Mapping Ratoon Rice Fields Based on SAR Time Series and Phenology Data in Cloudy Regions
Abstract
:1. Introduction
2. Study Region and Data
2.1. Study Region
2.2. Data
2.2.1. Sentinel-1 Data
2.2.2. Field Data Collection
2.2.3. RR Planting Calendar and Other Ancillary Data
3. Methodology
3.1. Preprocessing and Polarization Mode Selection
3.2. RR Monitoring Threshold Model
3.3. Accuracy Metrics
4. Results
4.1. RR Mapping Results and Accuracy Verification
4.2. Detailed Spatial Features of RR
4.3. Comparison with Existing Methods
5. Discussion
5.1. Performance of the Proposed Model in Classifying Different Paddy Rice Types
5.2. Advantages and Limitations of RR Mapping Based on SAR Data
5.3. Applicability and Directions for Model Improvement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, S.; Peng, S.; Fahad, S.; Khaliq, A.; Huang, J.; Cui, K.; Nie, L. Rice management interventions to mitigate greenhouse gas emissions: A review. Environ. Sci. Pollut. Res. 2014, 22, 3342–3360. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wang, W.; Chen, Q.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Response of first flood irrigation timing after rice dry-direct-seeding: Productivity and greenhouse gas emissions in Central China. Agric. Water Manag. 2016, 177, 241–247. [Google Scholar] [CrossRef]
- Yuan, S.; Cassman, K.G.; Huang, J.; Peng, S.; Grassini, P. Can ratoon cropping improve resource use efficiencies and profitability of rice in central China? Field Crops Res. 2019, 234, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Munda, G.C.; Das, A.; Patel, D.P. Evaluation of transplanted and ratoon crop for double cropping of rice (Oryza sativa L.) under organic input management in mid altitude sub-tropical Meghalaya. Curr. Sci. 2009, 96, 1620–1627. [Google Scholar]
- Peng, S. Reflection on China’s Rice Production Strategies During the Transition Period. Sci. Sin. Vitae 2014, 44, 845–850. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Q.; Wang, W.; Peng, S.; Huang, J.; Cui, K.; Nie, L. The growth and yield of a wet-seeded rice-ratoon rice system in central China. Field Crops Res. 2017, 208, 55–59. [Google Scholar] [CrossRef]
- Gao, Y. Rice Planting Region Extraction based on Temporal and Spatial Feature Fusion. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2021. [Google Scholar]
- Zhan, P.; Zhu, W.; Li, N. An automated rice mapping method based on flooding signals in synthetic aperture radar time series. Remote Sens. Environ. 2021, 252, 112112. [Google Scholar] [CrossRef]
- Shao, Q.; Li, R.; Qiu, J.; Han, Y.; Han, D.; Chen, M.; Chi, H. Large-scale mapping of new mixed rice cropping patterns in southern China with phenology-based algorithm and MODIS dataset. Paddy Water Environ. 2023, 21, 243–261. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Tian, S. Phenology-assisted supervised paddy rice mapping with the Landsat imagery on Google Earth Engine: Experiments in Heilongjiang Province of China from 1990 to 2020. Comput. Electron. Agric. 2023, 212, 108105. [Google Scholar] [CrossRef]
- Yu, Y.; Meng, L.; Luo, C.; Qi, B.; Zhang, X.; Liu, H. Early Mapping Method for Different Planting Types of Rice Based on Planet and Sentinel-2 Satellite Images. Agronomy 2024, 14, 137. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Ma, Y.; Kong, X.; Zhang, X.; Zhang, D. Mapping Ratoon Rice Planting Area in Central China Using Sentinel-2 Time Stacks and the Phenology-Based Algorithm. Remote Sens. 2020, 12, 3400. [Google Scholar] [CrossRef]
- Li, B.; Peng, S.; Shen, R.; Yang, Z.-L.; Yan, X.; Li, X.; Li, R.; Li, C.; Zhang, G. Development of a new index for automated mapping of ratoon rice areas using time-series normalized difference vegetation index imagery. Pedosphere 2022, 32, 576–587. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, J.; Cai, Z.; Yang, J.; Zhou, W.; Hu, Q.; Wang, C.; You, L.; Xu, B. A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data. J. Integr. Agric. 2024, 23, 1164–1178. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Li, Y. High-Resolution Ratoon Rice Monitoring under Cloudy Conditions with Fused Time-Series Optical Dataset and Threshold Model. Remote Sens. 2023, 15, 4167. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H.; Xu, L.; Ge, J.; Jiang, J.; Zuo, L.; Wang, C. Twenty-meter annual paddy rice area map for mainland Southeast Asia using Sentinel-1 synthetic-aperture-radar data. Earth Syst. Sci. Data 2023, 15, 1501–1520. [Google Scholar] [CrossRef]
- Ribbes, F.; Le Toan, T. Use of ERS-1 SAR data for ricefield mapping and rice crop parameters retrieval. Int. Geosci. Remote Sens. Symp. 1996, 4, 1983–1985. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Bhattacharya, A.; Rao, Y.S.; Siqueira, P.; Bera, S. Sen4Rice: A Processing Chain for Differentiating Early and Late Transplanted Rice Using Time-Series Sentinel-1 SAR Data with Google Earth Engine. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1947–1951. [Google Scholar] [CrossRef]
- Wang, L.; Ma, H.; Li, J.; Gao, Y.; Fan, L.; Yang, Z.; Yang, Y.; Wang, C. An automated extraction of small- and middle-sized rice fields under complex terrain based on SAR time series: A case study of Chongqing. Comput. Electron. Agric. 2022, 200, 107232. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, R.; Zhu, X.; Pan, B.; Fu, Y.; Zheng, Y.; Chen, X.; Peng, Q.; Yuan, W. Sample-free automated mapping of double-season rice in China using Sentinel-1 SAR imagery. Front. Environ. Sci. 2023, 11, 1207882. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar] [CrossRef]
- Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321–334. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Huang, X.; Liu, Y.; Li, T. Mapping paddy rice in Jiangsu Province, China, based on phenological parameters and a decision tree model. Front. Earth Sci. 2018, 13, 111–123. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. Int. J. Remote Sens. 2017, 39, 1042–1067. [Google Scholar] [CrossRef]
- Huang, C.; Xu, Z.; Zhang, C.; Li, H.; Liu, Q.; Yang, Z.; Liu, G. Extraction of rice planting structure in tropical region based on Sentinel-1 temporal features integration. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2020, 36, 177–184. [Google Scholar] [CrossRef]
- Cai, Y.; Lin, H.; Zhang, M. Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Adv. Space Res. 2019, 64, 2233–2244. [Google Scholar] [CrossRef]
- Qiu, B.; Lu, D.; Tang, Z.; Chen, C.; Zou, F. Automatic and adaptive paddy rice mapping using Landsat images: Case study in Songnen Plain in Northeast China. Sci. Total Environ. 2017, 598, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Li, Y.; Ma, M. Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability 2021, 13, 503. [Google Scholar] [CrossRef]
- Song, K.; Zhang, G.; Xu, H.; Ma, J. A review of research on influencing factors and sustainability of ratoon rice cultivation in China. Acta Pedol. Sin. 2020, 57, 1365–1377. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Pang, J.; Zhang, R.; Yu, B.; Liao, M.; Lv, J.; Xie, L.; Li, S.; Zhan, J. Pixel-level rice planting information monitoring in Fujin City based on time-series SAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102551. [Google Scholar] [CrossRef]
- Aziz, M.A.; Haldar, D.; Danodia, A.; Chauhan, P. Use of time series Sentinel-1 and Sentinel-2 image for rice crop inventory in parts of Bangladesh. Appl. Geomat. 2023, 15, 407–420. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. GIScience Remote Sens. 2018, 55, 659–677. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Tian, H.; Wu, M.; Wang, L.; Niu, Z. Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China. Sensors 2018, 18, 185. [Google Scholar] [CrossRef] [PubMed]
- Hripcsak, G.; Rothschild, A.S. Agreement, the F-Measure, and reliability in information retrieval. J. Am. Med. Inform. Assoc. 2005, 12, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.-W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Freeman, V.; Cao, S.; Paulik, C.; Schaufler, S.; Stachl, T.; Modanesi, S.; Massari, C.; Ciabatta, L.; Brocca, L.; et al. Toward Global Soil Moisture Monitoring with Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Trans. Geosci. Remote Sens. 2019, 57, 520–539. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, X.; Chen, J.; Zhu, X.; Duan, M.; Qiu, B.; Wan, L.; Tan, X.; Xu, Y.N.; Cao, R. A robust index to extract paddy fields in cloudy regions from SAR time series. Remote Sens. Environ. 2023, 285, 113374. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Chang. Biol. 2013, 20, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.A.; Jina, A.S.; Jain, M.; Kristjanson, P.; DeFries, R.S. Smallholder farmer cropping decisions related to climate variability across multiple regions. Glob. Environ. Chang. 2014, 25, 163–172. [Google Scholar] [CrossRef]
- Ayanlade, A.; Radeny, M.; Morton, J.F. Comparing smallholder farmers’ perception of climate change with meteorological data: A case study from southwestern Nigeria. Weather. Clim. Extrem. 2017, 15, 24–33. [Google Scholar] [CrossRef]
Item | RR (Actual Value) | Non-RR (Actual Value) | Total |
---|---|---|---|
RR (predicted value) | 110 | 0 | 110 |
Non-RR (predicted value) | 19 | 76 | 95 |
Total | 129 | 76 | |
OA (%) | 90.24 | ||
PA (%) | 85 | ||
UA (%) | 100 | ||
F1 score | 0.92 | ||
Kappa coefficient | 0.8 |
This Study | Zhao et al. [15] | Liu et al. [12] | Li et al. [13] | |
---|---|---|---|---|
Type of method | Threshold model | Threshold model | Index method | RR index |
Phenological information | Yes | Yes | Yes | Yes |
Data sources | Sentinel-1A; ESRI land cover | Sentinel-2; Landsat-8 OLI; MOD09GA | Sentinel-2; FROM-GLC10; DEM | MOD09Q1; MCD12Q1; DEM |
Spatial resolution (m) | 10 | 10 | 10 | 250 |
OA (%) | 90.24 | 90.73 | No comparison | No comparison |
UA (%) | 100 | / | ||
PA (%) | 85 | / | ||
F1 score | 0.92 | / | ||
Kappa coefficient | 0.80 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, R.; Wang, Y. Mapping Ratoon Rice Fields Based on SAR Time Series and Phenology Data in Cloudy Regions. Remote Sens. 2024, 16, 2703. https://doi.org/10.3390/rs16152703
Li Y, Zhao R, Wang Y. Mapping Ratoon Rice Fields Based on SAR Time Series and Phenology Data in Cloudy Regions. Remote Sensing. 2024; 16(15):2703. https://doi.org/10.3390/rs16152703
Chicago/Turabian StyleLi, Yuechen, Rongkun Zhao, and Yue Wang. 2024. "Mapping Ratoon Rice Fields Based on SAR Time Series and Phenology Data in Cloudy Regions" Remote Sensing 16, no. 15: 2703. https://doi.org/10.3390/rs16152703