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Abstract: During satellite remote sensing imaging, the use of Bayer mode sensors holds significant
importance in saving airborne computing resources and reducing the burden of satellite transmission
systems. The demosaicing techniques play a key role in this process. The integration of Generative
Adversarial Networks (GANs) has garnered significant interest in the realm of image demosaicking,
owing to their ability to generate intricate details. However, when demosaicing mosaic images
in remote sensing techniques, GANs, although capable of generating rich details, often introduce
unpleasant artifacts while generating content. To address this challenge and differentiate between
undesirable artifacts and realistic details, we have devised a novel framework based on a Progressive
Discrimination Strategy within a Generative Adversarial Network architecture for image demo-
saicking. Our approach incorporates an artifact-weighted Location Map refinement technique to
guide the optimization process towards generating authentic details in a stable and precise manner.
Furthermore, our framework integrates a global attention mechanism to boost the interaction of
spatial-channel information across different dimensions, thereby enhancing the performance of the
generator network. Moreover, we conduct a comparative analysis of various prevalent attention
mechanisms in the context of remote sensing image demosaicking. The experimental findings un-
equivocally demonstrate that our proposed methodology not only achieves superior reconstruction
accuracy on the dataset but also enhances the perceptual quality of the generated images. By effec-
tively mitigating artifacts and emphasizing the generation of true details, our approach represents a
significant advancement in the field of remote sensing image demosaicking, promising enhanced
visual fidelity and realism in reconstructed images.

Keywords: remote sensing image demosaicking; generative adversarial networks; attention mechanism

1. Introduction

The rapid evolution of digital imaging technology has significantly enhanced the data
rate and resolution of remote-sensing satellite images. This surge in acquired data has un-
derscored the critical importance of onboard storage capacity and transmission bandwidth.
Capturing comprehensive satellite images involves the simultaneous acquisition of red (R),
green (G), and blue (B) information for each pixel, necessitating the use of sensors equipped
with distinct color filters. However, this approach not only escalates hardware costs and
dimensions but also engulfs storage capacity and transmission bandwidth with sensor data.
Consequently, an increasing number of satellites, such as Jilin-1 and Zhuhai-1, are opting
for imaging systems that employ single CCD and CMOS sensors with a Color Filter Array
(CFA) [1], effectively reducing the data volume per image by two-thirds and alleviating the
strain on satellite-to-ground transmission. The Bayer pattern emerges as the predominant
CFA arrangement, strategically interleaving red, green, and blue color filters in a pixel-wise
alternating manner, with a higher prevalence of green filters compared to red (or blue) fil-
ters. This configuration aligns well with human color perception and is often referred to as
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a mosaic template due to its design. Leveraging the Bayer pattern enables satellite camera
systems to maintain image quality while significantly increasing the quantity of efficiently
acquired data. This optimization is crucial for maximizing onboard resource utilization
and mitigating the pressure on satellite-to-ground transmission systems. The interpolation
of satellite images in Bayer mode serves as a crucial initial step in the processing workflow,
directly impacting the overall quality of satellite imagery. Given that each pixel in a Bayer
image provides only one color measurement value, the reconstruction of a full-color image
through Bayer interpolation during ground processing, also known as CFA interpolation
or demosaicking [2], becomes imperative.

Numerous image demosaicking methods have been proposed in the past decades.
Traditional model-based methods for image demosaicking include interpolation-based
methods [3–16], dictionary-based methods [17,18], and iterative methods [19]. Traditional
interpolation methods initially performed color image reconstruction by calculating gray
gradients and color differences. Later, residual interpolation (RI)–based demosaicking
methods were shown to be superior to color component difference-based interpolation
methods. Iterative methods [19] solved the problem that existing RI-based methods could
only adequately recover the R and B channels, and high precision G channels could be
reconstructed by an iterative RI (IRI) process, but such methods increase the computational
effort significantly. The common drawback of the above traditional methods is that the
model parameters are usually determined by hand and lack generalization to optimize
color data sets with different characteristics.

Data-driven convolutional neural network-based (CNN-based) approaches have sig-
nificant advantages over traditional model-based approaches [20–29]. The goal of the
data-driven approach is to learn a nonlinear mapping from the input image space to the
output image space rather than analyzing the global optimization problem to obtain an
optimal solution, thus providing a novel idea of end-to-end optimization. A CNN-based
denoising convolutional neural network (DnCNN) [30] was proposed to independently
perform demosaicking and denoising, which effectively suppresses the appearance of noise.
Due to the potential of generating rich details, generative adversarial networks (GANs)
have been gradually introduced into the field of image demosaicking in recent years. Joint
demosaicking and denoising networks based on generative adversarial networks (GANs)
enhance the demosaicking effect by using a combination of perceptual and adversarial loss
functions. However, due to the instability of GAN network training, the demosaicking
process more or less introduces many visual artifacts that do not match the real scene.

As shown in Figure 1, the demosaicking process has different degrees of true detail
recovery for different areas of the image. For smooth areas, the resulting rich detail can
restore the true information of the image to a large extent. However, for many fine regular
structures or sharp transitions between adjacent pixels, demosaicking often produces
unpleasant artifacts. Existing demosaicking networks do not distinguish between real
details and artifacts but train both in the same general way of learning, and also lack
consideration of information about the spatial-channel attention interaction dimension,
and thus are often prone to distortions such as color artifacts and zippers to varying
degrees during training. Moreover, in contrast to natural images, remote sensing images
are typically captured from a distant, aerial perspective, resulting in a prevalence of low-
frequency regions. Consequently, the applicability of current algorithms designed for
demosaicing natural images to the domain of remote sensing images warrants further
investigation and verification.

To address the above problem, we propose a novel end-to-end discriminant-enhanced
generation framework that uses a global attention-based generative adversarial network
for remote sensing image demosaicking, along with progressive discriminative learning to
distinguish unpleasant visual artifacts from real details to normalize adversarial training.
Our work has the following three main contributions. In order to obtain high-quality
images with rich fidelity details, we develop a new discriminant-enhanced generative
adversarial networks (GANs)-based image demosaicking method to achieve end-to-end
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full-color image reconstruction. To distinguish visual artifacts from true details, we employ
a progressive discrimination framework that explicitly penalizes artifacts without sacrific-
ing true details by refine artifact weighting-location maps, while optimizing the perceptual
function to improve the generation details. To enhance the spatial-channel information
interaction across latitudes, we introduce a global attention mechanism in the generator to
improve the network performance.

Figure 1. The demosaicking process has different levels of true detail reproduction for different areas of
the image (smooth areas are well restored, while areas with rich and dense detail are poorly restored).

We compared the performance of several currently dominant attention mechanisms in the
demosaicking task to identify the most suitable attention mechanism for the task. In parallel,
we conducted extensive experiments on the dataset. Quantitative and qualitative comparisons
show that our approach performs significantly better than the state-of-the-art works.

2. Related Work

Image demosaicking is an essential step in the image signal processing pipeline that
has been well studied. Therefore, numerous methods have been proposed in the past
decades. The methods for image demosaicking generally include model-based algorithms
and data-driven algorithms. In recent years, some studies have also transitioned from
color demosaicking of natural images to demosaicking specifically for remote sensing
images. In this section, we review image demosaicking and discuss the different proposed
solutions separately.

2.1. Model-Based Methods

Intuitively, image demosaicking can be best understood as an extension of image
interpolation for grayscale images. Due to the high correlation between the three color
channels, Sakamoto et al. [31] found that a linear interpolation method that considers
the correlation of G determined using R/B pixels can restore colors well and reduce the
appearance of artifacts. Hua et al. [32] proposed an interpolation algorithm that first esti-
mates the green component, then calculates the chromatic aberration images (R-G and B-G)
and uses compensation for the interpolated G and edge adaptation method to interpolate
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the full-resolution chromatic aberration images. Chung et al. [33] proposed a method
that combines traditional chromaticity subsampling with distortion minimization-based
Luma modification to improve the quality of the reconstructed RGB full-color images.
Meanwhile, to make full use of spatial information to reduce edge blurring, Sher et al. [34]
introduced a new image interpolation using the spatial relationship between adjacent
pixels. Menon et al. [35] proposed a new demosaicking technique based on directional
filtering and a posteriori decision-making. Nallaperumal et al. [36] used a novel adaptive
edge protection, edge-directed interpolation technique to reproduce the color of Bayer
mosaic images. Yang et al. [37] proposed a block edge estimation method considering all
color channels. Sun et al. [38] proposed a hybrid demosaicking algorithm based on fuzzy
edge strength and residual interpolation (RI) methods. In terms of interpolation direction,
Fan et al. [39] demonstrated that an omnidirectional estimation-based demosaicking algo-
rithm outperforms horizontal and vertical estimation methods. In addition, considering the
algorithmic efficiency and complexity, Su et al. [40] proposed an efficient color interpolation
using simple pixel-level data-dependent triangulation. Karch et al. [41] developed a fast
SR method based on the adaptive wiener filter (AWF) super-resolution (SR) algorithm and
using a global channel-to-channel statistical model. Addressing common issues such as
zipper artifacts, noise, and false colors at edges that often arise during Bayer interpolation
reconstruction of video satellite images, Wu et al. [42] introduced an enhanced filtering
method, which is founded on the reconstruction of luminance and chrominance signals,
offering a valuable approach for the further processing and utilization of satellite video
data. Although traditional methods are able to restore the true information to some extent,
the drawback is that these methods are based on the manual derivation of the optimal
parameters from the model, are not generalizable, and are not guaranteed to be applicable
to other new data.

2.2. Data-Driven Methods

Even complex demosaicking tasks can be replaced by a single end-to-end deep learn-
ing model without prior knowledge of the interpolation algorithms and parameters used
for the processing. Syu et al. [24] proposed two CNN models to learn end-to-end map-
ping relationships between mosaic samples and original image patches with complete
information. Zhang et al. [43] used deep convolutional neural networks to learn CFA and
demosaicking, optimizing the spectral sensitivity function (SSF) while considering filter
alignment. Tang et al. [44] formulated demosaicking as a recovery problem and solved it
by minimizing the difference between the input original image and the sampled panchro-
matic result using a CNN-based approach. Ignatov et al. [45] proposed PyNET based on a
pyramidal CNN architecture that capable of performing all ISP steps, such as image demo-
saicking, denoising, white balance, color and contrast correction, to convert RAW Bayer
data obtained directly from a mobile camera sensor to photos taken with a professional
high-end DSLR camera. Sharif et al. [46] proposed a new spatially asymmetric attention
module to jointly learn bidirectional transformations and large kernel global attention to
reduce visual artifacts, addressing the challenge of learning RGB image reconstruction
from noisy Nona-Bayer CFA. Later, generative adversarial networks (GANs) were also
introduced to the field of image demosaicking due to the advantage of generating rich
details. Weisheng Dong et al. [47] proposed a joint demosaicking and denoising network
based on generative adversarial networks (GANs) and used a combination of perceptual
and adversarial loss functions to enhance the demosaicking effect. Meanwhile, there is an
increasing interest in joint demosaicking and denoising tasks. Huang et al. [48] proposed
a lightweight convolutional neural network for the joint demosaicking and denoising
(JDD) problem. Park et al. [49] proposed a variational deep image prior network for joint
demosaicking and denoising that can be trained on a single patterned image for patterned
images with varying degrees of noise. Khadidos et al. [50] first denoised the mosaic images
using a CNN and then demosaicked them using the residual learning strategy of a single
specialized network. However, the demosaicking process tends to introduce many unpleas-
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ant visual artifacts due to the instability of network training and the lack of consideration
of spatial-channel attention interaction dimension information.

To summarize, model-based methods mainly rely on manually deriving the optimal
parameters of the model, relying on a priori knowledge and specific algorithms; whereas
data-driven methods utilize deep learning models without much a priori knowledge and
learn mapping relationships through data. Model-based approaches can recover real
information to a certain extent. However, they need to manually tune the parameters,
are less versatile and their applicability to new data is not guaranteed, and the algorithm
efficiency and complexity may be limited. Data-driven methods can handle complex
tasks, are adaptable through end-to-end training, and can generate rich details. However,
unstable network training may introduce more visual imperfections and may lack sufficient
consideration of information on spatial-channel attention interaction dimensions.

3. Method

Since the demosaicking process has different fidelity in restoring different areas of
the image. Smooth areas with less detailed textures can be well restored with true details,
while areas rich in high-frequency information often introduce unpleasant visual artifacts.
Therefore, the two cannot be simply treated uniformly. To be able to distinguish artifacts
from real details, this paper proposes a new progressive discriminative strategy to regulate
the optimization of the network toward a more stable and accurate direction by constructing
an artifact weighting map [51]. Figure 2 illustrates the generative adversarial network
framework with a progressive discriminative strategy, where we add a discriminant-
enhanced learning link in addition to the initial GAN.

Figure 2. Generative adversarial network framework with a progressive discriminative strategy.

To address this problem, we use the exponential sliding average technique to obtain a
network that generates smoother images, because the exponential sliding average is the
average of the values taken by the variables over a period of history, which is less oscillating
than the original network and does not make the sliding average fluctuate greatly due to
an anomaly in one of the values taken. Using ϕ to denote the generator model optimized
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by dynamic gradient descent, we use the exponential moving average (EMA) technique to
temporarily integrate the more stable model ϕEMA from ϕ as follows:

ϕ
(k)
EMA = α · ϕ

(k−1)
EMA + (1 − α)ϕ(k) (1)

where α in Equation (1) represent the weighting parameters. Pixels are considered rea-
sonable only if the residual between the generated image, and the true image is less than
the residual between the exponential sliding average network output image and the true
image. Others are considered as outliers that appear as unpleasant visual artifacts. This
move yields the location of the artifacts in the weighted map.

Since the variance can reflect the stability of the data over a period of time, we use
the local variance of the residuals between the generated and true images to describe the
difference between artifacts and true details and further refine it to obtain a finer weight
map. As shown in Figure 3, the pixel-level weight map is characterized by the local variance
of the residual map in a 7 × 7 neighborhood for the artifactual pixels:

M(i, j) = V
7×7

(IGT − IG), (2)

where V represents the variance, pixel-level weight maps can effectively detect artifactual
pixels in smooth regions. However, since the local variance is computed within a very
small perceptual field, distinguishing artifacts from edges and textures is unstable and
can be overly responsive to pixels in some detail-rich regions. Therefore, we need further
refinement to obtain a stable patch-level weight map σM(i, j), and compute a stable patch-
level variance σ based on the whole residual map as follows:

δ = (V(IGT − IG))
1/a (3)

The final weight map Marti f act is updated for the anomalous pixels of |IGT − IG| ≥
|IGT − IEMA|:

Marti f act(i, j) =


0, i f |IGT − IG| <
|IGT − IEMA|
δ · M(i, j), i f |IGT − IG| ≥
|IGT − IEMA|

(4)

Figure 3. Visualization of the artifact map.
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In summary, this paper employs a new progressive discriminative strategy to distin-
guish unpleasant visual artifacts from real details, and our network can better learn the
features of real details through discriminative augmentation learning. Unlike lossGAN , our
discriminative enhancement strategy can better tune the model training and can consis-
tently generate perceptually realistic details while suppressing visual artifacts.

3.1. Generator Network

The purpose of this generator is to convert a single-channel Bayer image into a full-
color image with 3-channel output. It contains 1 compressed extraction block, 16 GAB
blocks, 1 upsampling block and 2 convolutional layers. To address the problem that the
demosaicking task does not consider spectral–spatial cross-dimensional information, we
use a generator based on multiple GAB blocks to fuse local and global attention information
while preserving long-hop and short-hop connections to facilitate the flow of information
inside and outside the module. Experiments demonstrate that a broader network designed
based on multiple GAB blocks does help to improve our demosaicking performance. To
implement the above network, we propose an attention block using short hops and a
global attention mechanism (as in Figure 4). Specifically, we use two convolutional layers
with 64 feature maps and a batch normalization layer, and then use ParametricReLU as
the activation function [52]. Then, we use the global attention mechanism (GAM) [53] to
amplify the cross-dimensional spatial-channel dependence and enhance spatial information
fusion. The GAB module proposed in this paper can recover two-thirds of the lost data in
the spectrum, as well as the lost high-frequency details.

Figure 4. Structure of the generator network.

3.2. Discriminator Network

We also use a discriminator to distinguish real color images from those synthesized
by the generator, as shown in Figure 5, which contains 8 convolutional layers, using
LeakyReLU activation, and the number of 3 × 3 filter kernels is increasing from 26 to
29 kernels. The number of features is increased while using layered convolution to reduce
the image resolution. Finally, two dense layers and a sigmoid activation function are used
to obtain the discriminative results [52].
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Figure 5. Structure of the discriminator network.

3.3. Loss Function

The purpose of demosaicking is to recover the true color information and high-
frequency details of the image and to reduce the artifacts. Therefore, we describe the
loss function of the mosaic network in terms of the weighted sum of content loss and
adversarial loss, i.e.,

LDEMSC
LDL = LDEMSC

MSE + LDEMSC
VGG + LDEMSC

ARTIF + 10−3LDEMSC
GAN (5)

One of the content losses consists of pixel loss, feature loss and artifact discrimination
loss. The pixel-level loss is optimized by calculating the MSE. The feature loss uses the
ReLU activation layer [54] of a pre-trained 19-layer VGG network to define a loss function
close to the perceptual similarity.

To better learn the features of real details to suppress visual artifacts, we define the
artifact discriminative loss [47] as follows:

LDEMSC
ARTIF =∥ Marti f act · (IGT − IG) ∥1 (6)

Artifact discrimination loss optimizes our network toward learning real details to
suppress visual artifacts.
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4. Results
4.1. Datasets and Implementation Details

One of the primary challenges encountered in data-driven demosaicking methods lies
in the scarcity of real datasets containing mosaic original images paired with ground truth
RGB images. Consequently, many existing approaches resort to training demosaicking
networks using artificially generated data stitched from existing RGB images. In our
study, we trained our proposed network using the VOC2012 [55] dataset, comprising
16,700 training images and 426 validation images. To augment the original training data,
we expanded the dataset to include 200,000 training images, all of which were randomly
cropped into patches measuring 88 × 88 pixels.

For the test phase, we employed three natural image datasets—Kodak, McMaster [56],
and Set5—as well as two remotely sensed image datasets, namely SateHaze1k and DOTA-v1.0.
The Kodak dataset comprises 24 images, each with a resolution of 768 × 512, while the
McMaster dataset consists of 18 images extracted from 500 × 500 high-resolution images.
The Set5 dataset includes 5 images. DOTA-v1.0 [57], the largest optical remote sensing image
dataset to date, is a collaborative effort involving the State Laboratory of Remote Sensing
at WU and the School of Telecommunication at HUST, among others. This dataset, sourced
from Google Earth, as well as the Chinese satellites GF-2 and JL-1, encompasses 2806 remote
sensing images with sizes ranging from 800 × 800 to 4000 × 4000 pixels. It comprises a
total of 188,282 instances categorized into 15 classes, such as airplanes, boats, baseball infields,
and various other objects. The SateHaze1k dataset [58], primarily utilized for image generation
and denoising tasks, originates from the GF-2 and GF-3 satellites and was released by Tsinghua
University in 2017. The visible images in this dataset are sized at 512 × 512 × 3. To prepare
the training and test data, we applied Bicubic interpolation to downsample the original
high-resolution images by a factor of 2 before generating the “RGGB” Bayer pattern.

In all experimental setups, our models were developed using the PyTorch framework
and executed on an NVIDIA GeForce RTX 2080Ti GPU. The batch size for training patches
was fixed at 32, and our novel network architecture underwent training for a total of
500 epochs. We opted for the Adam optimizer with β1 = 0.9 and β2 = 0.999 parameters.
The initial learning rate was initialized to 0.001, with a default decay factor of 0. Within our
proposed GAN network, we configured the GAB blocks to a count of 16. The majority of
convolutional layers employed a kernel size of 3 × 3, each with 64 filters. The reduction
ratio was established at r = 4. The final layer was equipped with 3 filters to produce
complete color image outputs.

4.2. Experiment Results

In this section, we present a comparative analysis of the proposed demosaicking
method against several existing techniques, including Bicubic interpolation, FlexISP [59],
ADMM [60], JDSR [61], and DPIR [62,63]. The evaluation is conducted on the Kodak,
McMaster, Set5, SateHaze1k, and DOTA-v1.0 datasets, with Table 1 displaying the Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) metrics for each
method. PSNR is a widely adopted objective metric for image evaluation, quantifying the
error between corresponding pixel values, with values exceeding 40 dB indicative of excel-
lent image quality. However, as PSNR may not align perfectly with the characteristics of the
human visual system (HVS) [64], the Structural Similarity Index (SSIM) was introduced to
capture structural attributes like brightness, contrast, and image structure. SSIM leverages
the strong correlation among neighboring pixels to assess the structural coherence of objects
within an image, making it a valuable tool for evaluating structural fidelity. While PSNR
reflects the overall image quality, SSIM is particularly adept at discerning distortions in
demosaicked images. Our results reveal that the proposed method outperforms all others
in both PSNR and SSIM metrics, underscoring its ability to produce visually consistent
results that faithfully capture the perceptual structure of the reconstructed images.



Remote Sens. 2024, 16, 2283 10 of 18

Table 1. PSNR (peak signal-to-noise ratio) (dB) and SSIM (structural similarity) results. The compari-
son methods are evaluated on the Kodak, McMaster, Set5, SateHaze1k, and DOTA-v1.0 datasets.

Method McMaster Kodak Set5 SateHaze1k DOTA-v1.0

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 34.331 0.9790 34.564 0.9799 36.139 0.9827 26.293 0.9336 36.658 0.9826
FlexISP 34.938 0.9767 35.113 0.9709 37.215 0.9771 23.435 0.8265 40.079 0.9831
ADMM 32.370 0.9575 31.481 0.9382 32.566 0.9638 19.646 0.6176 32.798 0.9169
JDSR 35.968 0.9845 40.677 0.9913 36.215 0.9839 37.419 0.9921 36.837 0.9861
DPIR 37.832 0.9885 40.650 0.9915 39.526 0.9837 35.803 0.9907 43.742 0.9893
RSDM-GAN (OURS) 39.394 0.9914 41.411 0.9937 39.581 0.9865 37.232 0.9943 45.446 0.9908

Figures 6 and 7 present both qualitative and quantitative comparisons of various
algorithms on natural image datasets. Figure 6 illustrates a line graph showcasing the
PSNR and SSIM values of different demosaicking algorithms on the Kodak and McMaster
datasets. The results in Figure 6 indicate that the proposed algorithm outperforms on the
majority of images in terms of both PSNR and SSIM metrics.

(a) PSNR of Kodak (b) SSIM of Kodak

(c) PSNR of McMaster (d) SSIM of McMaster

Figure 6. Performance evaluation of demosaicking methods on Kodak and McMaster Datasets: PSNR
and SSIM comparison

To quantitatively compare the demosaicking performance of the proposed method
against state-of-the-art algorithms, we randomly selected two scenarios from the Set5
dataset and displayed them in Figure 7. In the first scene, different algorithms exhibit
varying degrees of smoothing on the spots present on the child’s cheek, with JDSR, FlexISP,
and ADMM showing excessive smoothing. A careful comparison reveals that our algorithm
preserves finer details of the facial skin spots more faithfully to the Ground Truth. In the
second scene, the Bicubic algorithm appears to introduce more color aliasing compared
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to other methods, while the ADMM algorithm also exhibits color aliasing, a more critical
issue is the significant loss of details due to excessive smoothing. JDSR and FlexISP suffer
from similar drawbacks. Although the DPIR algorithm does not exhibit the aforementioned
issues, it falls short in color restoration compared to our proposed method, a distinction
that becomes apparent upon closer inspection. In conclusion, through qualitative and
quantitative comparisons of different demosaick methods on natural image datasets, it
is evident that the results of our proposed method are more realistic, natural, and closer
to ground truth than those of other algorithms. Consequently, our method outperforms
existing techniques in terms of performance and fidelity.

Figure 7. Comparison of the effects of different demosaicking methods for the Set5 dataset.

To qualitatively and quantitatively evaluate the performance of different demosaicking
algorithms on remote sensing datasets, we, respectively, randomly selected two scenarios
from the SateHaze1k and DOTA-v1.0 datasets.

The qualitative assessment results in terms of PSNR and SSIM are presented in Table 2,
with corresponding subjective comparison images displayed in Figures 8 and 9. The data
in Table 2 demonstrates that the proposed method achieves the best metrics on all randomly
selected images. In the evaluation process, the selected scenarios from the remote sensing
datasets were carefully analyzed to assess the effectiveness of each demosaicking algorithm.
The results revealed that our proposed method consistently outperformed the competing
algorithms in terms of both objective metrics (PSNR and SSIM) and subjective visual quality.
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Table 2. PSNR (peak signal-to-noise ratio) (dB) and SSIM (structural similarity) results. The compari-
son methods are evaluated on the SateHaze1k and DOTA-v1.0 datasets.

Image Bicubic FlexISP ADMM JDSR DPIR OURS

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
1 28.004 0.9564 27.617 0.9320 25.968 0.8904 37.374 0.9940 36.245 0.9909 37.837 0.9952
2 26.166 0.9228 22.493 0.7761 24.053 0.8224 37.601 0.9935 35.949 0.9902 37.745 0.9944
3 27.241 0.9330 23.398 0.7950 24.884 0.8310 38.294 0.9933 37.364 0.9908 39.396 0.9956
4 35.385 0.9855 35.721 0.9697 31.202 0.9257 35.508 0.9857 42.158 0.9897 43.941 0.9953

Figure 8. Comparison of the effects of different demosaicking methods for the SateHaze1k dataset.

Figure 8 compares the subjective effects of different demosaicking algorithms on the
SateHaze1k dataset. In scenario one, Bicubic, FlexISP, and ADMM algorithms exhibit
varying degrees of color aliasing. Bicubic shows the most severe color aliasing, while
FlexISP introduces pseudo-color artifacts in pixel form, resembling numerous pseudo-color
noise points. Although ADMM shows relatively lighter aliasing compared to others, it still
generates significant areas of pseudo-color that deviate noticeably from the ground truth,
and while JDSR and DPIR do not produce extensive pseudo-artifacts, they exhibit mosaic-
like artifacts in certain key structures, such as the blue block area on the far right, which
are absent in the ground truth. In contrast, the proposed method effectively mitigates the
aforementioned issues. In Scenario Two, we meticulously evaluated the visual outcomes at
the pixel level. Bicubic interpolation, FlexISP, and ADMM methods displayed noticeable
artifacts in the form of widespread false colors, undermining the accuracy and realism
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of the reconstructed images. JDSR, on the other hand, struggled with color preservation,
leading to a loss of chromatic information in the demosaicked images.

Figure 9. Comparison of the effects of different demosaicking methods for the DOTA-v1.0 dataset.

Notably, DPIR introduced extraneous colors that deviated from the ground truth,
compromising the faithfulness of the color reproduction process. In contrast, our proposed
method effectively restored the original pixel colors to a high degree of fidelity.

Figure 9 showcases the comparison results on the DOTA-v1.0 dataset. In the first scenario
featuring a yacht, Bicubic and ADMM exhibit noticeable pseudo-color artifacts, FlexISP and
DPIR suffer from color loss, and JDSR shows excessive smoothing. In comparison, the pro-
posed algorithm closely aligns with the ground truth. In the second scenario depicting lines
on an airport runway, Bicubic, FlexISP, ADMM, DPIR, and JDSR all demonstrate severe color
aliasing. In contrast, the proposed algorithm effectively restores the colors and details of the
lines on the runway. Figures 8 and 9 visually depict the comparative results of different
demosaicking algorithms on the remote sensing images, highlighting the superior perfor-
mance of our proposed method in preserving image details, reducing artifacts, and enhancing
overall image quality. These findings demonstrate the efficacy and robustness of our proposed
algorithm in handling demosaicking tasks on remote sensing datasets.

5. Discussion

In this section, we devised a series of experiments aimed at investigating the design
and efficacy of two pivotal components: (1) the discriminant-enhanced learning module
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and (2) the global attention mechanism. Through the implementation of ablation studies,
we scrutinized the individual contributions of these components. To ensure the rigor and
impartiality of our comparisons, all networks underwent training in an identical environ-
ment, facilitating a fair assessment. Consistency was maintained by utilizing the same
training dataset and preprocessing operations across all experiments, and evaluations
were conducted on the same datasets as above. By subjecting the networks to identical
testing conditions, we sought to provide a robust evaluation of the specific impacts of
the discriminator-enhanced learning module and the global attention mechanism on the
demosaicking task. Our meticulous experimental design enabled a nuanced analysis of the
distinct roles played by these key components in enhancing demosaicking performance.
By systematically dissecting the contributions of the discriminator-enhanced learning mod-
ule and the global attention mechanism, we gained valuable insights into their respective
effects on the quality and accuracy of color image reconstruction.

5.1. Ablation Studies of Discriminant-Enhanced Learning (DEL) Link

The proposed method incorporates a progressive discriminator strategy, featuring a
discriminator-enhanced learning module within its model architecture. Leveraging expo-
nential moving average techniques, the discriminator-enhanced learning module enhances
the stability of the generative model, thereby contributing to more consistent model perfor-
mance. Additionally, this module facilitates the construction of a pixel-wise map indicating
the likelihood of artifacts, ensuring the accuracy of optimization directions. These capabilities
collectively contribute to the achievement of high-precision demosaicking results.

To demonstrate the efficacy of the network architecture, we adopted SRGAN as the
base model and evaluated the impact of integrating the discriminator-enhanced learning
module into the proposed demosaicking model, as illustrated in Table 3. By deploying
this module, we observed significant improvements in the demosaicking performance,
highlighting its role in enhancing the overall quality and fidelity of the reconstructed images.
The utilization of the discriminator-enhanced learning module not only enhances the
stability of the generative model but also enables the network to effectively address artifacts
and optimize the demosaicking process for superior results. This strategic integration
underscores the importance of incorporating advanced techniques, such as discriminator-
enhanced learning, to elevate the performance of demosaicking algorithms and achieve
state-of-the-art results in image demosaicking tasks.

Table 3. Ablation studies of Discriminant-enhanced Learning Link (DEL). The “−” and “+” represent
the model without the DEL and the model with the DEL, respectively.

DEL McMaster Kodak Set5 SateHaze1k DOTA-v1.0

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
− 30.245 0.9251 30.572 0.9233 33.377 0.9329 24.198 0.8903 34.658 0.9324
+ 33.756 0.9688 33.687 0.9775 37.006 0.9679 27.591 0.9322 38.522 0.9893

5.2. Ablation Studies of Global Attention Mechanism

The global attention mechanism serves as a crucial component within the demosaicking
network. In order to validate the effectiveness of the global attention mechanism employed
in this study for demosaicking tasks, we conducted performance evaluations across four
scenarios: (1) a network without any attention mechanism; (2) a network incorporating
Convolutional Block Attention Module (CBAM) [65]; (3) a network integrating Coordinated
Attention (COA) [66]; and (4) a network featuring the Global Attention Mechanism (GAM),
which corresponds to the method proposed in this paper, as depicted in Table 4.

The experimental results presented in Table 4 demonstrate that while a network with-
out attention mechanisms can roughly accomplish the task of image demosaicking, its
performance significantly lags behind networks equipped with attention mechanisms.
Specifically, the global attention mechanism typically outperforms other attention mecha-
nisms in demosaicking networks. For instance, on the Kodak dataset, the PSNR metric with
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GAM improved by nearly 3 dB compared to CBAM and by over 2 dB compared to COA.
Therefore, our proposed network with GAM effectively enhances demosaicking capabilities,
showcasing superior performance in image demosaicking tasks. The results underscore
the pivotal role of the global attention mechanism in improving demosaicking quality and
highlight its potential to elevate the overall performance of demosaicking networks.

Table 4. Ablation studies of different Attention Mechanism (AM). The “−” and “+” represent the
model without the AM and the model with the AM, respectively.

AM McMaster Kodak Set5 SateHaze1k DOTA-v1.0

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
− 30.245 0.9251 30.572 0.9233 33.377 0.9329 24.198 0.8903 34.658 0.9324
+CBAM 31.263 0.9276 31.552 0.9328 34.293 0.9452 25.466 0.9075 35.231 0.9458
+COA 32.153 0.9399 32.488 0.9598 35.256 0.9547 26.296 0.9183 36.248 0.9506
+GAM(OURS) 34.233 0.9568 34.526 0.9740 37.381 0.9755 27.989 0.9366 39.257 0.9778

6. Conclusions

This study presents a novel end-to-end remote sensing image demosaicking approach
that harnesses Generative Adversarial Networks based on a global attention mechanism
within. By integrating a progressive discriminative framework, we effectively differenti-
ate between visual artifacts and authentic details. Furthermore, the integration of global
attention mechanisms within the generator further enhances spatial-channel information
interaction, leading to superior performance in image demosaicking tasks. Our investiga-
tion includes a comprehensive evaluation of multiple prevailing attention mechanisms in
the demosaicking task. Through rigorous experimentation on a widely adopted dataset,
we conclusively determine the global attention mechanism as the most suitable approach
for this specific application. The results of our study showcase that our proposed method
significantly outperforms existing state-of-the-art techniques in both quantitative metrics
and qualitative visual fidelity. Through extensive experimentation and evaluation, our
approach emerges as a robust solution, offering substantial advancements in the field of
remote sensing image demosaicking.
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