor, while the output feature {Fb−τ , . . . Fb+τ} of adjacent bands is used as
the key tensor and value tensor, where C is the dimension of the feature map. In Figure 3,

the tensors Q ∈ RC
′×H×W , K ∈ RC

′×H×W , and V ∈ RC
′×T×H×W represent the query tensor,

the key tensor, and the value tensor, respectively, where C
′
= C/2. Generally, Q and K are

directly matrixed into Q̂ ∈ RHW×C′
and K̂ ∈ RC′×HWT . The correlation matrix Γ is then

calculated as Γ = Q̂K̂.
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Figure 3. Structure of the MAN.

The biggest drawback of this strategy is the introduction of large matrix operations,
which imposes a heavy burden on computer memory. Therefore, to alleviate this phe-
nomenon, we set the focus on the neighborhood of a single band, and at this point, the scale
of Γ is HW × HW, which can greatly reduce the computational cost. The goal of non-local
spectral attention in hyperspectral denoising tasks is to query as many bands as possible
in the spectral dimension that are most similar to the current band. However, if there is a
significant difference in the spectral bands found, this not only leads to excessive network
computation but also reduces the denoising performance.

To reduce matching errors in spectral bands, similar to [45], a Gaussian weight G was
set here, which is multiplied by the correlation matrix Γ, and the center of the Gaussian
map is located at the position of the query band. In short, the Gaussian map of each band
in the first dimension of Γ is different. Throughout the entire network learning process,
the standard deviation of the Gaussian function is used as a learnable parameter to find
the optimal denoising performance. The learnable Gaussian map can maintain a good
balance between the non-local and local relationships in spectral dimensions. Ultimately,
the output of the cross-band non-local attention module can be expressed as follows:

Xb = (Γ ⊗ G) · V (4)

where ⊗ is a Hadamard product.
However, due to the frequent approximation of noise interference between adjacent

bands, the complementary information is limited. Therefore, we attempt to find the
best non-local correlation band for the current band from a global perspective to better
supplement spectral information for denoising. For this purpose, we set up a memory-
augmented spectral attention network here. This module maintains a global memory S,
which is a learnable parameter in the network. Therefore, all non-local correlated bands
of the current band are queried in the memory S, which is ΓS = Q̂S ∈ RHW×N . The final
output Yb can be obtained through the following steps:

Yb = so f tmax(ΓS) · ST (5)

And then, the output Xb and Yb of the cross-band non-local spectral attention module
and the memory-augmented module are fused through a 1 × 1 convolution and added as
residuals to the input feature Fb of the current band. Finally, the upsampling module is
used to fuse information from three scales and output the final denoising result.
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3.4. Implementation Details

Firstly, the three scale sizes are 32, 64, and 128. The first τ and last τ bands adjacent
to the current band are taken as inputs for the network, where K = 2τ. Then, these
cropped image patches are randomly flipped by 90 degrees, 180 degrees, and 270 degrees
in the horizontal direction to enhance the diversity of the training data. Next, an Adam
optimization algorithm was used to optimize the network. The initial learning rate was set
to 2 × 10−4, and the number of iterations was set to 200.

4. Experiments and Discussions

To demonstrate the effectiveness of the designed network, experiments were con-
ducted on four datasets, including Washington DC (WDC) data, Pavia Center (PC) data,
and Pavia University and Indian Pines data. Among them, WDC data and PC data were
used as the basic data for synthesizing noise, and Pavia University and Indian Pines data
were used as real-scene HSIs to further verify the practicality of all denoising methods. Due
to the proposed method being an HSI denoising method based on spatial and spectral simi-
larity constraints, five popular comparison methods were selected here, namely, LRMR [26],
NAILRMA [27], LRTV [30], Partial-DNet [34], and SERT [33]. It is worth noting that LRMR,
NAILRMA, and LRTV are all traditional optimization-based methods that improve the
performances of algorithms by linearly characterizing the spatial–spectral structure of HSIs.
In contrast, Partial-DNet and SERT learn the inter-relationships within HSIs through deep
networks, and they have advantages in hyperspectral denoising tasks due to their ability to
learn deep features of the data. This section demonstrates the effectiveness of the proposed
method in exploring spatial and spectral structures by comparing the denoising results of
six algorithms on different datasets.

To train the denoising network, the minimum residual MSE loss function is used here,
which is mathematically expressed as follows:

Loss =
1

2N

N

∑
i=1

||Net(yi, ki, θ)− φi||22 (6)

where N denotes the training image pairs. φi = yi − xi, and xi, yi, and ki denote the
ith band of the clean image, the ith noisy band, and K bands in the neighborhood of the
current band, respectively. θ is the network trainable parameters. This section also uses
three widely used quantitative evaluation indicators to measure the denoising performance
of the algorithms, namely, the PSNR, SSIM, and SAM. Specifically, the PSNR and SSIM
compare the pixels of HSI images before and after denoising, while the SAM compares the
spectral angular distance of images before and after denoising. To make the comparison of
all algorithms more fair, sll experiments were conducted on the PyTorch platform using an
NVIDIA RTX 3080 GPU.

4.1. The Synthetic Data Experiments and Discussions

The WDC contains hyperspectral data with a size of 1280 × 303 × 191. Images
with a random sampling size of 1080 × 303 × 191 were used for training, while the rest
were used for testing. The original size of the PC dataset was 1096 × 715 × 102, of
which 1096 × 480 × 102 was used for training, and the rest was used for testing. When
synthesizing data, similar to [46], four different levels of noise were added to the WDC and
PC data to test the denosing methods’ ability for the following, different levels of noise:

(1) Case 1: In each band, zero-mean Gaussian noise with a variance of 0.1 is added;
(2) Case 2: In each band, zero-mean Gaussian noise with a variance range of 0.1∼0.2

is added;
(3) Case 3: On the basis of Case 2, 20 bands are randomly selected and receive impulse

noise with a variance of 0.2;
(4) Case 4: On the basis of Case 3, deadline noise is added with a width of 1–3 to

20 bands, with 10 bands selected from the bands with added impulse noise.
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The quantitative results of all compared algorithms and the proposed method for HSI
denoising conducted on four levels of noise data are shown in Tables 1 and 2. Among them,
the best denoising results for each metric are displayed in bold. From Tables 1 and 2, it can
be seen that the proposed method is significantly superior to the LRMR, NAILRMA, and
LRTV methods on the WDC dataset and the PC dataset. Because all three kinds of methods
are based on low-rank matrices, they lose the spatial structure information of data during
the denoising process.

Table 1. Results on the WDC Mall Data. Bold represents the optimal result.

Case Case 1 Case 2 Case 3 Case 4

Dataset Method PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Noisy 20.12 0.7881 17.6382 16.83 0.6634 24.2778 16.1 0.6285 26.4034 16.11 0.6277 26.4657

WDC Mall

LRMR 32.42 0.9783 4.9984 30.02 0.9638 6.2842 29.79 0.9626 6.2298 29.71 0.9622 6.3255
NAILRMA 32.07 0.9779 5.2971 30.61 0.9686 5.9188 30.19 0.966 6.0014 30.04 0.9654 6.1164

LRTV 33.04 0.9807 4.2104 31.1 0.9690 5.1222 30.8 0.9667 5.8929 30.76 0.9665 6.8520
Partial-DNet 34.56 0.9870 3.4544 31.29 0.9752 5.4685 30.43 0.9705 5.9257 30.61 0.9718 5.8856

SERT 33.23 0.9862 3.2852 31.04 0.9738 3.7545 30.16 0.9653 4.3179 30.44 0.9729 4.2128
Ours 35.05 0.9886 2.0968 32.65 0.9809 2.7523 32.70 0.9794 2.9013 32.16 0.9791 2.8974

Table 2. Results on the Pavia Center Data. Bold represents the optimal result.

Case Case 1 Case 2 Case 3 Case 4

Dataset Method PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Noisy 20.11 0.7761 18.688 16.96 0.6536 24.8008 15.34 0.5686 28.6074 15.41 0.5707 28.5094

Pavia Centre

LRMR 31.74 0.9704 5.4259 29.13 0.9489 7.1564 28.4 0.9407 7.2550 28.2 0.9405 7.4484
NAILRMA 32.99 0.9765 4.5047 30.5 0.9605 5.784 29.31 0.9508 6.0994 28.86 0.9492 6.5254

LRTV 32.32 0.9712 4.9303 30.07 0.9517 7.8147 29.51 0.9392 9.8325 29.5 0.9373 11.3173
Partial-DNet 34.48 0.9863 3.4566 31.87 0.9784 4.5559 30.15 0.9721 5.4706 30.38 0.9724 5.3533

SERT 34.78 0.9869 2.5432 32.61 0.9797 2.7931 31.69 0.9934 2.9822 31.82 0.9737 3.9649
Ours 35.16 0.9881 2.2259 33.14 0.9826 2.7808 32.41 0.9799 3.0055 32.22 0.9793 3.0561

In analyzing the denoising results of different types of noise data, it is evident that
deep learning-based HSI denoising methods are generally superior to traditional machine
learning-based methods. Deep learning-based denoising methods fully consider the spec-
tral and spatial correlations of hyperspectral images. In comparing the Partial and SERT
methods based on deep learning, it was found that the proposed method can achieve
better results than the other methods in most of the three evaluation indicators. The above
results indicate that the proposed method is beneficial in exploring the spatial–spectral
relationship of HSIs. Its use of local memory-enhanced spectral attention techniques can
fully learn the relationship between the spectral dimensions of data, thereby better restoring
clean images. In addition, it can be summarized from Tables 1 and 2 that as the types of
noise become increasingly complex, the performances of all algorithms decrease, but the
proposed method performs more stably when dealing with different levels of noise.

To comprehensively compare the denoising effects, the visualization results of denois-
ing for Case 2 data are shown in Figures 4 and 5. From Figures 4 and 5, it can be seen that
there is some residual noise in the denoising results of LRMR, NAILRMA, and LRTV. At the
same time, Partial DNet and SERT have good denoising effects, but the denoised images
still have some noise and incomplete structural information preservation, losing many
details. In contrast, the proposed algorithm has better reconstruction results, especially in
some detail and edge areas, which can be restored more clearly.
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(a) clean (b) noisy (c) LRMR (d) NAILRMR

(e) LRTV (f) Partial (g) SERT (h) Ours

Figure 4. Pseudocolor results (red: band 17, green: band 27, and blue: band 57) of Case 2 on the WDC
dataset. (a) Clean. (b)Noisy. (c) LRMR. (d) NAILRMR. (e) LRTV.(f) Partial-DNet. (g) SERT. (h) Ours.

(a) clean (b) noisy (c) LRMR (d) NAILRMR

(e) LRTV (f) Partial (g) SERT (h) Ours

Figure 5. Pseudocolor results (red: band 17, green: band 27, and blue: band 57) of Case 2 on the Pavia
Center dataset. (a) Clean. (b) Noisy. (c) LRMR. (d) NAILRMR. (e) LRTV.(f) Partial-DNet. (g) SERT.
(h) Ours.

4.2. The Real Data Experiments and Discussions

Simialr to [34], the Indian Pines dataset and Pavia University dataset were used as
real data to test the performances of five comparison algorithms and the proposed method.
The size of the Indian Pines dataset is 145 × 145 × 206, which was collected by AVIRIS.
Meanwhile, the size of the Pavia University dataset is 200× 200× 103. When testing the real
datasets, the network trained under Case 2 on the artificially synthesized data was selected
as the training model for the two real dataset. Due to the lack of corresponding clean
images in real noisy images, a quantitative comparative analysis could not be performed.
Therefore, only the visual comparison results of the denoised algorithm and the proposed
method are presented here. The visual image-comparison results of each method on the
Indian Pines dataset and Pavia University dataset are shown in Figures 6b–g and 7b–g.
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(a) Noisy image (b) LRMR (c) NAILRMR (d) LRTV

(e) Partial (f) SERT (g) Ours

Figure 6. Pseudocolor results (red: band 77, green: band 2, and blue: band 1) of Case 2 on the Pavia
Unversity dataset. (a) Noisy image. (b) LRMR. (c) NAILRMR. (d) LRTV. (e) Partial-DNet. (f) SERT.
(g) Ours.

(a) Noisy image (b) LRMR (c) NAILRMR (d) LRTV

(e) Partial (f) SERT (g) Ours

Figure 7. Pseudocolor results (red: band 1, green: band 109, and blue: band 203) of Case 2 on the
Indian Pines data. (a) Noisy image. (b) LRMR. (c) NAILRMR. (d) LRTV. (e) Partial-DNet. (f) SERT.
(g) Ours.

Figure 6a is a pseudocolor image from the original HSI Pavia University dataset
affected by noise interference, and Figure 6b–g are the denoised results of algorithms LRMR,
NAILRMR, LRTV, Partial DNet, SERT, and the proposed algorithm, respectively. According
to the previous literature [34], the Pavia University dataset is weakly affected by noise
interference. Therefore, the results of traditional denoising algorithms LRMR, NAILRMR,
and LRTV are similar to those of deep learning-based denoising methods Partial-DNet and
SERT on the Pavia University dataset. After zooming in on all the denoising results, it can
be found that our proposed algorithm maintained better and clearer texture details, and
some oversmoothing phenomena occurred using the Partial-DNet and SERT methods.

As is well known, the Indian Pines dataset is highly affected by noise interference.
Therefore, in Figure 7, it is evident that there are differences between the original noisy
image, Figure 7a, and the denoising results of the six algorithms, Figure 7b–g. It can be
concluded that the three machine learning-based comparison methods, including LRMR,
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NAILRMA, and LRTV, cannot completely remove complex noise. After denoising, there are
still a large amount of noise in the results. On the contrary, the two methods based on deep
learning have much better visual effects than the traditional methods, but they lose many
details in some texture areas compared to the proposed method, where there are some
oversmoothing phenomena, as shown in Figure 7. Overall, the proposed hyperspectral
denoising algorithm based on non-local memory-augmented spectral attention outperforms
the comparison methods in terms of visualization on real datasets, with better performances
in denoising and detail preservation.

4.3. The Ablation Experiments and Discussions

To obtain the best model, we conducted ablation experiments and confirmed the
optimal parameter T on Case 2 data from PC data. In the proposed network, we set
a total of T bands, including the current band and its adjacent bands, as inputs to the
network to improve the spectral efficiency of the denoising algorithm. Therefore, the
input bands T is a key parameter in the denoising network. We explored the influence
of T on denoising results, and Table 3 presents the quantitative evaluation results of
the algorithm under different spectral band inputs. It can be clearly seen from Table 3
that the denoising performance of this study’s proposed method first improves with the
increase in T, and the denoising effect is best when T = 35. As T further increases, the
algorithm performance gradually decreases. Therefore, T was set to 35 here. It could also
be demonstrated through parameter experiments that non-local spectral information is
crucial for the proposed method.

Table 3. Results of different T values on Case 3 of the PC data. Bold represents the optimal result.

T PSNR SSIM SAM

T = 15 31.14 0.9733 3.4633

T = 20 31.23 0.9753 3.3062

T = 25 31.88 0.9776 3.2401

T = 30 32.22 0.9792 3.0667

T = 35 32.41 0.9799 3.0055

T = 40 32.32 0.9797 3.0323

T = 45 32.26 0.9790 3.0331

In addition, Table 4 provides quantitative evaluation indicators for the ablation experi-
ments of various parts of the network used to analyze the effectiveness of the proposed
method. The network mainly consists of two parts. The first part is the spatial information
extraction module, which aims to use pixel and spatial relationships to assist in the image
restoration performance. To verify its effectiveness, we removed this module from the over-
all network framework and express it as o/w in the Table 4. From Table 4, we can conclude
that its denoising results decreased by about 0.2 dB compared to the original method. The
SSIM decreased by 0.0007, and the SAM increased by 0.0612. This is sufficient to prove
that the proposed spatial information extraction module is beneficial for hyperspectral
denoising tasks. The second part is the non-local memory-enhanced spectral attention
module. In order to verify its effectiveness, we removed this module from the overall
network framework and express it as w/o in the table. It can be seen that its denoising
results decreased by about 1.18 dB compared to the original method; the SSIM decreased
by 0.005, and the SAM increased by 0.3865, fully proving the effectiveness of the non-local
memory-enhanced spectral attention module. Overall, the above ablation experiments
demonstrated the superiority of the proposed network in denoising tasks.
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Table 4. Results of ablation experiments on Case 3 of the PC data. Bold represents the optimal result.

PSNR SSIM SAM

o/w 32.22 0.9792 3.0667

w/o 31.23 0.9749 3.3920

Ours 32.41 0.9799 3.0055

5. Conclusions

We proposed a hyperspectral denoising method that has better robustness against
complex noise. Unlike general denoising methods that use spatial–spectral correlations, the
proposed method uses a designed cross-band non-local module to search for bands that
can provide information supplementation for the current band. Due to the introduction
of a memory-augmented module, the proposed network can also remember the detailed
information of all bands during training, thereby supplementing the information loss of
non-local similarity bands in the global spectral dimension. In addition, the proposed
method uses a dense connected network to extract multi-scale spatial information from
hyperspectral data. Compared with state-of-the-art denoising algorithms, the proposed
network performed better on both synthetic and real data. Unfortunately, the method
proposed in this paper is based on 2-D images. An original hyperspectral image is a
3-D image, and the proposed memory-augmented module-based denoising method still
unfolds the 3-D image into a 2-D image for processing, losing some irreparable correlation
information. In the future, we will explore methods for directly denoising 3D images.
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