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Abstract: The exacerbation of air pollution during spring in Yunnan province, China, has attracted
widespread attention. However, many studies have focused solely on the impacts of anthropogenic
emissions while ignoring the role of natural processes. This study used satellite data spanning
21 years from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric
Infrared Sounder (AIRS) to reveal two natural processes closely related to springtime ozone (O3) and
PM2.5 pollution: stratospheric intrusions (SIs) and cross-border transport of biomass burning (BB).
We aimed to assess the mechanisms through which SIs and cross-border BB transport influence O3

and PM2.5 pollution in Southwestern China during the spring. The unique geographical conditions
and prevalent southwest winds are considered the key driving factors for SIs and cross-border BB
transport. Frequent tropopause folding provides favorable dynamic conditions for SIs in the upper
troposphere. In the lower troposphere, the distribution patterns of O3 and stratospheric O3 tracer
(O3S) are similar to the terrain, indicating that O3 is more likely to reach the surface with increasing
altitude. Using stratospheric tracer tagging methods, we quantified the contributions of SIs to surface
O3, ranging from 6 to 31 ppbv and accounting for 10–38% of surface O3 levels. Additionally, as
Yunnan is located downwind of Myanmar and has complex terrain, it provides favorable conditions
for PM2.5 and O3 generation from cross-border BB transport. The decreasing terrain distribution
from north to south in Yunnan facilitates PM2.5 transport to lower-elevation border cities, whereas
higher-elevation cities hinder PM2.5 transport, leading to spatial heterogeneity in PM2.5. This study
provides scientific support for elucidating the two key processes governing springtime PM2.5 and O3

pollution in Yunnan, SIs and cross-border BB transport, and can assist policymakers in formulating
optimal emission reduction strategies.

Keywords: AIRS and MODIS satellites; aerosol; stratospheric intrusions; biomass burning; PM2.5

and O3 pollution; Southwestern China

1. Introduction

Elevated amounts of PM2.5 (particulate matter with an aerodynamic equivalent di-
ameter of 2.5 µm or less) and ozone (O3) are currently the two major bottleneck issues
constraining the continuous improvement of air quality in China. The complexity of their
source mechanisms has brought enormous challenges to the prevention and control of air
pollution. Although implementing the Air Pollution Prevention and Control Action Plan
(APPCAP) has effectively controlled PM2.5 pollution in most parts of China, the emphasis
on reducing PM2.5 emissions has led to a continuous increase in O3 concentrations. In
some areas, this has resulted in combined pollution from PM2.5 and O3 [1,2]. Owing to
its harmful impact on human health, vegetation growth, and climate change [3,4], the
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synergistic control of O3 and PM2.5 constitutes a critical priority in China’s long-term air
quality management agenda.

The main sources of PM2.5 depend on local primary emissions, secondary photochem-
ical reactions, and regional transport. Industrial, traffic, and residential sources can directly
emit PM2.5 [5]. Meanwhile, these sources also release other pollutants, which undergo
various chemical and physical processes to transform into sulfate, nitrate, and secondary
organic aerosols, constituting fine particulate matter [6,7]. Numerous studies have used
source apportionment, numerical simulations, and other methods to quantify the contri-
butions of primary emissions and secondary generation to PM2.5 during high-pollution
events [8–11]. Apart from local sources, regional transport is another significant contributor
to local PM2.5 pollution, and it can directly carry large amounts of pollutants from other
areas, exacerbating local air pollution [12–14]. Under specific meteorological conditions,
regional transport plays a dominant role in PM2.5 pollution events in regions such as the
North China Plain (NCP), the Sichuan Basin (SCB), and the Yunnan Plateau (YP), with
contribution rates reaching exceptionally high levels [12,15,16]. Zhang et al. [17] investi-
gated the difference in PM2.5 transport flux between NCP and SCB in autumn and winter.
They observed that NCP was controlled by a cold front weather system and transported
PM2.5 to surrounding areas. In contrast, PM2.5 in SCB was affected by interbasin transport
because of the complex terrain that hindered horizontal diffusion. Unlike the other two
regions, PM2.5 in YP was found to be influenced by biomass burning (BB) in the Indo-China
Peninsula during spring, a source of cross-border BB transport [16,18].

Unlike PM2.5 pollution, O3 is a secondary pollutant primarily formed through local
photochemical reactions. These reactions involve interactions between precursor pollutants,
such as nitrogen oxides (NOx) and volatile organic compounds (VOCs), in the presence of
solar radiation. Influenced by anthropogenic and natural emissions, the local photochemi-
cal environment plays an important role in shaping O3 concentrations [19,20]. Additionally,
regional transport from neighboring areas and stratospheric intrusions (SIs) are also im-
portant O3 budget sources [21]. Regional transport is a driving factor behind surface O3
pollution in regions like Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), and
the Pearl River Delta (PRD) [15,22,23]. SIs involve the downward transport of O3 from
the stratosphere to the troposphere and even the surface, under the influence of physical
mechanisms such as tropopause folding, cut-off lows, subtropical jet streams, and wave
breaking [24–27]. Under specific meteorological conditions such as typhoons, tropical
cyclones, and subtropical highs, local circulation intensifies, leading to enhanced regional
transport and SIs, impacting the near-surface O3 concentration [28–30].

Compared with plains such as the BTH, the YRD, and the PRD, Yunnan boasts a
unique and complex topography as a high-altitude plateau with substantial elevation
variations among its cities. While Yunnan’s overall altitude is relatively high, a considerable
difference in elevation exists among its cities, creating a topographical landscape with
higher elevations in the northwest and lower elevations in the southeast, resulting in a
stair-step descent from south to north. Additionally, the climate of Yunnan is characterized
by its complexity in both the horizontal and vertical dimensions, featuring a combination of
boreal, temperate, and tropical climates, and temperature variations are notably influenced
by changes in elevation. In contrast to the other major city clusters, such as BTH, the
YRD, and the PRD, where PM2.5 pollution is concentrated in winter and O3 pollution is
concentrated in summer [12,20,31], Yunnan experiences PM2.5 and O3 pollution primarily
during spring. High-frequency tropopause folding provides favorable dynamic conditions
for the downward transport of O3-rich air mass from the stratosphere to the troposphere
during springtime, influencing near-surface O3 concentrations [25,30,32]. Additionally, BB
is active in the spring over the Indo-China Peninsula (ICP), and the prevailing westerly
winds transport BB-generated PM2.5 and O3 to Yunnan [33,34]. Numerous studies of
pollution cases have confirmed the existence of transport channels between Yunnan and
the ICP [16,18]. Given the unique topographic conditions and geographical location of
Yunnan, these two distinct transport processes, SIs and cross-border BB transport, exert a
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more profound impact on PM2.5 and O3 pollution in Yunnan during the spring. However,
current emission reduction policymaking has predominantly focused on reducing local
anthropogenic sources, and there remains a notable lack of research on the impact of these
two natural sources on the mechanism of springtime O3 pollution in Yunnan.

Satellite remote sensing technology can provide vertical profile data, real-time obser-
vations, and extensive spatiotemporal coverage, which can help to better understand the
mechanisms governing PM2.5 and O3 pollution [35–37]. Instruments such as the Moderate
Resolution Imaging Spectroradiometer (MODIS), the Ozone Monitoring Instrument (OMI),
and Cloud–Aerosol Lidar and Infrared Satellite Observations (CALIPSO) have been widely
used to retrieve the spatiotemporal distribution of Aerosol Optical Depth (AOD), which
quantifies the solar attenuation caused by aerosols [38–40]. Shaik et al. [41] and others have
confirmed the accuracy of MODIS-derived AOD by comparing it to ground-based AOD,
showing strong agreement with a correlation coefficient (R) of 0.86 and a root mean square
error (RMSE) of 0.14. Additionally, satellite-based AOD has been instrumental in revealing
the impact of BB on the optical properties and vertical structure of aerosols [35,42]. Satellite-
based vertical profiles of O3, obtained from instruments like the Atmospheric Infrared
Sounder (AIRS), are crucial for investigating SIs [43,44]. Ma et al. [45] used vertical AIRS
profiles of O3 to provide evidence of SIs in cities such as Chaoyang, Shijiazhuang, and
Hangzhou during the spring and summer of 2019. By characterizing the three-dimensional
spatiotemporal distribution of pollutants, satellite observations can significantly enhance
our understanding of pollutant transport processes and largely compensate for a lack of
vertical observation data.

To study and quantify the impact of SIs and cross-border BB transport on O3 and
PM2.5 concentrations in Yunnan province during spring, 21-year satellite observations
from MODIS and AIRS were used to investigate the spatial and temporal variations in O3
and PM2.5. The Whole Atmosphere Community Climate Model (WACCM) dataset was
used to quantify the contributions of SIs and cross-border BB transport to O3 and PM2.5
concentrations under complex topographic conditions. Finally, the sources of PM2.5 and O3
in Yunnan during spring were determined by using the Hybrid Single Particle Lagrangian
Integrated Trajectory (HYSPLIT) model to simulate air mass trajectories. The objectives
of this study are to: (1) analyze the general characteristics of O3 and AOD; (2) explain the
mechanisms of SIs and cross-border BB transport; and (3) investigate the influence of SIs
and cross-border BB transport on O3 and PM2.5 under complex topographic conditions.

2. Materials and Methods
2.1. Studied Area

Two nested domains were used in this study: the 16◦–36◦N, 85◦–125◦E region, and
Yunnan province (Figure 1). Previous studies indicate that the westerly jet stream is an
important midlatitude circulation in region d01 during the spring [33]. This area is known
for frequent tropopause folding and is also a hotspot for BB during the spring [32].

2.2. Satellite Datasets

We used two types of satellite datasets from different instruments, MODIS and AIRS.
Tables 1 and 2, respectively, present their instrument specifications and the attributes of
their corresponding datasets.
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Figure 1. Elevation map of studied area: (a) the 16°–36°N, 85°–125°E region, (b) Yunnan province. 
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Figure 1. Elevation map of studied area: (a) the 16◦–36◦N, 85◦–125◦E region, (b) Yunnan province.

Table 1. Specifications of MODIS and AIRS instruments.

Instrument/
Satellite Wavelength Bands Number of Bands Spectral

Resolutions
Temporal

Resolution Spatial Resolution

MODIS/Aqua 0.4–14.4 µm
Bands 1–19 and 26 0.4 µm to 2.2 µm Multiple times

daily
250 m, 500 m and

1000 mBands 20–25 and 27–36 3.66 µm to 14.4 µm

AIRS/Aqua 0.4–15.4 µm
2378 infrared channels

649 to 1136 cm−1

(longwave)
1213 to 1613 cm−1

(midwave)
2181 to 2665 cm−1

(shortwave)

Twice daily 1◦ × 1◦

4 visible/near-infrared
channels 0.4 µm to 0.94 µm

Table 2. Attributes of the satellite datasets used in this study.

Instrument/
Satellite Data Provider Data Product Temporal

Resolution
Spatial

Resolution
Parameters

Used Reference

MODIS/Aqua LAADS MYD04_L2 Daily
(2003–2023) 10 km × 10 km AOD

(550 nm)

(Levy et al.,
Sayer et al.)

[46,47]

AIRS/Aqua GESDISC AIRS3STM 7.0 Monthly
(2003–2023) 1◦ × 1◦ O3 profile (Aumann et al.)

[48]

2.2.1. MODIS

MODIS is part of the National Aeronautics and Space Administration (NASA) and is
deployed on two satellites, Aqua and Terra, which are in near-polar orbits. This positioning
allows for global observations multiple times a day. MODIS captures data in 36 inter-
aligned spectral bands ranging from 0.4 µm to 14.4 µm and acquires them at three spatial
resolutions: 250 m, 500 m, and 1000 m, providing global data over a wide range. The
daily level 2 Collection 6.1 AOD dataset (MYD04_L2) is used to provide AOD data, which
are available from the website: https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 3
November 2023. Each file in this dataset corresponds to a 5-min MODIS orbital fragment
with a spatial resolution of 10 × 10 km, containing a total of 203 × 135 pixels. The MODIS
retrieval algorithm for aerosol properties is divided into the Dark Target (DT) and Deep
Blue (DB) algorithms. The DT algorithm is used for retrieving AOD over the ocean and
vegetated land, while the DB algorithm is designed for bright surfaces, like deserts and
urban areas, and dark surfaces, including vegetated regions. The latest MODIS product

https://ladsweb.modaps.eosdis.nasa.gov/
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merges the strengths of the DT and DB algorithms into a new combined dataset that relies
on the Normalized Difference Vegetation Index (NDVI). The combined dataset is generated
as follows: (1) if NDVI > 0.3, DT retrievals are used; (2) if NDVI < 0.2, DB retrievals are
used; (3) if 0.2 ≤ NDVI ≤ 0.3, the average of the DT and DB retrievals is used, or the
one with the recommended quality assurance (QA = 3 for DT and QA ≥ 2 for DB) is
selected. This approach enhances spatial coverage over land, particularly in transitional
regions with low vegetation that are dark enough for the DT algorithm to be applicable [49].
Consequently, we used the combined dataset to analyze the general characteristics of AOD,
namely, “AOD_550_Dark_Target_Deep_Blue_ Combined”.

2.2.2. AIRS

AIRS was launched with the Aqua satellite on 4 May 2002, as part of NASA. This sensor
is specifically designed to obtain infrared spectral information in the atmosphere; it has a
high spectral resolution and provides all-day vertical profile observations. Furthermore, the
AIRS and MODIS instruments are concurrently deployed on the Aqua satellite, establishing
a dual-satellite configuration that comprehensively analyzes both surface and atmospheric
data. In this study, the AIRS Version 7 Level 3 standard product with 1◦ × 1◦ spatial
resolution and monthly temporal resolution was used to investigate the spatiotemporal
distribution of O3. The vertical profile data are divided into 24 pressure levels, from
1000 hPa to 1 hPa, and can be obtained from the website: https://airs.jpl.nasa.gov/data/
get-data/standard-data/, accessed on 3 November 2023.

2.3. WACCM Simulation
2.3.1. WACCM Datasets

The WACCM is a global climate model developed by the National Center for At-
mospheric Research (NCAR), falling under the Atmospheric Chemistry-Climate Model
(AOGCM) category. This model aims to simulate and study physical and chemical pro-
cesses in the atmosphere, covering entire pressure levels from the surface to the top
of the atmosphere. This model uses anthropogenic emissions from the latest Coperni-
cus Atmosphere Monitoring Service (CAMS) inventory. Open-flame emissions are de-
rived from FINN-v1. The spatial resolution of the datasets is 0.9◦ × 1.25◦, and the ver-
tical profile is divided into 88 levels, which can be obtained from the website: https:
//www.acom.ucar.edu/waccm/download.shtml, accessed on 3 November 2023. The
stratospheric O3 tracer (O3S) and the CO tracer (CO01) represent the contribution of SIs to
tropospheric O3 and the impact of global BB emissions on local CO.

2.3.2. Model Evaluation

O3 and PM2.5 observations from site data and AOD observations from the MODIS
dataset are performed to assess the performance of the WACCM dataset at eight sites in
Yunnan from 2020 to 2023. The hourly O3 and PM2.5 data from 2020 to 2023 used in this
study were obtained from the China Environmental Monitoring Center’s national urban air
quality real-time release platform (https://air.cnemc.cn:18007/, accessed on 3 November
2023). Figure S1 and Table S1 show that the WACCM dataset had good performance for O3,
PM2.5, and AOD, with averaged R of 0.86, 0.88, and 0.67, respectively. The averaged RMSEs
are 14.21 µg/m3, 23.17 µg/m3, and 0.21, and the mean biases (MBs) are 11.27 µg/m3,
12.29 µg/m3, and 0.14, respectively. Overall, the above discussion can prove the reliability
of WACCM data and support the subsequent analysis of our study objectives.

2.4. HYSPLIT Model

The HYSPLIT model is a Lagrangian trajectory model developed by the National
Oceanic and Atmospheric Administration (NOAA) to calculate simple air parcel trajectories
as well as complex simulations for transportation, dispersion, chemical transformation,
and deposition. The HYSPLIT model has been widely used to track aerosol sources and
identify BB emission smoke delivery routes [18,35]. The Global Data Assimilation System

https://airs.jpl.nasa.gov/data/get-data/standard-data/
https://airs.jpl.nasa.gov/data/get-data/standard-data/
https://www.acom.ucar.edu/waccm/download.shtml
https://www.acom.ucar.edu/waccm/download.shtml
https://air.cnemc.cn:18007/
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(GDAS) from the National Centers for Environmental Prediction (NCEP) is used to generate
meteorological conditions at an interval of 6 h with 1◦ horizontal resolution and 23 vertical
levels from 1000 hPa to 20 hPa, and its data can be obtained from the website: https://www.
ready.noaa.gov/data/archives/gdas1/, accessed on 3 November 2023. Two representative
cities, Kunming (25.04◦N, 102.66◦E) and Xishuangbanna (22.02◦N, 100.80◦E), were selected
as the model-simulated trajectory termination or particle receiving points. The starting
height was set to 500 m above ground level, and simulations were conducted at 00:00, 06:00,
12:00, and 18:00 UTC during spring from 2020 to 2023 for 72 h backward in time. After
running the HYSPLIT model, we obtained trajectory information, including the number of
trajectories and endpoints within each grid cell that the trajectory passed through.

Potential Source Contribution Function (PSCF) analysis is widely used to identify
spatial patterns in pollution sources and quantitatively estimate the relative contribution
strengths of different source areas [18,31,50]. To assess the pollution levels in the study
region from various source areas, it was essential to establish threshold values for PM2.5.
According to the daily average primary limit of the Ambient Air Quality Standards of
China (GB 3095-2012) [51], the PM2.5 threshold value was set to 35 µg/m3. The position
where each trajectory endpoint falls is recorded as (i, j). Mij represents the number of
trajectory endpoints where the measured PM2.5 parameter exceeds the threshold value
within the ij-th grid cell, and Nij represents the total number of trajectory endpoints within
the ij-th grid cell. The PSCF value of each grid cell in the study area was determined by
calculating the ratio of Mij and Nij, as shown in Equation (1):

Pij =
Mij

Nij
(1)

When Nij is small, the uncertainty of the conditional probability Pij increases. To
reduce this uncertainty, we referred to the study by Polissar [50] and introduced a weight
function, Wij, which is multiplied by Pij, as follows:

Wij =


1.00
0.70
0.42
0.17

. . . .

150 < Nij
15 < Nij ≤ 150
5 < Nij ≤ 15

Nij ≤ 5

(2)

WPSCF = Wij × Pij (3)

Concentration-Weighted Trajectory (CWT) analysis was employed to determine the
potential source area contributions of PM2.5. PM2.5 concentrations in the target cities can be
obtained from the China Environmental Monitoring Center’s national urban air quality
real-time release platform (https://air.cnemc.cn:18007/, accessed on 3 November 2023).
The CWT value of each grid cell in the study area was obtained by calculating the weighted
value of pollutant concentration in different trajectories, as shown in Equation (4):

Cij =
1

M
∑

l=1
Tijl

M

∑
l=1

ClTijl (4)

where: Cij represents the average weighted PM2.5 concentration of the ij-th grid cell (µg/m3);
l is the number of trajectories; M is the total number of trajectories; Cl represents the
pollutant concentration along trajectory l; and Tijl represents the time spent by trajectory l
in the ij-th grid cell. Similar to Pij, we used Wij to decrease the error in Cij, as follows:

WCWT = Wij × Cij (5)

https://www.ready.noaa.gov/data/archives/gdas1/
https://www.ready.noaa.gov/data/archives/gdas1/
https://air.cnemc.cn:18007/
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3. Results
3.1. General Characteristics of AOD and O3

To compare the difference in the effects of cross-border BB transport and SIs on PM2.5
and O3 in Yunnan and the entire region, this section analyzes satellite observations from
MODIS and AIRS in d01 and d02, as shown in Figure 1.

We analyzed the seasonal variation characteristics of AOD using MODIS satellite
observations from 2003 to 2023, aiming to indirectly obtain the variation characteristics of
PM2.5 from an observational perspective. Figure 2 depicts the seasonally averaged AOD
over Yunnan province from 2003 to 2023. In the Yunnan region, AOD exhibits distinctive
characteristics, with its peak occurring during the spring season. This feature contrasts
notably with other regions, such as BTH and the YRD, where the maximum AOD can
be observed during the summer season [52,53]. The average AOD during spring has
consistently exceeded the 21-year mean value, with 16 years recording maximum AOD
values in spring surpassing 0.8 and even reaching 1.1. This phenomenon became more
pronounced after 2015, with AOD values in spring significantly surpassing those of other
seasons. Notably, the high AOD values during spring in Yunnan are more pronounced
compared with the overall region, with the average falling within a range of 0.35–0.47.
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Additionally, PM2.5, PM10, and O3 and AOD exhibit similar seasonal variation char-
acteristics, with their peak values appearing in spring. However, there are significant
differences in the annual variation trends of these elements in Yunnan province between
2015 and 2023, with PM2.5 and PM10 decreasing by 4 µg/m3 and 12 µg/m3, respectively,
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and O3 increasing by 13 µg/m3. The APPCAP plan’s implementation in 2013 is respon-
sible for these variations. Reductions in anthropogenic emissions have led to a sustained
decrease in PM2.5 and PM10 emissions. Besides the increase in radiative flux due to the
decrease in PM2.5 exacerbating O3 pollution, the change in pollutant emission structure
caused by China’s PM2.5 control-focused emission reduction measures may be a significant
reason for the recent continuous rise in O3 pollution [54]. Meanwhile, AOD did not change
significantly, fluctuating around a value of 1. Previous studies have shown that PM2.5 and
PM10 contribute to the total aerosol load, thus affecting AOD in the atmosphere [55–57].
Figure S3 shows that there is a positive relationship between PM2.5, PM10, and AOD in
spring and summer over Yunnan, with an R ranging from 0.56 to 0.75, indicating that
PM2.5 and PM10 significantly contribute to springtime and summertime AOD in Yunnan.
However, the correlations between PM2.5, PM10, and AOD are low in autumn and win-
ter, which are attributed to various meteorological factors such as humidity, wind speed,
and atmospheric stability. For instance, high humidity can cause hygroscopic particle
growth, increasing AOD, but this does not necessarily indicate a proportional increase in
surface PM2.5 or PM10. Additionally, AOD signifies the cumulative extinction capacity of
all aerosol particles within the vertical atmospheric column. However, PM2.5 and PM10 site
observations can only reflect surface pollution levels. The differences mentioned above
can lead to variations in the correlation between satellite observations of AOD and surface
observations of PM2.5 or PM10 in different seasons.

In the context of significant annual reductions in PM2.5 and PM10 pollution, the
consistently high levels of PM2.5 in spring are particularly notable. Consequently, the
impact of cross-border BB transport occurring during spring has been further amplified.
Furthermore, the overall increase in spring AOD in Yunnan and the entire region confirms
the homogeneity of AOD sources in these two areas.

Figure 3 depicts the spatiotemporal distribution of O3 in Yunnan and the entire region.
A tongue-shaped plume of high O3 can be seen extending from 100 hPa downward to the
lower troposphere, with O3 concentrations higher than 80.0 ppbv. The downward transport
of stratospheric O3-enriched air accumulates at the top of the boundary layer owing to
the blocking effect of that layer, forming an area of high O3 values. Previous studies have
proved that similar phenomena can indicate the occurrence of SIs [21,25]. The latitude
cross-section also further supports that SIs transport O3-enriched air from the stratosphere
to the troposphere, forming a tropospheric O3 hotspot above 500 hPa (Figure 4a).
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the location of Yunnan.

Figure 4b shows a band of O3-enriched air extending from Northern India to Yunnan
above 500 hPa, possibly indicating that cross-border BB transport exacerbates O3 pollution
in the lower troposphere. Figure 5d–f depicts the spatial distribution of O3 and wind fields
at altitudes of 303 hPa, 512 hPa, and 713 hPa, confirming the existence of the hotspot above
500 hPa. The strong westerly jet at 313 hPa and 512 hPa provides favorable meteorological
conditions for the horizontal transport of pollutants from the source area in Myanmar to
Yunnan, indirectly supporting the possibility that cross-border BB transport affects the
formation of O3 hotspots (Figure 5e,f). Figure S4 shows that Kunming and Xishuang-
banna’s five and four major pathways have been identified. The trajectories from central
Myanmar have the highest proportion, accounting for 58.98% in Kunming and 38% in
Xishuangbanna, further indicating the influence of cross-border BB on pollutants in Yunnan.
Consequently, cross-border BB transport in the lower troposphere may further exacerbate
tropospheric O3 pollution.

The higher O3 concentrations in the lower troposphere of Yunnan may also be at-
tributable to the region’s topographical conditions, as its elevated altitude facilitates the
transport of stratospheric O3 closer to the surface layer. A comprehensive analysis of
satellite data has revealed that SIs and cross-border BB transport are two significant sources
influencing air quality in the Yunnan region. However, there are still large uncertainties in
studies of the quantitative regulation mechanism of springtime O3 pollution over Yunnan.

3.2. Occurrence of SIs and the Cross-Border BB Transport in Yunnan

Satellite observations have confirmed the significant impact of SIs and cross-border BB
transport on air quality during spring in Yunnan. However, the specific mechanisms and
quantifications of each process have not been thoroughly investigated. This knowledge
gap undermines the effectiveness of strategies aimed at reducing anthropogenic emissions.
Many studies have demonstrated the accuracy of WACCM simulations and their appli-
cations in research related to O3 and CO pollution [58–60]. WACCM simulations were
performed to investigate the governing dynamic mechanisms of SIs and cross-border BB
transport from 2020 to 2023.
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spring from 2020 to 2023.

In Figure 6, noticeable seasonal characteristics were observed for PM2.5, CO, and
CO01 concentrations in both Yunnan and Myanmar, where high values all occurred in later
winter and early spring (February–April). In comparison, the high PM2.5 and CO values in
Yunnan are primarily concentrated between 800 hPa and the surface layer, while pollutants
in Myanmar accumulate closer to the ground. Additionally, the maximum PM2.5 and CO
concentrations in Myanmar can reach 191 µg/m3 and 1768 ppbv, whereas in Yunnan, these
values reach 73 µg/m3 and 679 ppbv (Figure 6). This indicates that Yunnan is situated
downwind from Myanmar and is significantly influenced by cross-border BB transport.
The vertical distribution characteristics of CO01 further confirm this inference. Many
previous studies have demonstrated that the prevailing southwest winds in spring over
ICP transport PM2.5 to Yunnan, which is located downwind [16,18]. A hotspot of PM2.5,
CO, and CO01 concentrations was noticed between 700 and 800 hPa over Guangdong
(Figure 6c,f,i), which indicated the important role of BB in air quality in that area [35].

Figure 7 further provides a time–height cross-section plot of monthly mean O3 and O3S
profiles for Yunnan, Myanmar, India, and Guangdong from 2020 to 2023. A tongue-shaped
plume of high O3 exceeding 108 ppbv is transported downward to 500 hPa. A pool of
O3 with concentrations higher than 90 ppbv appears above the boundary layer. However,
the vertical distribution characteristics of O3S indicate that SIs have a relatively limited
impact on the high concentrations of lower tropospheric O3 in Yunnan and Myanmar.
In comparison with the distribution of PM2.5 and CO, both CO01 and O3 in Yunnan
exhibit high-value areas at 900 hPa, indicating that BB also plays a significant role in the
accumulation of pollutants in this layer (Figure 6a,e). In Guangdong, the intensity of SIs is
relatively weak, with less than 30 ppbv O3S transported to the troposphere. In addition,
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topography may be another factor influencing the contribution of SIs in Yunnan. The higher
altitude facilitates the transport of stratospheric O3 to the surface layer.
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Figure 6. Temporal vertical profiles of averaged (a–c) PM2.5 (µg/m3), (d–f) CO, and (g–i) CO01
(ppbv) using data from WACCM over (a,d,g) Yunnan, (b,e,h) Myanmar, and (c,f,i) Guangdong from
2020 to 2023.

Notably, unlike the vertical distribution of pollutants in Yunnan and Myanmar, the
pollutant hotspots in Guangdong were elevated in altitude but did not extend to the ground.
Many studies have shown that there are two main reasons why these pollutant hotspots
are elevated in altitude in Guangdong: the long-range horizontal transport of pollutants
generated from BB in ICP and cross-latitudinal SI transport [26,35,61,62]. In our previous
study, a strong inversion layer observed above the ABL blocked O3 from penetrating the
boundary layer in Hong Kong. Under favorable atmospheric circulation conditions (i.e.,
Saddle Point or Col), O3 plumes can penetrate the boundary layer and affect the near-
surface [21,26]. The differences between the WACCM-modeled O3 concentration and the
AIRS measurements are primarily due to inaccuracies in the WACCM simulations and AIRS
measurements. Firstly, limitations in the vertical resolution of the WACCM simulations
and parameterization schemes hinder accurate depictions of atmospheric layer variations,
leading to inaccuracies [63]. Secondly, the vertical satellite data are derived from O3 column
concentrations, which may introduce errors during the inversion process. Therefore, more
vertical observations need to be conducted to assess the WACCM simulation results and
AIRS satellite data in the future [64].
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Overall, our results indicate that SIs and cross-border BB transport are two major
key mechanisms for determining spatiotemporal variations in PM2.5 and O3 in Yunnan
during spring.

3.3. Mechanisms of SIs and Cross-Border BB Transport

Surface PM2.5 reaches its maximum in Xishuangbanna, Eastern Myanmar, Northern
Laos, and Northwestern Vietnam and gradually decreases along the northeastern direction,
as shown in Figure 5. As altitude increases, PM2.5 and O3 concentrations exhibit opposite
trends. Owing to topographical effects, the influence of cross-border BB transport is limited
in higher-altitude areas. Conversely, the vertical downward transport of O3 from the
stratosphere is more likely to reach the surface layer in higher-altitude regions, resulting
in an increase in O3 concentrations with elevation. As mentioned in the previous section,
cross-border BB transport may exacerbate PM2.5 pollution in Yunnan during the spring.

Figure 8 shows pressure–longitude cross-sections along 23◦N and 26◦N for averaged
PM2.5 and vertical circulation in spring from 2020 to 2023. Owing to the impact of BB, high
PM2.5 concentrates on the surface of Myanmar, with a value of 150 µg/m3. In Yunnan, the
wind speed and elevation gradually increase from south to north. Vertically, surface PM2.5
concentrations decrease with increasing elevation. A stronger westerly jet transports PM2.5
to the downstream area, and the towering, mountainous terrain hinders further byproduct
transport from BB. Therefore, Xishuangbanna, which has the lowest elevation in Yunnan
and is closest to Myanmar, faces severe PM2.5 pollution challenges.

To further track potential sources of PM2.5 pollution in Yunnan, the PSCF and CWT
approaches embedded in the HYSPLIT model were used to track air pollutant source areas
for the target cities, Kunming and Xishuangbanna. A higher WPSCF value indicates a
higher likelihood of the region being a potential PM2.5 source area. Figure 9a shows that,
for Xishuangbanna, regions with WPSCF values greater than 0.4 are primarily located
in Myanmar, covering nearly half of the country’s area. Additionally, in the central part
of Myanmar, the WPSCF value exceeds 0.6. This suggests that Myanmar is a substantial
potential source area for PM2.5 in Xishuangbanna, confirming the significant impact of cross-
border BB transport on PM2.5. Compared with Xishuangbanna, the impact of cross-border
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BB transport on Kunming is much smaller. The high-WPSCF-value areas for Kunming are
mainly located in the southwestern region of Yunnan province (Figure 9b). Figure 9c,d
show that the high-value WCWT areas are consistent with those for WPSCF. In spring,
Myanmar serves as a potential source area for Xishuangbanna, with PM2.5 contributions
reaching 40–55 µg/m3. Meanwhile, the PM2.5 contribution to Kunming mainly falls within
a range of 20–40 µg/m3, with high-value areas primarily located in the southwestern region
of Yunnan province and at the southwestern border of Yunnan with Myanmar. The spatial
heterogeneity of WPSCF and WCWT between Xishuangbanna and Kunming is essentially
driven by the difference in elevation (1.1 km for Xishuangbanna and 2.0 km for Kunming).
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To further evaluate the relative SI contribution, we analyzed the horizontal distribution
characteristics of the O3S/O3 ratio at different altitudes, which is used to describe the
percentage of O3 transported from the stratosphere to different levels. At a certain level, a
higher ratio value of O3S/O3 signifies the greater impact of SI on O3 concentrations at this
level. Figure 10 shows that the O3S/O3 ratio increases with altitude, which is consistent
with the SI characteristics. At 713 hPa and 512 hPa, an O3S/O3 hotspot can be seen over
Northwest Yunnan, which agrees with the topographic feature, as shown in Figure 1b. In
the higher troposphere (i.e., 303 hPa), the ratio exhibits a zonal distribution, increasing
with higher latitudes. On the one hand, the tropopause height decreases with increasing
latitude. On the other hand, the tropopause folding frequency demonstrates a similar zonal
distribution, which provides favorable dynamic conditions for SIs (Figure S5). Owing to
the significant influence of the Qinghai–Tibet Plateau’s topography, hot spots are centered
in the northwest part of Yunnan. Therefore, the complex terrain of the Yunnan region
will have a significant impact on pollutant transport, exerting opposing effects on SIs and
cross-border BB transport.
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3.4. Relationships between Topography and Air Pollutants

As discussed above, topography has a significant impact on pollutant transport in
Yunnan. Thus, we expect that topography has a close relationship with O3 and PM2.5,
which are examined in this section.

To explore the influence of topography, we analyzed the relationships between altitude
and anomalous values of individual pollutant values during various months (February–
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May) over Yunnan and Myanmar. The altitudes in Yunnan and Myanmar vary significantly.
Yunnan has an average elevation of 2.3 km and a diverse internal topography, while Myan-
mar features predominantly gentle terrain, with most areas situated at elevations below
1 km. Figure 11 shows a strong negative relationship between altitude and anomalous
PM2.5 in Yunnan with an R higher than 0.67, which indicates that the effect of cross-border
transport is gradually weakened by increasing altitude. In comparison, the connection be-
tween altitude and the cross-border transport impacts of BB in Myanmar is not prominently
evident. This is primarily due to the lower altitudes in Myanmar and the predominantly
local sources of BB. The significant negative correlation between CO (CO01) and altitude
further substantiates the substantial impact of cross-border BB transport on air quality
in Yunnan (Figure S6). The significant positive correlation between O3S and altitude in
Yunnan indicates that stratospheric O3-enriched air is more readily transported downward
to reach high-altitude cities. At the same time, the differences in R and slope between
different months also prove the varying intensity of the influence of SIs and cross-border
BB transport on PM2.5 and O3 at different altitudes. Areas at lower altitudes are more
susceptible to PM2.5 impacts from horizontal transport because of BB, while higher-altitude
regions are more influenced by vertical O3 transport from SIs.
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Owing to the severe polluted status in March–April, we calculated the averaged
March–April PM2.5, O3, and O3S concentrations from 2020 to 2023 for 16 cities in Yunnan.
We then sorted them by altitude, from highest to lowest (Figure 12). A close link between
O3, O3S, PM2.5, and topography was found. As the altitude decreases, there is a signifi-
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cant increase in PM2.5 concentration and a decrease in the proportion of O3S. Under the
influence of topography, SIs can contribute 8–31 ppbv to surface O3 in these cities. Notably,
Xishuangbanna, the closest city in Yunnan to BB sites, has a further higher PM2.5 (close to
300 µg/m3) than other cities (100–200 µg/m3), resulting from cross-border BB transport.
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It should be noted that the WACCM products cannot directly track the impact of
cross-border BB transport on O3. Therefore, it is not possible to calculate the quantitative
contribution of cross-border BB transport using WACCM data. Furthermore, the less
significant trends observed in O3 and O3S can be attributed to the absence of constraints on
surface O3 and O3S in the simulation results. As a workaround, O3 and O3S from levels
close to surface pressure were used as substitutes for surface concentrations.

4. Discussion

Currently, Yunnan province faces severe PM2.5 and O3 pollution in the spring. A
comprehensive analysis of MODIS and AIRS satellite data over the past 21 years has
revealed the presence of two atmospheric pollutant transport processes associated with
springtime in Yunnan, specifically SIs and BB. The implementation of APCAAP in 2013
led to a reduction in local emissions, amplifying the relative contribution of two unique
transport processes during springtime.

In this study, we focused on assessing the impact of SIs and BB on O3 and PM2.5
during the spring season in Yunnan. Two factors affecting SIs and cross-border BB transport
were identified: the prevalent southwest winds and complex topographical conditions.
Yunnan is situated in the downwind region of Myanmar and features complex terrain. This
unique geographical position provides an ideal environment for SIs and the cross-border
transport of BB emissions, allowing PM2.5 and O3 from Myanmar to be transported to
Yunnan. The complex topography within Yunnan, with higher elevations in the north
and lower elevations in the south, facilitates the easier transport of PM2.5 to border cities
with lower elevations, such as Xishuangbanna. Cities farther from Myanmar, owing to
higher elevations, obstruct some PM2.5 transport, weakening cross-border BB transport
and resulting in the spatial distribution of PM2.5 concentrations decreasing with elevation.

High-frequency tropopause folding in Yunnan provides favorable dynamic conditions
for SIs. The distribution of O3 and O3S exhibits a northwest-southeast trend similar to the
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terrain. This can be partly attributed to the higher tropopause folding frequency in the
northwest, influenced by the Qinghai–Tibet Plateau, as well as the high-altitude terrain
in the northwest, which facilitates the transport of stratospheric O3 to the surface. The
contribution of SIs to surface O3 in Yunnan’s cities ranges from 6 to 31 ppbv, accounting for
10% to 38% of surface O3.

Notably, these two unique natural processes in Yunnan contribute differently to sur-
face O3 and PM2.5 concentrations during springtime. SIs are solely responsible for the
downward transport of stratospheric O3, thereby contributing to surface O3 pollution.
High-altitude sites are more susceptible to the effects of SIs, as evidenced by the positive
correlation between O3S and altitude. Conversely, the cross-border BB transport affects
both O3 and PM2.5 concentrations through the transport of PM2.5, O3, and O3 precursors.
The impact of cross-border BB transport on O3 and PM2.5 decreases with increasing altitude
owing to topographic obstruction, as indicated by the negative correlation between altitude
and O3 as well as PM2.5. Moreover, it should be noted that in addition to the processes
mentioned above (see also [65]), the temporal evolution of the tropopause height (e.g.,
foldings) exhibits persistent behavior (memory effect). This means that a small fluctuation
in the past is followed by a drastically enhanced fluctuation in the future. The response
time varies from 4 months to 6 years [66]. This behavior has also been found in surface O3,
PM2.5, and AOD [67].

This study underscores the significant regulatory role of SIs and cross-border BB
transport as non-local emissions on local PM2.5 and O3 pollution in Yunnan, which will
pose a substantial challenge for policymakers in the future. Hence, we recommend that the
impact of these two distinct natural transport processes be taken into consideration when
formulating local emission reduction strategies. It is essential to comprehensively consider
the influence of terrain conditions on pollutant transport in cities at different altitudes.
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