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Abstract: Alpine grassland is one of the most fragile and sensitive ecosystems, and it serves as a
crucial ecological security barrier on the Tibetan Plateau. Due to the combined influence of climate
change and human activities, the degradation of the alpine grassland in Gannan Prefecture has
been increasing recent years, causing increases in ecological risk (ER) and leading to the grassland
ecosystem facing unprecedented challenges. In this context, it is particularly crucial to construct a
potential grassland damage index (PGDI) and assessment framework that can be used to effectively
characterize the damage and risk to the alpine grassland ecosystem. This study comprehensively
uses multi-source data to construct a PGDI based on the grassland resilience index, landscape ER
index, and grass–livestock balance index. Thereafter, we proposed a feasible framework for assessing
the comprehensive ER of alpine grassland and analyzed the responsive relationship between the
comprehensive ER and comprehensive ecosystem services (ESs) of the grassland. There are four
findings. The first is that the comprehensive ER of the alpine grassland in Gannan Prefecture from
2000–2020 had a low distribution in the southeast and a high distribution trend in the northwest,
with medium risk (29.27%) and lower risk (27.62%) dominating. The high-risk area accounted for
4.58% and was mainly in Lintan County, the border between Diebu and Zhuoni Counties, the eastern
part of Xiahe County, and the southwest part of Hezuo. Second, the comprehensive ESs showed
a pattern of low distribution in the northwest and high distribution in the southeast. The low and
lower services accounted for only 9.30% of the studied area and were mainly distributed in the west
of Maqu County and central Lintan County. Third, the Moran’s index values for comprehensive
ESs and ER for 2000, 2005, 2010, 2015, and 2020 were −0.246, −0.429, −0.348, −0.320, and −0.285,
respectively, thereby indicating significant negative spatial autocorrelation for all aspects. Fourth,
ER was caused by the combined action of multiple factors. There are significant differences in the
driving factors that affect ER. Landscape index is the first dominant factor affecting ER, with q values
greater than 0.25, followed by DEM and NDVI. In addition, the interaction between diversity index
and NDVI had the greatest impact on ER. Overall, this study offers a new methodological framework
for the quantification of comprehensive ER in alpine grasslands.

Keywords: ecological risk; ecosystem services; alpine grassland; grassland damage index; spatio-
temporal pattern
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1. Introduction

Grasslands are among the most extensively distributed vegetation types globally, and
they are an important component of terrestrial ecosystems that have significant ecologi-
cal, economic, and social value. They are also essential for conserving biodiversity and
maintaining balance in ecosystems [1–3]. Alpine grasslands are the dominant ecosystem
on the Tibetan Plateau, covering more than 60% of the entire area [4]. In recent years,
however, these grasslands have experienced significant extreme climate events, warming,
and drought that have altered their phenology [5] and reduced their livestock-carrying
capacity and primary productivity [6–8]. The grassland ecosystem in Gannan Tibetan
Autonomous Prefecture (Gannan Prefecture) is an important component of the Tibetan
Plateau’s grassland ecosystems and a crucial ecological security barrier in Northwestern
China. Recently, intensified human activities and global climate change have led to the
grassland ecosystem in Gannan Prefecture facing unprecedented threats. Meanwhile, many
negative phenomena, such as grassland degradation, soil erosion, and biodiversity reduc-
tion, are frequently seen [9,10], causing great difficulties for the local natural environment
and socioeconomic development. Therefore, there is an urgent requirement to accurately
assess the ecological risk (ER) of alpine grassland in Gannan Prefecture and to understand
the changes in ecosystem services (ESs).

ER typically refers to the pressure exerted by external factors on the function and
structure of ecosystems, and it describes the potential adverse influences of both natural
disasters and human activities on ecosystems [11,12]. ER assessment (ERA) is a tool that
effectively measures and evaluates the negative consequences and influences of natural
disasters, anthropogenic coercion, and environmental pollution on local ecosystems. ERA
is currently an important basis for resource management, environmental restoration, and
decision-making about ecological construction in China [13–15]. It is an effective measure
for identifying and mitigating ecosystem degradation [11,16]. Most studies on ERA have
focused on single-indicator risk sources (i.e., rodent infestation, vegetation cover, soil
erosion, and landscape ecological risk). For instance, pollution risk factors for wetland
ecosystems were used to develop an ERA approach for freshwater wetlands [17], and land
use change in the Zoige Plateau was used to analyze the landscape ecological risk of alpine
wetland ecosystems [18].

However, the factors that affect grassland ecosystems are diverse and complex, and
evaluating the ER of grasslands based on a single risk source often has certain limitations.
For this reason, some studies have proposed multi-indicator comprehensive evaluation
methods for assessing ER. The ERA of the Luanhe River Basin comprehensively considered
chemical and biological indicators to construct the ER index [19], and in the study of
wetland ER, multiple indicators such as precipitation, temperature, and wetland area were
used to evaluate the wetland ER in the Beijing–Tianjin–Hebei region for six periods from
1990 to 2015 to establish a reasonable and scientific wetland ER evaluation system [20].

As the environmental and ecological problems of the alpine grassland in Gannan
Prefecture have received increasing attention, scholars have accessed the ER from different
aspects in recent years. For instance, in the study of the ecological environment of the Gan-
nan Plateau, 30 indicators such as hydro-meteorology, ecological environment, and surface
disturbance were used for the ERA of the Gannan Plateau [21], and in the ERA of Gannan,
multiple indicators of natural and human factors were used to analyze the risks of alpine
grassland ecosystems [22], both of which provided important information for the ecological
environment research on the Gannan alpine grassland. Nevertheless, there is a relative
lack of research into ERA methods, especially in terms of alpine grassland ecosystems. In
addition, Chen et al. proposed a holistic view of risk management and assessment, arguing
that ERA should consider social systems, ecosystems, and their interactions [23]. Currently,
ESs have been integrated into the ERA framework by many researchers to compensate for
the shortcomings of ESs’ risk losses.

People directly or indirectly derive benefits from ESs, which emphasize the signif-
icance of the natural environment for human societies. An ESs assessment describes
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ecosystems’ service capacity to human society, with the general evaluation indicators being
soil conservation (SC), water yield (WY), and habitat quality (HQ), amongst others [24,25].
As remote sensing, geographic information systems (GIS), and other technologies have
continued to mature, research on ESs has entered a new stage. Modeling methods (i.e.,
InVEST, SoLVES, and ARIE) are currently among those widely used to assess ESs because
of their advantages, including low costs and high accuracies [26]. In particular, the InVEST
model is favored by many scholars. For example, in the exploration of spatial heterogeneity,
trade-offs, synergy, and driving factors in the Loess Plateau, CASA, InVEST, and RUSLE
models were used to assess the ESs of the WY, SC, and carbon storage in the Loess Plateau
from 2000 to 2018 [27], and in the study of water-related services in the Tungabhadra, the
author used the InVEST water quantity model to analyze the impacts of climate change
on water-related services (e.g., hydropower and water quantity) [28]. In fact, in recent
years, there has been a rising trend of studies on ESs and ER, as it is crucial to reduce
ER and improve ESs to protect grassland ecological environments [29]. At present, most
ESs assessment studies on the alpine grassland in Gannan focus on the inherent value of
grassland ESs [30,31]. Moreover, the majority of the studies start from a single risk source,
and relatively few have carried out comprehensive ERAs that consider the health status
of the grassland, changes in landscape patterns, and human factors, as well as the spatial
distribution of ESs and ER during the study period. Furthermore, as there is no strictly
synergistic relationship between the spatial ranges and research scopes of ESs and ER, a
systematic analysis of the relationship and responses between the two is still necessary [32].

The exploration of the driving factors of ER is also a current research hotspot. Under-
standing the driving factors of ER is the focus of current research, and it is very important
for making reasonable regional assessments [33]. Geodetector is a statistical tool designed
by Wang et al. [34] that can efficiently detect geographic spatial heterogeneity and explore
its driving forces. In recent years, many researchers have used this technology to conduct
extensive studies on natural and human factors and have gained a deeper understanding of
the driving mechanisms of ER. The relationship between DEM, slope, precipitation, temper-
ature, landscape pattern, population density, other factors, and ER has received extensive
attention from scholars [35–37]. In addition, Geodetector can better detect influencing
factors and explain their interactions [38].

In summary, there is a relative lack of research using ecosystems as carriers in ERA,
especially on the fragile ecosystems of alpine grasslands. Moreover, there are relatively
few studies that comprehensively consider grassland health, landscape patterns changes,
human factors, and the spatial distribution of ESs and ER. Therefore, taking Gannan Prefec-
ture as the study area, this paper proposes a comprehensive ERA framework that is based
on the health status of the grassland as well as changes in landscape patterns and human
factors to determine the relationship between ER and ESs in this area for 2000, 2005, 2010,
2015, and 2020, thereby providing insights into how Gannan’s grassland ecosystem can be
managed. The specific objectives of this study are: (1) to build a potential grassland damage
index (PGDI) based on grassland resilience, landscape ER, and a grass–livestock balance
index while analyzing the spatiotemporal distribution characteristics of the comprehensive
ER of grassland in Gannan Prefecture; (2) to construct an integrated ecosystem service index
based on the three ESs of HQ, WY, and SC in addition to analyzing the spatiotemporal dis-
tribution characteristics of the alpine grassland ecosystem’s comprehensive ESs in Gannan
Prefecture; (3) to determine the association between ER and ESs using Moran’s index, and
(4) to analysis the driving factors of ER in Gannan Prefecture based on Geodetector.

2. Materials and Methods
2.1. Study Area

Gannan Prefecture is in the northeast of the Tibetan Plateau and is a significant water
conservation region, covering a total area of 45,000 km2, with an average precipitation of
370~930 mm and an average annual temperature ranging from 0.6~2.3 ◦C (Figure 1). It has
a vast grassland area, accounting for approximately 70.28% of the total area of the entire
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region, with the types mainly comprising alpine meadows and alpine shrub meadows [39].
Grasslands have a crucial function in livestock production, which is the main income of
local herders. In recent years, the grassland ecosystem in Gannan Prefecture has been
greatly damaged, and the ER has been increasing, seriously affecting local herders’ lives
and economic situations [40].
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Figure 1. Overview of the study areas. (a,b) Geographic location and elevation of Gannan Prefecture;
(c–g) photographs of the grassland, forest, wetland, cultivated land, and shrubland, respectively;
(h,i) scenes of grassland desertification and rodent damage.

2.2. Data Collection and Preprocessing Processes

The data employed in this study include remote sensing and basic geographic and
statistical data. Table 1 lists the descriptions, sources, types, and formats of the data. The
Landsat imagery was acquired from the Google Earth Engine (GEE) platform (with less
than 60% cloud), and it was pre-processed through de-clouding, splicing, and masking.
The meteorological data (temperature and precipitation data) come from the National
Meteorological Information Center, including daily observation data from 10 meteorological
stations in Gannan Prefecture and its surrounding areas. All the spatial data’s projections
were set to WGS_1984_UTM_Zone_48_N, and all the data were resampled onto 30 m
grid cells.

2.3. Methods

The research framework of this study is shown in Figure 2. First, we collected and
preprocessed data from multiple sources (including basic data, statistical data, and satellite
imagery data) necessary for the analysis using ArcGIS 10.6 and Google Earth Engine (GEE).
Second, we constructed the potential grassland damage index (PGDI) that was established
using the grassland resilience index (GRI), landscape ecological risk index (LERI), and
grass–livestock balance index (GLBI). Then, we analyzed the spatiotemporal distribution
characteristics of the ecosystem service index (ESI) and PGDI from 2000 to 2020. Finally, we
explored the response relationship between ER and ESs based on a spatial autocorrelation
analysis and analyzed the driving factors of ER using Geodetector.
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Table 1. Data types and descriptions.

Data Spatial Data Descriptions Source

Administrative division Vector format
The data were employed for the
computation of regional division

and result analysis

National Geospatial Information Public Service
Cloud Platform

(https://www.tianditu.gov.cn/), accessed on
10 May 2023.

Land use data in 2000–2020 Grid cells at 30 m resolution
Land use data were employed for

the computation of ESs and
landscape ER index

Zenodo
(https://doi.org/10.5281/zenodo.5816591),

accessed on 10 May 2023.

Digital elevation model data Grid cells at 1 km resolution
The data were employed for the

computation of ESs index, extract
slope data, slope aspect data.

Geospatial Data Cloud
(www.gscloud.cn), accessed on 15 June 2023.

Normalized difference
vegetation index Grid cells at 30 m resolution The data were used to calculate the

driving factors of ER

National Ecological Science Data Center
(https://cstr.cn/15732.11.nesdc.ecodb.rs.2021.012),

accessed on 3 May 2023.

Meteorological data Vector and table format The data were employed for the
computation of each ESs

National Meteorological Information Center
(http://data.cma.cn), accessed on 4 April 2023.

Soil data Grid cells at 1 km resolution The data were employed for the
computation of each ES

National Cryosphere Desert Data Center
(http://www.ncdc.ac.cn), accessed on 4 April 2023.

Remoting sensing data Landsat5 TM/8 OLI image data

The data were employed for the
computation of remoting ecological

index and fractional
vegetation coverage

Google Earth Engine
(https://earthengine.google.com/), accessed on 8

May 2023.

Above-grassland biomass
(AGB) Grid cells at 250 m resolution

The data were employed for the
computation of the grass–livestock

balance index

TPDC
(https://doi.org/10.11888/Terre.tpdc.272587),

accessed on 13 April 2023.

Population density Grid cells at 100 m resolution
The data were employed for the

computation of the grass–livestock
balance index

WorldPop
(https://hub.worldpop.org/geodata/listing?id=16),

accessed on 4 April 2023.

Statistical data Table or text format
The data were used to obtain the
fertilizer usage, urbanization rate,
gross domestic product, and so on

Gannan Prefecture Bureau of Statistics Site
(http://www.gnzrmzf.gov.cn/zfxxgk/fdzdgknr1

/tjxx/tjnj2.htm), accessed on 15 June 2023.

Geographical data Vector
format

The data were employed to extract
residential and road data

OpenStreetMap
(http://download.geofabrik.de/), accessed on 19

April 2023.
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2.3.1. Estimation of an Ecosystem Service Index

Considering the current situation of the grassland ecosystem in Gannan Prefecture,
this study systematically evaluated the three services of HQ, WY, and SC based on land use
as well as socio-economic and meteorological data, and we analyzed their spatiotemporal
variations using ArcGIS 10.2 and the InVEST model. The calculation methods and data
processing results of the three ESs are shown in Appendix A.

Moreover, this study constructed an ecological service index (ESI) to comprehensively
measure the level of alpine grassland ESs in Gannan Prefecture. ESI should be calculated on
the premise that the parameters are dimensionless to avoid the influence of dimensions [41].
Therefore, referring to relevant studies [42–44], various services were standardized using
Formulas (2) and (3). The standardized ESI was then used to characterize the total amount
of ESs herein, with the specific calculation formula being as follows:

ESI = ∑3
i=1 ES

′
i (1)

The positive effect indicators were standardized. The formula is as follows:

yij =
xij − xmin

xmax − xmin
(2)

The negative effect indicators were standardized. The formula is as follows:

yij =
xmax − xij

xmax − xmin
(3)

where ESI represents the Comprehensive Ecosystem Service Index, ES’i is the standardized
value of the i-th ecosystem service, Xmin is the minimum value of a certain indicator,
Xij represents the initial value of the j-th indicator for the i-th category, and Xmax is the
maximum value of a certain indicator.

To analyze the spatiotemporal distribution differences of the ESs, considering the specific
conditions in Gannan, this study used the Jenks natural breakpoint classification method [45]
to divide the ESI into five levels; that is, low (ESI ≤ 0.20), lower (0.20 < ESI ≤ 0.30), middle
(0.30 < ESI ≤ 0.40), higher (0.40 < ESI ≤ 0.50), high (ESI > 0.50).

2.3.2. The Calculation of the PGDI

(1) GRI

Ecological resilience is an ecosystem’s ability to adapt and recover from risks, defined
as the system’s ability to absorb or resist perturbations before reaching a transition thresh-
old [46,47]. Generally, if the quality of grassland vegetation coverage is high, the grassland
ecology and GRI will be of a higher quality. Therefore, a combination of remote sensing
ecological index (RSEI) and fractional vegetation coverage (FVC) was used to calculate the
GRI as follows:

GRI = W1·FVC + W2·RSEI (4)

where W1 and W2 represent the weights of the FVC and RSEI, respectively. To maintain the
neutrality of the results, the weights had an equal value of 0.5.

FVC is an important variable that describes vegetation quality and reflects changes in
ecosystems. It directly reflects natural ecosystems’ environmental conditions and plays an
important role in reducing ER [48,49]. FVC is defined as the ratio of the vertical projection
of vegetation to the total statistical surface area, measured as a percentage [50,51]. This
study combines the dimidiate pixel model to calculate FVC:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(5)
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In the formula, FVC is the fractional vegetation coverage, and NDVIveg and NDVIsoil
are the NDVI values of all vegetation-covered pixels and pure bare land pixels, respectively.
In practical applications, NDVI histogram statistics are commonly used to obtain NDVIveg
and NDVIsoil values with the given confidence intervals.

RSEI is an indicator that uses remote sensing data to objectively and quickly assess
the regional ecological environment’s quality. Because of this, it is commonly used in
ecological status evaluation [29,52]. This study references Xiong’s methods for calculating
the RSEI [53]. The calculation is as follows:

RSEI = f (Greenness, Heat, Wetness, Dryness) (6)

In the formula, Wetness, Greenness, Heat, and Dryness represent the humidity index,
greenness index, heat index, and dryness index, respectively. These indicators were calcu-
lated according to [54].

(2) The LERI

The LERI represents the degree in disturbance of different landscapes and is one of
the most fundamental branches of ER [55]. It focuses on evaluating internal vulnerability
and external disturbance [56]. This study combined the actual situation with relevant
literature [57] and used the landscape vulnerability index and landscape interference index
to calculate LERI [58]. The formula is as follows:

LERI = ∑n
i=1

Aki
Ak

× Ri (7)

Ri = Ei·Fi (8)

Ei = aCi + bCi + cDi (9)

Ci =
ni
Ai

(10)

Ni =
A

2Ai
×
√

ni
A

(11)

Di =
Qi + Mi

4
+

Li
2

(12)

In this formula, Ri is the landscape loss index of the i-th landscape, Aki is the area
of the i-th landscape in the k-th risk unit, Ei is the i-th land use type, Ci is the degree of
landscape fragmentation, Fi is the landscape vulnerability index, A is the total area of the
landscape, Ni is the degree of landscape separation, Ai is the total area of landscape type I,
Di is the degree of landscape dominance, ni is the number of patches of landscape type I,
Qi is the ratio of the number of units of type I land use type to the total number of units,
and Li is the ratio of the i-th landscape patch area to the total patch area. the weight values
of each landscape pattern index are represented by a, b, and c. According to previous
research [59,60], the weights are allocated values of 0.5, 0.3, and 0.2, respectively.

(3) The GLBI

The GLBI is an index that measures the dynamic equilibrium state of pasture and
foraging livestock in a certain area and over a period of time [9,61]. It is calculated using
the following formula:

GLBI =
(

pcc − SR
PCC

)
× 100 (13)

SR = ∑ Ni·Ki (14)

PCC = ∑n
i=1

(
AGB × A × H × U

lus × D

)
(15)
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where GLBI is the grass–livestock balance index capacity, SR is the actual livestock-carrying
capacity, Ni is the annual number of livestock (heads) of the i-th livestock, PCC is the
theoretical livestock-carrying capacity, and Ki is the sheep unit conversion coefficient of
the i-th livestock. AGB is the edible grass yield of the grassland, A represents the usable
area coefficient of the grassland, H represents the edible grass conversion coefficient of the
grassland, U represents the rational utilization coefficient of grazing grassland in the alpine
grassland, lus represents the daily food intake of sheep per unit of sheep, calculated based
on a daily consumption of 1.8 kg of hay by livestock, and D represents the time for grazing
or raising on the grassland.

(4) The PGDI

We hypothesize that if the health of the grassland in a grid significantly declines
during a certain period, the risk of damage to the grassland in that grid will be the highest
at the end of that period, when the extent of damage to the landscape pattern and human
influence factors are greatest. Using inter-annual grassland data, the deterioration of
grassland health is represented by the negatively standardized GRI, the human factors
are represented by the negatively standardized GLBI, and the degree of landscape pattern
damage is represented by the standardized LERI. These three indicators are all considered
to be variables with values of 0–1. Therefore, we constructed a PGDI based on the GRI,
LERI, and GLBI, after which we performed a virtual layout in the x–y–z coordinate system
to characterize the potential risk of damage to grass conditions. When the LERI, GLBI, and
GRI are all equal to 1, the risk of grass destruction and damage in this grid is greatest. This
grid is set to point Mmax (1, 1, 1) in the coordinate system from the origin (O) to this point,
with this distance being OMmax. In the coordinate system, the GRI, LERI, and GLBI of a
certain grid are expressed as point M (GRI, LERI, GLBI), and the distance between point O
and point M is OM. The ratio of the largest line segment between OM and OMmax is the
PGDI. The derivation formula for PGDI is as follows:

PGDI =
OM

OMmax
=

√
LERI2 + GRI2 + GLBI2

√
3

(16)

In this formula, PGDI is the potential grassland damage index, LERI is the standardized
LERI, and GRI and GLBI are the negatively standardized GRI and GLBI, respectively.

Additionally, to analyze the spatiotemporal distribution characteristics of the com-
prehensive ER, we combined the actual conditions of grassland in Gannan Prefecture
and used the Jenks natural breakpoint classification method [45] to divide the PGDI val-
ues into five ER levels; that is, low (PGDI ≤ 0.23), lower (0.2 < PGDI ≤ 0.36), middle
(0.36 < PGDI ≤ 0.43), higher (0.43 < PGDI ≤ 0.54), and high (ESI > 0.54).

(5) Spatial autocorrelation analysis

A spatial autocorrelation analysis reveals whether a variable’s spatial distribution is
affected by its neighboring variables. This analysis can be categorized into global autocorre-
lation and local autocorrelation and global autocorrelation [62,63]. Global autocorrelation is
usually represented by Moran’s index, which determines the spatial correlation and degree
between multiple variables [64]. This approach was used to reveal the correlation between
ER and ESs, with the following equations being used:

I =
n∑n

i=1 ∑n
j=1 Wij(Xi − X)(Xj − X)

n∑n
i=1 ∑n

j=1 Wij(Xi − X)(Xi − X)2
(i ̸= j) (17)

Ii =
n
(
Xi − X

)
∑n

j=1 WI J
(
XJ − X

)
∑n

i=1
(
Xi − X

)2 (18)
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where Ii is the local autocorrelation index, I is the global autocorrelation index, xj is the
attribute value of j, xi is the attribute value of i, n is the sample number, Wij is the spatial
weight matrix, and x is the mean value of all the data.

(6) Geodetector model

Geographic detector technology combines factor detection and interaction detection
to explore the interactions between influencing factors [38]. We used factor detectors to
identify the impact of a single driving factor on ER (i.e., the explanatory power q value).
The degree of interaction between two driving factors is determined by the interaction
detector. The q value is expressed as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (19)

where h = 1,. . ., and L is the number of partitions in the study area according to each
influencing factor. Nh is the number of grids in each h partition. N is the total number of
grids in the study area. σ2

h is the variance of the ecological risk value of h partitions. σ2 is
the total variance of the ecological risk value of the study area. The value of q ranges from
0 to 1.

The interaction is used to detect whether the interaction between any two influencing
factors X1 and X2 affects the change in the ER characteristic index Y, or to explain whether
the effects of these driving factors on Y are independent [34,65]. The method is to first
calculate the q value of X1 and X2, then calculate the q value of their interaction—that
is, q (X1∩X2)—and finally divide the relationship between the two driving factors into
5 categories by comparing q (X1), q (X2), and q (X1∩X2), as shown in Table A5. Referring
to the relevant literature [55,65–67], 15 driving factors were screened from three aspects:
natural, human socio-economics, and landscape factors.

3. Results
3.1. The Spatiotemporal Characteristics of the Comprehensive ER

The spatial distribution of PGDI in the Gannan alpine grassland from 2000–2020
is shown in Figure 3. In this period, the PGDI of the Gannan alpine grassland ranged
from 0.03 to 0.91, showing a trend of fluctuations. From a spatial perspective, the PGDI
determined a spatial distribution pattern that was low in the northwest and high in the
northeast. Specifically, the high-value areas were distributed in the northeast part of the
Gannan alpine grassland, including the border of Diebu and Zhouqu Counties, the center
of Lintan County, Eastern Xiahe County, and Western Hezuo. Meanwhile, the low-value
areas were in Maqu County, Luqu County, and Eastern Xiahe County. The ER levels’
spatial distribution map in the alpine grasslands of Gannan Prefecture is shown in Figure 4.
Generally, the ER levels were mainly in the mid-range and below. Medium- and low-risk
areas accounted for a large proportion of the grasslands and were mainly distributed
in Eastern Hezuo, Luqu County, and Southern Diebu County. The comprehensive ER
transfer changes and the ER level changes in the Gannan alpine grassland are shown in
Figures 5 and 6. Specifically, the high-risk transfer area (22.09%) was smaller than the
transfer-out area (28.41%), with the proportion demonstrating fluctuations in the form of an
increase followed by a decrease. Overall, The ER changes across different periods remained
relatively stable, with the unchanged areas predominating, accounting for 44% to 68% of
the total area.
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3.2. Spatiotemporal Characteristics of ESs

The spatiotemporal distribution of ESI in the alpine grassland in Gannan Prefecture
from 2000–2020 is shown in Figure 7. The average ESI values were 0.42, 0.48, 0.43, 0.45,
and 0.39 for 2000, 2005, 2010, 2015, and 2020, respectively, exhibiting an overall fluctuating
trend with an initial increase followed by a decrease. The low-value areas were mainly
concentrated in the west of Maqu County and Central Lintan County, with a small number
being distributed across the border between Zhuoni and Diebu Counties, while the high-
value areas were mainly in Southern Maqu County and the southwest of Luqu County.
In the past 20 years, the ES level of the alpine grassland in Gannan has mainly been in
the mid-range (Figure 8). The mid-range had the largest proportion (42%), showing a
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fluctuating trend of first increasing and then decreasing. It was mainly located in the
northwest of the region, including West Maqu County, Luqu County, the southern part of
Xiahe, and Hezuo. The comprehensive ESs transfer changes and ER level changes in the
Gannan alpine grassland are shown in Figures 9 and 10. In this period, the area transferred
into high-service levels (18.70%) was smaller than the area transferred out (20.60%), and
the proportion continued to decrease. The main transfers were to medium services (6.10%)
and higher services (14.10%). In comparison, the ESs changes across different periods
remained relatively stable (Figure 10), with the unchanged areas predominating, primarily
distributed in the northwest of Gannan.
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3.3. The Correlation between Comprehensive ER and ESs

The Moran’s index values of the PGDI and ESI were −0.246, −0.429, −0.348, −0.320,
and −0.285 for 2000–2020, and they passed the significance testing, indicating that they
showed significant negative spatial correlations (Figure 11). In the time series, the spatial
aggregation showed a trend of the Moran’s index of the PGDI and ESI first decreasing and
then increasing, indicating that the spatial aggregation between PGDI and ESI increased
and the spatial convergence was enhanced. Compared to the global Moran’s index, the
local Moran’s index better reflected the spatial distribution of the ER and ESs. The local
indicators of the spatial autocorrelation clustering map reflect the local spatial correlation
characteristics that pass the significance test. As seen in Figure 12, the spatial clustering
pattern was dominated by high–low and low–high, with the low–high clustering area
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concentrated in Diebu County, southwestern Zhouqu County, and southern Luqu County.
This was mainly due to the low PGDI, the low probability of ER occurrence, and the
high ESs index. In contrast, the high–low clustering area was sporadically distributed in
Northern Xiahe, at the border of Xiahe and Hezuo, Lintan County, and the border between
Zhuoni and Diebu Counties (Figure 12), and it mainly had high a PGDI but low ESI index,
making the two negatively correlated.
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3.4. Analysis of Driving Factors of Ecological Risk

The drivers affecting the spatial heterogeneity of ER differed significantly (Figure 13),
and the interaction among the drivers also varied greatly (Figure 14). The effect of each
driving factor on ER passed the significance test (p < 0.05). Among these factors, the
landscape was the primary dominant factor affecting ER, with q-values all greater than 0.28,
followed by the temperature and the DEM, with q-values of 0.259 and 0.229, respectively.
The influence of aspect was not significant. In addition, the interaction between the diversity
index and NDVI had the greatest effect on ER (q-value = 0.522), followed by the interactions
between precipitation and DEM with landscape index. However, the interaction between
GDP per capita and aspect had the least impact on ER. In summary, the interaction between
any two factors was greater than that of any single factor, indicating that the ER of the
Gannan grassland was not caused by a single factor but by multiple drivers.
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index; X10, land reclamation rate; X11, gross domestic product per capita; X12, fertilizer usage; X13,
industrial addition; X14, grazing pressure; X15, urbanization rate.

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 34 
 

 

 
Figure 13. The explanatory power of ecological risk. Note: X1, precipitation; X2, temperature; X3, 
DEM; X4, slope; X5, aspect; X6, NDVI; X7, evenness index; X8, diversity index; X9, contagion index; 
X10, land reclamation rate; X11, gross domestic product per capita; X12, fertilizer usage; X13, indus-
trial addition; X14, grazing pressure; X15, urbanization rate. 

 
Figure 14. Results of the interactive detection of the driving factors of ecological risk. Note: X1, pre-
cipitation; X2, temperature; X3, DEM; X4, slope; X5, aspect; X6, NDVI; X7, evenness index; X8, di-
versity index; X9, contagion index; X10, land reclamation rate; X11, gross domestic product per cap-
ita; X12, fertilizer usage; X13, industrial addition; X14, grazing pressure; X15, urbanization rate. 

Figure 14. Results of the interactive detection of the driving factors of ecological risk. Note: X1,
precipitation; X2, temperature; X3, DEM; X4, slope; X5, aspect; X6, NDVI; X7, evenness index; X8,
diversity index; X9, contagion index; X10, land reclamation rate; X11, gross domestic product per
capita; X12, fertilizer usage; X13, industrial addition; X14, grazing pressure; X15, urbanization rate.
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4. Discussion
4.1. A Comprehensive ERA of the Alpine Grassland Based on the PGDI

As a representation of ER, three aspects are taken into consideration in the newly
proposed PGDI: grassland health status, landscape pattern changes, and human factors.
Studies on regional-scale ER evaluation have primarily been based on land-use maps
obtained from remote sensing images. For example, Peng et al. used Landsat images to
create land cover maps of the Shengjin Lake Wetland in 2002, 2016, and 1986 [68]. After
analyzing the data on land-use types and areas, the authors ultimately constructed a land-
use ERA model. In a similar vein, Zhang et al. utilized the landscape pattern index for
the computation of the ER index and analyzed the potential environmental influences of
land use changes in China’s coastal cities from 1990–2015 [69]. Furthermore, in studies on
grassland monitoring, grassland coverage and biomass have usually been used as indicators
to evaluate whether grassland degradation damage has occurred, while other indicators
have been easily ignored. However, under the influence of natural conditions such as
climate, precipitation, and soil that are not conducive to the growth of grassland vegetation,
as well as human factors such as overgrazing, grassland landscape patterns, edible forage
proportions, and community structures, these indicators will change [70,71]. Therefore,
only using indicators such as vegetation coverage or biomass to assess the damage status
of grasslands does not yield a comprehensive understanding. This study considered three
aspects: the health status of the grassland vegetation, changes in landscape patterns, and
human factors. Moreover, it proposed a PGDI that integrated FVC, RSEI, LERI, and GLBI.
Specifically, FVC is usually used to assess the extent of grassland vegetation cover, which
can represent the basic health status of the grassland ecosystem; RSEI, integrates various
remote sensing indicators, which can comprehensively reflect the quality of the ecological
environment; LERI can be used to evaluate the impact of landscape pattern changes on
ecosystem stability from the perspective of landscape ecology; and GLBI measures the
balance between grassland and livestock, reflecting the carrying capacity and utilization
status of the grassland. By integrating these indices into PGDI, this study was able to
comprehensively and multidimensionally assess the ER of the Gannan alpine grasslands.
Compared with traditional ERA, which directly uses the proportion of various landscape
types as potential representations [72], the PDGI can more reasonably predict the possibility
of ER occurrence. This method can systematically and comprehensively evaluate the ER
of the Gannan grassland, which not only overcomes the limitations of traditional single-
indicator methods but also provides a more scientific risk assessment through multi-angle
and multi-level comprehensive analysis. It also provides an important theoretical basis and
decision support for the protection and management of the Gannan alpine grassland.

In addition, this study systematically analyzed the spatiotemporal change character-
istics of the PGDI’s three main factors (i.e., GRI, LERI, and GLBI) (Figures A4–A6). The
GRI presented a spatial distribution pattern that was low in the southeast and high in
the northwest (Figure A4). This pattern differed somewhat from that indicated by Huang
et al. [73]. The main reason may be that our study focused on grasslands, while Huang
et al. focused on the ecological resilience of multiple land use types. The LERI assessment
not only analyzes the effects of ER on overall landscape fragmentation but also considers
the extent of damage to specific risk receptors [13,74,75]. From 2000–2020, this assessment
of the Gannan alpine grassland showed an increasing trend (Figure A5), which is similar
to the results of the previous study [76]. This indicates that high-value areas were mainly
distributed in areas with larger slopes and lower FVC, with more serious hydraulic erosion.
The spatiotemporal distribution pattern of GLBI was high, which is consistent with the
results of [77]. The high-value areas were mainly in these areas, with less grassland area
and livestock, and, as the actual livestock-carrying capacity of the grassland was lower than
the theoretical livestock-carrying capacity, there was sufficient grass for grazing (Figure A6).
Unfortunately, due to the absence of township statistical yearbooks and the difficulties
encountered in counting livestock in pasture areas, the actual livestock-carrying capacity
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in this study could only be approximated based on the year-end livestock stock in each
county and city in Gannan Prefecture.

Overall, the grassland PGDI in Gannan Prefecture in the period of study showed an
increasingly fluctuating trend of decreasing and then increasing (Figure 3). Its low-value
areas were distributed in areas which had a relatively flat terrain, rich pasture resources,
and good grassland vegetation growth, resulting in the ER being relatively low. The
high-value areas were mainly distributed in the areas that experienced more concentrated
rainfall, relatively serious soil erosion, and a higher frequency of geologic hazards. In
addition, the PGDI was developed using the pixel scale, with a spatial resolution of 30 m,
and it has good applicability in the study of ERA of alpine grasslands at the regional scale.
Thus, the PGDI can generally effectively characterize the damage to and ER of the Gannan
alpine grassland.

4.2. The Relationship between ESs and ER

Focusing on alpine natural grassland ecosystems in Gannan Prefecture, this study
explored the dynamic relationship between ESs and ER. This study spatially visualized
the total ESs of the alpine grassland in Gannan Prefecture based on ESI and analyzed the
total ESs’ spatiotemporal distribution characteristics. The results indicated that the spatial
distributions of the ESI had significant differences, exhibiting a spatial pattern of being
low in the northwest and high in the southeast. When considering different service levels,
the ESs level of Gannan alpine grassland were dominated by medium services, and from
2000–2020, the ESI of the alpine grassland in Gannan Prefecture showed a trend of first
increasing and then decreasing, which might have been related to the intensification of
human activities [45]. Moreover, our analysis showed a significant negative correlation
between the PGDI and ESI (i.e., ESI gradually increased with decreasing PGDI), which
further confirmed Dong et al.’s theory [78]. This finding provides a new perspective for
understanding the spatial distribution patterns of ESs and ER and helps to identify key
areas in ecosystem management. Our study shows that some areas with high ecosystem
services are often accompanied by low ER, and vice versa. This negative correlation reveals
the spatial complementarity of the two and supports the trade-off theory between ESs and
ER. With the rapid development of human socio-economic activities, ERA is gradually
becoming an important indicator to measure ESs [79]. However, incorporating ESs into
regional ERA frameworks comes with certain challenges. First, ESs and ER are diverse
and complex concepts, as there are multiple ESs and potential risks, and it is difficult
to determine appropriate indicators and methods for effectively capturing this diversity
and complexity. At the same time, the provision of an ES may be affected by multiple
ecosystem processes and risk factors, which increases the complexity of analysis and
simulation. Furthermore, ecosystem protection must focus on both supplying diverse ESs
and maintaining high-level ecosystem health [80,81]. Therefore, there is a need to further
improve the analytical framework and implement comprehensive assessments that can
not only focus on the impacts on ESs but also maintain ecosystem health to ensure more
effective ERA.

4.3. Driving Factors of ER

With the development of global climate change and rapid socio-economic growth,
identifying the dominant factors influencing ER changes can provide valuable references
for decision makers. In this study, the factor detection results indicate significant re-
gional differences in the driving factors of ER changes in the alpine grassland of Gannan
(Figures 13 and 14). Generally, landscape and socio-economic factors have a greater impact
on ER than natural environmental factors. Among landscape factors, the diversity index
is the main influencing factor, highlighting the key influence of landscape structure on
the ecosystem’s health in the Gannan region [82,83]. Natural factors, such as temperature,
DEM, precipitation, slope, and NDVI are also significant, with average q-values greater
than 0.2. This is likely due to the large spatial distribution differences in precipitation,
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temperature, and vegetation coverage in Gannan alpine grasslands. Shi et al. [84] noted
that temperature and precipitation significantly impact vegetation on the Tibetan Plateau,
which aligns with our findings that climatic conditions in alpine regions generally affect
ER [18,85]. Furthermore, our results indicate that DEM and slope contribute significantly
to ER under the unique terrain conditions of Gannan Prefecture. In addition, precipita-
tion is concentrated in the southeastern part of the Gannan alpine grassland, leading to
frequent geological disasters and affecting human production and life. It is noteworthy
that land reclamation rate, grazing pressure, GDP per capita, and fertilizer usage have a
significant impact on the ER of Gannan alpine grassland, with q-values all greater than
0.13. This change is likely due to rapid socio-economic development, increasing ecological
pressure and affecting grassland health. Our study is consistent with Yang et al. [16], who
showed that increases in socio-economic activities heighten ER, particularly the pressure
on ecosystems caused by land use changes [86,87]. Specifically, increased land reclamation
often converts grassland to farmland or other uses, leading to the destruction of natural
ecosystems. Similarly, overgrazing can cause grassland degradation and may lead to san-
dification and desertification [88]. Although a higher GDP per capita indicates improved
economic development, it also leads to increased resource consumption and pollution,
such as increased fertilizer usage. Excessive fertilizer use directly affects soil and water
quality. Therefore, comprehensive measures need to mitigate the negative impact of these
socio-economic factors on ER. For example, rational land use planning, controlling land
reclamation and overgrazing, promoting sustainable agriculture and ecological farming
technologies, and reducing the use of chemical fertilizers and pesticides are essential. Ad-
ditionally, strengthening the implementation of environmental protection policies and
promoting sustainable social and economic development are crucial.

4.4. Limitations and Prospects

Although our study enhances the ecological indications of the evaluation results,
there are still some shortcomings that need to be addressed. First, three ESs were selected
for evaluation, and this study relied on the natural ecological environment of Gannan,
which is somewhat subjective. Second, although the InVEST model was employed for the
computation of HQ, WY, and SC services, there is still some uncertainty in the estimation
results. For example, when evaluating the WY, the low spatial resolution of the images of
annual potential plant available water content, evapotranspiration, and root depth as well
as the influence of temporal constraints could have led to unclear or incomplete data. Third,
a large number of high-precision observations and actual data were required for the InVEST
model, but the study area was relatively complex and had fewer measured data. Fourth,
when evaluating the individual ESs, the parameter values were obtained using empirical
methods or similar areas, which could have led to subjective errors, and the evaluation
results were not further quantitatively verified. Lastly, the existence of synergistic and
trade-off relationships between ESs may have had an impact on the ESI, which could have
subsequently affected the results. Therefore, subsequent research needs to consider the
functional supply and demand of ESs as well as the synergies and trade-offs between ESs.

In constructing the PGDI for this study, its feasibility in practical applications was
prioritized. Therefore, the data sources used in this paper were open source and had
global coverage, such as WorldPop population data, including the grassland health status,
landscape pattern changes, and human factors in the PGDI. Additionally, the ERA also had
a certain degree of subjectivity. Therefore, the PGDI indicator system can be further opti-
mized. In addition, the PGDI was used to characterize ERs, and this study only analyzed
the ER changes every five years, which made it difficult to summarize the interannual
changes in the comprehensive ER of Gannan Prefecture’s grassland. In subsequent studies,
high-resolution and long-time-series grass vegetation mapping can be used to transform
the grass evolution trend into an indicator to enrich the construction of the PGDI so that
it can be used to characterize the degree of past damage and the risk of future damage
to grasslands. Moreover, the present study only focused on alpine grassland, so whether
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the findings are generalizable to the ERA of other grassland types remains to be further
verified. Therefore, future studies can extend the PGDI’s application to other grassland
types or different land-use scenarios and provide more information regarding its direct ap-
plication to grassland and regional ecological environmental protection. In addition, since
the influencing factors of ER are complex and diverse, this study quantified the influencing
factors from the perspective of spatial differentiation, but how to comprehensively analyze
the coupling effects between multiple factors is a difficult problem that needs to be solved
in the current study of the driving force impact on ER. Future work should explore the
impact of natural and socio-economic factors on ER from multiple geospatial data sources
to provide a deeper understanding of the driving mechanisms of ER changes in Gannan
alpine grasslands.

5. Conclusions

This study proposed a new comprehensive ERA framework and PGDI based on GRI,
LERI, and GLBI, and it analyzed the ER in Gannan Prefecture and its spatiotemporal distri-
bution patterns for 2000, 2005, 2010, 2015, and 2020. It also examined the spatiotemporal
distribution of ESs in Gannan Prefecture’s alpine grassland and investigated the correlation
and response relationship between the two. Finally, the geographic detector model was
introduced to explore the driving factors affecting ER. Overall, the PGDI in Gannan Pre-
fecture showed an increasing trend from 2000–2020, and the ER continued to increase. In
addition, the ESI of the alpine grassland in Gannan Prefecture showed a fluctuating trend of
increasing and then decreasing, with the average value decreasing from 0.43 to 0.39 during
the period of study and a large loss of ESs. Moreover, there was a significant negative
spatial autocorrelation between the PGDI and ESI, with obvious spatial aggregation.

Based on the Geodetector analysis, landscape and socio-economic factors have a
greater impact on ER than natural factors. Moreover, this study revealed that the interaction
between any driving factors has a more significant impact than a single driving factor.
Notably, the interaction between the landscape index and NDVI had the highest q-value.
Future efforts should focus on integrating fragmented landscapes and optimizing landscape
structures, particularly in areas with high NDVI and grassland coverage. Landscape risk
source management planning should aim to minimize human interference, and regional
planning should prioritize increasing the construction of ecological land. Furthermore, it is
crucial to rationally plan land use; strictly control the conversion of grassland to other land
use types, reclamation, and overgrazing; promote sustainable and ecological agriculture
technologies; reduce the use of chemical fertilizers and pesticides; and strengthen the
implementation of environmental protection policies. In summary, the proposed new
assessment framework of ER in alpine grasslands has good applicability and potential, and
it will develop a significance theoretical basis for the protection of the grassland ecosystems
and scientific management in Gannan Prefecture.
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Appendix A

Appendix A.1. Calculation Methods and Results for the Three Ecosystem Services

To evaluate the ecosystem services (ESs) of Gannan Prefecture, we examined three
general evolution indicators: water yield (WY), soil conservation (SC), and habitat quan-
tity (HQ). The calculations were made according to relevant research methods and the
parameter settings in Gannan Prefecture.

(1) HQ

HQ refers to an ecosystem’s ability to provide suitable conditions for the continued
survival of populations and individuals [89]. InVEST’s HQ module relies on threat-source
and data land-use data, and it is calculated based on the response of distinct habitats to
threat sources [73]. The calculation formula is as follows:

HQ = Hj

[
1 −

(
Dz

xj

Dz
xj + kz

)]
(A1)

Dxy = ∑R
r=1 ∑Yr

y=1

(
Wr

∑R
r=1 Wr

)
ryirxyβxSjr (A2)

where HQ is the habitat quality value, Dxj is the habitat degradation degree at grid x of
land-use type j, Hj is the habitat adaptability of land-use type j, ry is the intensity of the
threat factor r, y is the grid number of the threat factor r, wr is the weight of threat factor r
(Table A1), Sjr is the relative sensitivity degree of land-use type j to threat factors r, and βx
is the level of accessibility of grid x (Table A2).

Table A1. Parameters for threat factors.

Threat Factors Longest Threat Distance Weight Spatial Decay Type

National highway
and provincial highway 2.5 km 0.6 Linear decay

County road 0.5 km 0.5 Linear decay
Housing estate 2.5 km 0.4 Exponential decay

Towns 6.0 km 0.8 Exponential decay
Population density 3.5 km 0.3 Exponential decay

Unused land 1.5 km 0.6 Exponential decay

Table A2. Land-use type sensitivity and adaptability to threat factors.

Land-Use Type Habitat
Adaptability

National Road and
Provincal Road County Road Housing Estate Towns Population

Density
Cultivated

Land

Cultivated land 0.3 0.5 0.6 0.4 0.5 0.8 0.0
Grassland 0.8 0.7 0.5 0.2 0.3 0.5 0.5
Forest land 1.0 0.9 0.7 0.5 0.6 0.7 0.3
Water areas 0.9 0.75 0.65 0.7 0.8 0.5 0.1

Wetland 1.0 0.8 0.6 0.9 0.7 0.5 0.1
Construction land 0.0 0.0 0.0 0.0 0.0 0.85 0.0

Unused land 0.01 0.2 0.2 0.1 0.1 0.3 0.1

The spatiotemporal distribution of the HQ from 2000–2020 is shown in Figure A1.
Specifically, areas with a higher habitat quality were mainly distributed on the border
between Hezuo and Zhuoni Counties and in the northeast of Hezuo, the southwest of
Luqu County, and the south of Maqu County. The areas with a lower habitat quality were
distributed in Lintan County, around the center of Hezuo, in Northern Diebu and in the
alpine areas of the western pastoral areas. This pattern emerged because areas with high
human activity intensity were close to towns and cities, and denser transportation networks
are more threatened.
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(2) WY

WY service is closely related to humans and refers to the amount of water produced
per unit area in a certain period [90]. The InVEST WY model runs on a raster map and
determines the regional ecosystem’s water production [91] by computing the difference
between regional moisture input and output. The calculation formula is as follows:

WY =

(
1 −

AETxj

Px

)
× Px (A3)

AETX
Px

=
1 + ωx + Rxj

1 + ωxRxj +
(
1/Rxj

) (A4)

ωx = Z
AWCX

Px
(A5)

Rxj =
k × ET0

Px
(A6)

where WY is the water yield value (mm), AETxj is the actual annual evapotranspiration
at grid x of land-use type j, wx is the porous ratio, Rx is the potential evapotranspiration
to precipitation ratio, and ET0 is the potential evapotranspiration. For land-use types
with vegetation, the evapotranspiration part of the water balance AETx/Px was developed
based on the Budyko curve [91], and the annual rainfall was determined based on the
daily rainfall data of meteorological stations. The MOD16A3 product was selected for
annual potential evaporation, and the watershed map was based on digital elevation model
(DEM) data and extracted using the hydrological analysis model tool in ArcGIS10.2. A
total of 60 sub-watersheds were generated in this study. We also referred to the relevant
literature and set z as 9.433 [92]. In addition, referring to similar studies [93], the AWCx was
calculated using the following equations:
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AWCx = min(soil_depth, root_depth)× PWAC (A7)

PWAC =
(

54.509 − 0.132 × SAN − 0.003 × SAN2 − 0.055 × SIL − 0.006 × SIL2 − 0.738 × CLA + 0.007 × CLA2 − 2.688 × OM + 0.501 × OM2
)
× 100% (A8)

where root_depth is the depth of plant roots and soil_depth is the depth of the soil (mm)
obtained from the soil data sets (Table A3). PAWC is the amount of water available to plants,
and OM, SIL, SAN, and CLA represent the organic matter percentage (%), silt percentage
(%), soil sand percentage (%), and clay percentage (%), respectively, where the OM content
is equal to the organic carbon content (%) multiplied by 1.724. In addition, the WY model
requires the biophysical coefficients of land-use types to be input (see Table A3 for details).

Table A3. Biophysical parameters of different land-use types.

Land-Use Type Lucode Coefficient of Vegetation
Transpiration k Root Depth (mm) LULC_veg

Cultivated land 1 0.65 300 1
Grassland 2 0.75 500 1
Forest land 3 0.7 6500 1
Water areas 4 1 0 0

Wetland 5 0.7 300 1
Construction land 6 0.2 1 0

Unused land 7 0.3 10 0
Lucode is the land use type code, and LULC_veg is the mark that distinguishes bare land and vegetated land.

The spatiotemporal distribution of the WY is shown in Figure A2. In 2000, 2005, 2010,
2015, and 2020, the average annual water production was 386.3 mm, 551.9 mm, 545.9
mm, 381.0 mm, and 639.1 mm, respectively. Overall, the dry climate, limited rainfall,
and other factors led to lower water production in the north, while high values of WY
supply services were mainly distributed in the Southern Maqu Counties, Eastern Diebu,
and Northeastern Zhouqu.
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(3) SC

SC is the process of preventing soil erosion and retaining sediment, which has a
positive impact on land productivity and many other ESs. SC measures the variation
between potential soil erosion versus actual soil erosion rates [94]. The formula is as follows:

SCx = RKLSx − USLEx (A9)

RKLSX = Rx·Kx·LSx (A10)

USLEX = Rx·Kx·LSx·Cx·Px (A11)

where RKLSX is the potential soil loss, Cx is the vegetation cover factor, USLEx is the actual
amount of soil erosion, Px is the soil conservation measures factor, and LSx is the factor
of slope length and slope gradient. The DEM data were imported into the InVEST model
using the fill-and-cut process in ArcGIS 10.2 to calculate the slope gradient and slope length,
and C and P were constructed by reviewing the relevant literature [95]. The results for the
area were used to construct a coefficient table (Table A4), and the R-factor was estimated
using Wishmeier’s monthly scale estimation method as follows:

R = ∑12
i=1

(
1.735 × 101.5lg

P2
i
P 0.8188

)
(A12)

where Pi is the soil erosion factor of the average rainfall for the month, and K reflects the
soil properties that are sensitivity to erosion. This study refers to the following empirical
formula [96]:

KERIC =
{

0.2 + 0.3e[−0.0256SAN(1− SIL
100 )]

}
×
(

SIL
CLA + SIL

)0.3
×
[

1.0 − 0.25C
C + e(3.72−2.95C)

]
×
[

1.0 − 0.7SNI
SNI + e(22.9SNI−5.51)

]
(A13)

K = (−0.01383 + 0.51575KEPIC)× 0.1317 (A14)

where SIL, SAN, C, and CLA represent the soil silt percentage (%), sand percentage (%),
soil organic carbon in the surface layer (0–30 cm) percentage (%), and clay percentage (%),
respectively, and the SNI is calculated based on the relationship 1–SAN/100.

Table A4. Soil conservation measure factors of various land-use types.

Land-Use Types Code of Land-Use Types p Factor Value

Cultivated land 0.2 0.15
Grassland 0.3 1
Forest land 0.05 1
Water areas 0 0

Wetland 0.05 1
Construction land 0 1

Unused land 1 1

The spatiotemporal distribution of SC from 2000–2020 is shown in Figure A3. The total
SC capacities of the Gannan alpine grassland were 5.58 × 108 t, 3.88 × 108 t, 16.99 × 108 t,
4.89 × 108 t, and 9.72 × 108 t in 2000, 2005, 2010, 2015, and 2020, respectively, showing an
increasing, decreasing, and increasing trend. The entire region remained elevated. The low-
value areas were mainly distributed in Maqu, Luqu (near Gahai), and Xiahe Counties, as
well as Hezuo, and the high-value areas were mainly distributed in grasslands in Zhouqu,
Diebu, and Zhuoni Counties.
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Appendix A.2. Calculation Results for the Three Indicators of the PGDI

(1) Grassland resilience index

The spatiotemporal distribution of the grassland resilience index (GRI) from 2000–2020
is shown in Figure A4. In 2000, 2005, 2010, 2015, and 2020, the annual average values
of the GRI of Gannan Prefecture’s alpine grassland were 0.705, 0.710, 0.713, 0.745, and
0.772, respectively, which demonstrated a general increasing trend. The low-value areas
were mainly distributed in Northern Xiahe County, the border between Diebu and Zhuoni
Counties, and Western Maqu County. High-GRI-value areas were mainly distributed in
Maqu, Luqu, Western Xiahe Counties, most of the southeastern part of Hezuo, and the
border between Hezuo City and Zhuoni County.
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(2) Landscape ecological risk index

The spatiotemporal distribution of the landscape ecological risk index (LERI) in 2000,
2005, 2010, 2015, and 2020 is shown in Figure A5, for which the annual average values
were 0.036, 0.036, 0.037, 0.036, and 0.037, respectively. The low-value areas were mainly
distributed in the southwest of Xiahe County, Luqu County, Northern Zhuoni County, and
most of Maqu County, where the vegetation cover was high. Meanwhile, the high-value
areas were mainly distributed in Northwest Maqu County, the border between Diebu and
Zhuoni Counties, central Hezuo-Lintan, and the south of Xiahe County. These ecosystem
services were lost due to the large gradient, low vegetation cover, and relatively serious
hydraulic erosion, resulting in excessive landscape ER of the grassland. The service loss
was large, leading to the landscape ER of the grassland being higher.
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(3) Grass–livestock balance index

The spatiotemporal distributions of the grass–livestock balance index (GLBI) in 2000,
2005, 2010, 2015, and 2020 are shown in Figure A6, for which the annual averages were
23.324, 29.166, 1.267, 1.974, and 0.789, respectively, in Gannan Prefecture’s alpine grasslands.
This shows an overall fluctuation trend of first rising and then falling. The low-value areas
were distributed in areas with large grassland areas such as Hezuo as well as Xiahe, Luqu,
and Maqu Counties. The high-value areas were mainly distributed in Zhuoni County,
Diebu County, and most areas of Zhouqu County, which had less livestock than the
theoretical livestock-carrying capacity and less grassland area, meaning that the area can
support grazing.
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Table A5. Interaction between two explanatory variables and their interactive impacts.

Interaction Relationship Interaction Type

q(X1∩X2) < Min(q(X1), q(X2)) Nonlinear-weaken: Impacts of single variables are nonlinearly
weakened by the interaction between two variables.

Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) Uni-variable weaken: Impacts of single variables are uni-variable
weakened by the interaction.

q(X1∩X2) > Max(q(X1), q(X2)) Bi-variable enhance: Impact of single variables are bi-variable
enhanced by the interaction.

q(X1∩X2) = q(X1) + q(X2) Independent: Impacts of variables are independent.
q(X1∩X2) > q(X1) + q(X2) Nonlinear-enhance: Impacts of variables are nonlinearly enhanced.
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