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Abstract: Accurate identification of crop phenology timing is crucial for agriculture. While remote
sensing tracks vegetation changes, linking these to ground-measured crop growth stages remains
challenging. Existing methods offer broad overviews but fail to capture detailed phenological changes,
which can be partially related to the temporal resolution of the remote sensing datasets used. The
availability of higher-frequency observations, obtained by combining sensors and gap-filling, offers
the possibility to capture more subtle changes in crop development, some of which can be relevant
for management decisions. One such dataset is Planet Fusion, daily analysis-ready data obtained by
integrating PlanetScope imagery with public satellite sensor sources such as Sentinel-2 and Landsat.
This study introduces a novel method utilizing Dynamic Time Warping applied to Planet Fusion
imagery for maize phenology detection, to evaluate its effectiveness across 70 micro-stages. Unlike
singular template approaches, this method preserves critical data patterns, enhancing prediction
accuracy and mitigating labeling issues. During the experiments, eight commonly employed spectral
indices were investigated as inputs. The method achieves high prediction accuracy, with 90% of
predictions falling within a 10-day error margin, evaluated based on over 3200 observations from
208 fields. To understand the potential advantage of Planet Fusion, a comparative analysis was
performed using Harmonized Landsat Sentinel-2 data. Planet Fusion outperforms Harmonized
Landsat Sentinel-2, with significant improvements observed in key phenological stages such as V4,
R1, and late R5. Finally, this study showcases the method’s transferability across continents and years,
although additional field data are required for further validation.

Keywords: maize; crop phenology; Planet Fusion; DTW; Harmonized Landsat Sentinel; growth stage;
micro-stage

1. Introduction

Precise and accurate definition of the timing of crop phenology is of vital importance
for agriculture. Spectral information collected by remote sensing satellites is readily used
to track seasonal patterns and changes in vegetation greenness. Establishing a relationship
between this spectral information and crop phenology can allow for assessment of crop
development and growth dynamics across agricultural landscapes. The spectral reflectance
of the plant canopy varies depending on vegetation characteristics. As crops grow, they
undergo physical changes such as increased leaf area, flowering, or higher chlorophyll
content, which are detectable in remotely sensed data [1–3]. Indices such as the Normalized
Difference Vegetation Index (NDVI) are sensitive to theses changes, reflecting the changes
in plant characteristics. Analyzing these spectral changes can provide insights into crop
growth and conditions, and through this, support crop monitoring and management.

However, linking these remote sensing observations with crop growth stages in a
meaningful way for agricultural practitioners is often challenging [1–3]. Many existing
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phenology detection approaches using thresholds, derivatives or trend information offer
only a broad overview of phenology (e.g., green up) or focus on stages with distinct features
(e.g., rape flowering) [4]. Thresholding identifies phenological events by predefined value
limits on vegetation indices (e.g., [5–10]), while a derivative approach captures rapid
changes or the shape of a time series which indicate certain phenological transitions
(e.g., [11–13]). Trend analysis monitors features like slope to assess crop development
over time (e.g., [14–16]). Although these approaches can correlate with growth scales
(e.g., BBCH), there is a gap between remotely observed transitions in e.g., time series of
vegetation indices such as NDVI, and ground-observed phenological changes identifiable
on a growth scale [17]. The inability of these approaches to capture these finer in situ
phenological growth stage changes (micro-stages) limits their practical application for
growers [1,2]. To enhance the usability of remote sensing for agricultural applications, it
is imperative that concurrent growth scale stages are identifiable at the field level or even
sub-field level in the case of heterogeneous growing conditions.

In the past, image frequency and cloud cover were often limiting factors in the de-
tection of crop growth stages [1]. The advent of harmonized analysis-ready data, at daily
or near-daily frequencies, has been shown to facilitate phenological growth stage clas-
sification with high precision to a ground-measured growth scale useful for agronomic
applications [18–20]. The combination of sensors to increase temporal frequency and spatial
accuracy for detecting key phenological stages is especially promising, as shown by [6,11].
High-frequency data provide more continuous monitoring of changes in crop growth also
during the season that could be missed with less frequent observations. This high temporal
resolution allows for the detection of incremental changes and short-term phenomena,
enabling more detailed monitoring of crop growth at a finer scale. However, the majority
of these studies work only in the spatial domain, using machine learning techniques to
classify single images to a growth stage [20]. There is potentially further information in the
temporal domain that is unused by these approaches. These high cadence time series have
yet to be fully exploited for the monitoring of phenological micro-stages.

Obtaining a large volume of high-quality micro-stage labels with high variability (e.g.,
covering many regions and years) at the field level is a challenge [21–23]. Available datasets
are often coarse, recorded at the macro level and not for specific fields, or dense but highly
localized on a small number of fields. This lack of quality ground truth labels precludes
the use of complex deep or machine learning approaches on satellite data. Studies have
shown that Dynamic Time Warping (DTW) can achieve high accuracy with limited training
data and is robust in using phenological changes in a time series to classify vegetation
features (e.g., crop type and forest type) [24]. DTW uses templates as a reference pattern;
unseen sequences are compared to these templates and classified based on similarity [25].
In agriculture, DTW is predominantly used in crop type classification, [26,27] but has
more recently been used for crop growth stage identification tasks. Zhao et al. used
Time-Weighted DTW to identify limited growth stages (e.g., green-up, heading, maturity)
with distinct characteristics at a regional scale from MODIS NDVI data for winter wheat
in China [28]. Similarly, Ye et al. used Derivate DTW to detect principal growth stages
from a ground-based scale (BBCH macro-stages) on a limited number of corn fields from
Sentinel-2 data [29].

These studies generate a reference template by averaging NDVI times series. This
approach could have a smoothing effect on the time series, removing important features.
Additionally vegetation indices other than NDVI may carry useful information for some
growth stages. We have noticed that some macro-stages can span several weeks, depending
on weather and growing conditions, making it challenging for DTW to accurately match
observations at the beginning and end of these stages. The potential of DTW to identify crop
growth at micro-stage precision remains unexplored. DTW combined with higher-cadence,
gap-filled imagery has the potential to deliver these finer measurements of phenological
change. Finally, the robustness of the approach to unseen geographies is also yet to be
assessed. Most studies are limited to a very small number of fields [29].
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To address these gaps and advance the field, our aims are as follows:

• Compare various template selection strategies and propose the use of multiple field
observations during the detection of the phenological stage.

• Identify and delineate 70 micro-stages of maize growth using a comprehensive dataset
comprising over 200 fields and 3200 observations.

• Explore the effectiveness of different vegetation indices and image bands for accurate
growth stage identification.

• Evaluate the performance of algorithms using near-daily-temporal-resolution harmo-
nized data obtained from two datasets which combine different sensors: Planet Fusion
(PF) and Harmonized Landsat Sentinel-2 (HLS).

• Assess the generalizability and effectiveness of the proposed method in a second,
distinct geographical region, thus expanding the scope of applicability beyond the
initial study areas.

2. Datasets and Preprocessing
2.1. Remote Sensing Dataset

The utility of two sources of high-temporal-resolution remote sensing data products
for crop micro-stage detection was compared.

2.1.1. Planet Fusion (PF)

PF is an analysis-ready remote sensing data product of spectrally harmonized and gap-
filled imagery designed for continuous monitoring [30]. The PF CubeSat-Enabled Spatio-
Temporal Enhancement Method algorithm employs rigorous radiometric calibration and
fusion techniques to produce a time series of imagery at the high spatial (three meter) and
temporal resolution (near-daily) of the PlanetScope constellation, but with the radiometric
consistency of Sentinel-2, Landsat 8 and MODIS [31]. An advanced gap-filling approach is
then applied to fill data missing due to cloud masking or lack of acquisition. Unavailable
pixels are filled based on local observations from previous years as well as proximate
observations in the prediction year. The result is daily, cloud-free surface reflectance
imagery at a three-meter resolution across four spectral bands (blue, green, red and near-
infrared (NIR)) produced on a 24 × 24 km UTM grid. For more information on Planet
Fusion data generation and gap-filling, see [30]. Field median values were then extracted
for each band day to produce field specific time series at daily frequency. From these band
values, field median vegetation indices were also generated.

2.1.2. Harmonized Landsat and Sentinel-2 (HLS)

The HLS project is a NASA initiative to produce high-frequency analysis-ready sur-
face reflectance data from the Operational Land Imager onboard Landsat 8–9 and the
Multi-Spectral Instrument onboard Sentinel-2 [32]. The HLS processing chain eliminates
differences in surface reflectance due to instrumentation. The top-of-atmosphere data from
each satellite undergo atmospheric correction, cloud masking, geometric alignment and
radiometric harmonization, to adjust for spectral bandpass differences. The harmonized
data allow for global land observations every two to three days with a spatial resolution
of 30 m. The imagery is then tiled according to the Sentinel-2 modified Military Grid
Reference System. Data from each date can be combined into a time series for analysis.

The EO-learn library and Sentinel Hub were used to construct time series data
cubes consisting of majority cloud-free acquisitions (less than 75 percent cloud or cloud
shadow) [33,34]. To ensure consistent temporal frequency between bands and spectral
consistency with PF, only the four bands common to Landsat, Sentinel-2 and PF (blue, green,
red and NIR) were included. To ensure a clean time series, field median values were then
extracted from acquisitions where no clouds or cloud shadows were recorded within the
field geometry. This produced a time series of field-specific band medians at variable tem-
poral resolutions. This was then interpolated to a daily frequency by employing the Akima
interpolation algorithm [35], which utilized piecewise cubic polynomials to smoothly inter-
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polate the data within each spectral band. The Akima interpolation algorithm was selected
because it has an open-source implementation, results in a smoothed natural curve and has
previously been used to interpolate missing values in satellite imagery [36].

2.2. Maize Phenology Observation Datasets

During this study, two different observation datasets were used. The bigger dataset,
provided by CropQuest Inc. for fields in Kansas State (US), was used to build the algorithm.
To test it on other areas, we used observations for single fields available through the
PIAF system for field trials in Germany (Planung, Information und Auswertung von
Feldversuchen). The following sections provide more details about each dataset and
applied preprocessing.

2.2.1. Kansas Dataset

The original dataset, which was described in Nieto et al.’s study [20], covers geolocated
fields across several states in the central region of the United States. Initially compiled
over five years (2013–2017), the dataset resulted from repeated visits to each farmer’s field
during the growing season, with a specific focus on documenting maize crop phenology
progress. In this study, we had access to observations for maize fields from 2017, along
with field boundaries extracted following the methodology proposed by [37] (Figure 1).

Figure 1. Location of fields contained in the Kansas State dataset and location of Planet Fusion tiles.
(A) Location of sites in Kansas in the US. (B) Area of Planet Fusion and Harmonized Landsat Sentinel
tiles for both sites in the Kansas dataset. (C) Western site field boundaries overlaid on Planet Fusion
tiles and imagery. (D) Eastern site filed boundaries overlaid on Planet Fusion tiles and imagery.

The average field area was 0.5 km2, the smallest field was 0.004 km2 and the largest
was 23 km2. Each field underwent approximately five visits during the season, with the
frequency varying across all fields; the minimum number of visits was 1 and the maximum
was 33. It includes geolocated fields from both regions (south-west and south-central
Kansas), crop phenology measurements for each field (observed micro-stages) and the
respective date of data collection. Phenology stages followed the scale described in Figure 2,
based on [38].
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Figure 2. Maize phenology stages used during ground truth data collection in Kansas State. The scale
follows that of Ciampitti et al. [38].

We applied a two-step data cleaning process to the provided field boundaries in order
to reduce the potential problems which could negatively impact template creation. In the
first step, we calculated the NDVI times series of the fields to apply a clustering using
K-Means DTW distance metric, with nine centres. After that, we manually checked and
removed clusters of outliers such as those induced by, e.g., wrong crop labels, erroneous
field boundaries or partial image coverage. Higher NDVI values before and after the main
crop are most likely other crops growing before or after the main crop (cover crops or herbs
regrowing after harvest). As a result, from the initial 270 fields, we retained 208 fields for
further analysis (Figure 3).

Figure 3. Individual field-specific NDVI time series for all fields in the Kansas dataset before (left)
and after cleaning (right).

In the second step, we further analyzed the phenology stage observations recorded for
these fields, and found that in some cases, stages do not follow chronological order. For ex-
ample, 3-leaf stages are recorded after 5-leaf stages. We assume the reasons are incorrect
manual labeling, intra-field variability, and variation in the points at which the observations
were recorded during the season. We aimed to reduce these types of problems by initially
identifying misordered observations through a script and subsequently performing manual
verification prior to their removal. After the cleaning steps, we had 3714 observations from
208 fields. The number of unique fields for each micro-stage is given in Figure 4. In our
study, we excluded harvest and all stages before Emerging (VE). The latter are not expected
to be detectable by optical imagery, since they develop underground, while harvested
fields were beyond the scope of this study. To draw meaningful conclusions, we opted to
focus on micro-stages with substantial data presence; specifically, those with more than
five recorded observations. This further reduced the dataset to 3235 observations.

Table 1 provides the traceability between micro-stages and their corresponding macro-
stages [39]. Our aim was to detect the micro-stages illustrated in Figure 4. Additionally,
as we were comparing the performance of our algorithm on the PIAF dataset explained in
the next section, we provide the matched BBCH codes for these macro-stages.
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Figure 4. Number of observations in the Kansas dataset per micro- and macro-stage in chronological
order, indication of pre-vegetative, vegetative and reproductive stages. In our study, we only consider
vegetative stages starting from 1-leaf and reproductive stages.

Table 1. Phenology stages for maize as used in the Kansas and PIAF datasets.

Macro-Stage Corresponding
BBCH [39]

Starting
Micro-Stage

Ending
Micro-Stage

Number of
Micro-Stage

VE BBCH10 Emerging Seedling—1 Leaf 4

V1 BBCH11 1-leaf 1–2-leaf 2

V2 BBCH12 2-leaf 2–3-leaf 2

V3 BBCH13 3-leaf 3–4-leaf 2

V4 BBCH14 4 leaf 4–5-leaf 2

V5 BBCH15 5-leaf 5–6-leaf 2

V6 BBCH16 6-leaf 6–7-leaf 2

V7 BBCH17 7-leaf 7–8-leaf 2

V8 BBCH18 8-leaf 8–9-leaf 2

V9 BBCH19 9-leaf 9–10-leaf 2

V10 BBCH31 10-leaf 10–11-leaf 2

V11 N/A 11-leaf 11–12-leaf 2

V12 N/A 12-leaf 12–13-leaf 2

V13 N/A 13-leaf 13–14-leaf 2

V14 N/A 14-leaf 14–15-leaf 2

V15 N/A 15-leaf 15–16-leaf 2

V16 N/A 16-leaf 16-leaf—Tassel 3

VT BBCH59 Tassel Silk—Brown Silk 3

R1 BBCH63 Silking Silking—Blister 3

R2 BBCH71 Blister Blister—Milk 2

R3 BBCH75 Milk Milk—Dough 2

R4 BBCH85 Dough Dough—Early Dent 4

R5 BBCH86 Early Dent Black Layer 19

R6 BBCH87 Maturity Maturity 1
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2.2.2. PIAF Dataset

PIAF is the standard program for official plant protection products and variety trials
in Germany [40]. It recorded BBCH phenological stage information at coordinate locations
for the period 2018–2021. These sites were visited at variable frequencies and durations,
but most typically early in the season. The BBCH stage for the location was recorded as a
minimum, maximum, and average value; only the average values were used for analysis.
Observations of growth stages which were not in the expected chronological order were
removed. A subset of these data totaling seven maize fields was made available to us by
the Julius Kühn Institute, Germany, in the frame of the NaLamKI project. Field boundary
geometries for these fields were sourced from publicly available user-submitted datasets
that form the basis of official EU reporting (Integrated Administration and Control System).
Figure 5 shows the histogram of BBCH codes for 22 observations, which can be mapped to
macro-stages available in the KSU dataset [39].

Figure 5. Histogram of BBCH phases of the observations in the PIAF dataset.

3. Methodology
3.1. Preparation of the Time Series

Unlike most of the literature studies, we aimed to understand the potential of different
spectral features selected or computed from the imagery for the phenology detection prob-
lem. Therefore, this paper focused on the individual spectral bands (green, red, and NIR)
that are most sensitive to vegetation dynamics, along with the most commonly used spectral
indices including Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), 2-band enhanced vegetation index (EVI2) , Kernel Normalized Difference Vege-
tation Index (kNDVI), Modified Chlorophyll Absorption Ratio Index (MCARI), Chlorophyll
Vegetation Index (CVI) and Normalized Difference Water Index (NDWI). These indices
were chosen for their proven effectiveness in assessing various aspects of vegetation, such
as chlorophyll content, photosynthetic activity, structural attributes and water content,
providing comprehensive insights into the physiological status of the vegetation.

The formulas of the selected indices are given in Table 2.

Table 2. Vegetation indices.

Index Formula Vegetation Property

NDVI (NIR − Red)/(NIR + Red) Productivity

EVI [41] 2.5 × (NIR − Red)/((NIR + 6 × Red − 7.5 ×
Blue) + 1) Greenness

EVI2 [42] 2.5 × (NIR − Red)/(NIR + 2.4 × Red + 1) Greenness
kNDVI [43] tanh(((NIR − Red)/(NIR + Red)) 2) Productivity

MCARI [44] (1.2 × (2.5 × (NIR − Red) − 1.3 × (NIR −
Green))) Leaf chlorophyll concentration

CVI [45] NIR × (Red/(Green2)) Leaf chlorophyll content
NDWI [46] (Green − NIR)/(Green + NIR) Water content

3.2. Dynamic Time Warping with Weighted Average

In this study, we aimed to develop an algorithm to detect the micro-stages given in
Table 1. For a target field, t to detect each micro-stage, the algorithm finds the available
observations and related fields in the training dataset. The time series of these fields are
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used as our templates, S = {s1, s2, . . . , sn}. To achieve our goal, we leverage DTW for
crop phenology detection. DTW is a method used to measure the similarity between two
time series denoted as t and si, which may fluctuate in time or intensity, such as the NDVI
values. Our DTW approach employs the Mori step pattern [47] for managing intricate time
relationships, aiding in capturing subtle changes in phenological transitions. Additionally,
the Itakura parallelogram [48] windowing function enables the handling of time warping
in signals exhibiting non-linear temporal distortions.

The process commences with the construction of a cost matrix, which encapsulates
the pairwise distances between all points in t and si. Incorporating the specified win-
dowing function confines possible alignments. The Mori step pattern dictates permissible
movements during alignment, thus influencing the alignment path within the cost matrix.
Subsequently, we calculate the alignment distance, Dtsi , representing the overall dissimilar-
ity between t and si after accounting for temporal variations and intensity disparities.

Following the computation of the cost matrix, the subsequent step entails determining
the optimal alignment path. This is accomplished through backtracking, wherein the path
with the minimum accumulated cost is traced from the bottom-right corner of the matrix
to its top-left corner. Along this path, matched days of year (DOY) between t and si are
identified. It is assumed that the function Mi() returns the matched DOY on t for a selected
point on si. Thus, for an observation, Op

si , which belongs to the selected micro-stage, p, we
can identify the matched DOY in the target field as Mi(O

p
si ).

After measuring the distances and matching the points for each template in S, the al-
gorithm calculates the confidence score Ctsi

for each template as follows:

Ctsi
= 1 −

√
Dtsi√

max(Dts)

Then, it calculates weights for each prediction based on these normalized confidence
scores, reflecting their relative importance:

Wtsi
=

Ctsi

∑n
k=1 Ctsk

Thus, for each micro-stage, the algorithm uses the available fields in the training set
which have an observation for the selected stage.

y
′
p = ∑ Wtsi

· Mi(O
p
si )

The overall workflow of the proposed method is summarized in Figure 6.

Figure 6. Flow chart of data preprocessing and macro-stage identification with DTW.
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4. Experiments

The algorithm was developed and tested on the Kansas dataset. For the evaluation of
the method on unseen maize fields in other regions, we used the PIAF dataset. This was
the only dataset available for another geographical region and years with the limitation
that the number of maize fields was very small.

Given the restricted number of observations for each phenological stage, we imple-
mented leave-one-out cross-validation for all experiments with the Kansas dataset. This
involved systematically excluding the target observation along with related observations
from the same field to construct the training set. Templates for DTW matching were then
derived from the remaining observations in the training set. DTW was subsequently ap-
plied to align the target field with each template, facilitating the detection of micro-stages.
This rigorous approach ensured a comprehensive assessment of our method’s capability to
accurately identify phenological shifts within the target field.

4.1. Performance Metrics

In order to measure the proposed model, we computed the three statistical measures
mean absolute error (MAE), median absolute error (MedAE) and root mean square error
(RMSE) for each micro-stage:

MAE =
1
n

n

∑
i=1

|y′
p − yp|,

MedAE = median(|y′
p − yp|)

and

RMSE =

√
1
n

n

∑
i=1

(y′
p − yp)2,

where n is the number of samples, y
′
p is the prediction and yp is the ground truth (as DOY).

As mentioned above, each field underwent approximately five visits during the season.
Therefore, a reported observation does not necessarily signify the beginning of that stage.
Most likely, the crop in the field was at the stage on the preceding and succeeding days. It is
also important to consider that the same micro-stage could develop at different rates within
a few days, depending on specific growing conditions and the particular growth stage of
the crop. Hence, achieving a 0-day error is not a practical expectation, and predictions with
differences of around one to five days are plausibly accurate.

4.2. Comparison of DTW Methods

To assess the efficacy of our proposed weighted average approach, we conducted a
comparative study with two alternative methods using DTW on the PF-NDVI time series.

Method 1—Average Time Series: In this method, we computed the average time series
of the training fields and employed it as a reference during the DTW matching process. This
approach aimed to provide a baseline since it was used in several studies [28,49] (Figure 7).

Figure 7. Planet Fusion NDVI time series for individual fields and average of all fields.
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Method 2—Single Similar Field: Unlike the conventional approach of utilizing all fields
for comparison, we experimented with selecting the most similar field from the training
dataset based on the distance metric mentioned earlier. Subsequently, DTW matching was
performed exclusively using this selected field:

y
′
p = Mj(O

p
sj), where j = arg max

i
(Wtsi

).

Method 3—Weighted Average (Proposed Method): As described in the Methodology
section, we proposed a method that applies DTW between the target field and each indi-
vidual field in the training dataset. After this, we used a weighted averaging approach to
calculate the DOY of the selected micro-stage. The weights were determined based on the
confidence scores obtained from the distance values.

For each method, we evaluated its performance in detecting micro-stages using PF-
NDVI time series (median per field). Comparative analysis was conducted to discern
the strengths and limitations of the weighted average approach in contrast to the simpler
alternatives. Figure 8 shows the averages of the mean and median absolute errors for the
70 micro-stages. Mean and median absolute errors are smaller for our proposed method.

Figure 8. Boxplot of median absolute errors (MedAEs) and mean absolute errors (MAEs) in days
across 70 micro-stages for PF-NDVI, comparing three different methods.

In addition to the overall performance metrics calculated earlier, our goal was to
determine the error for each observation and tally the number of observations detected
with errors of up to 1, 5, 10 and 15 days. It is crucial to note that field observers did not visit
the fields daily. However, lacking this information, we opted to compute the difference
between our predicted and observed days as the error (see Table 3).

Table 3. Number (percentage) of observations detected with maximum errors of 1, 5, 10 and 15 days.

Max Error

Algorithm 1 Day 5 Day 10 Day 15 Day

Method 1 486 (15%) 1628 (50%) 2550 (79%) 3029 (94%)

Method 2 652 (20%) 1832 (57%) 2645 (82%) 2994 (93%)

Method 3 (proposed) 636 (20%) 2023 (63%) 2900 (90%) 3136 (97%)

Our proposed method successfully identified 90% of the observations within a 10-day
error margin. In contrast, method 1 only managed to recognize 79% of the observations
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within the same error range. Upon examining the bottom 3% of observations, where the
error exceeded 15 days, we noted that a significant amount of these observations (49 out of
97) were associated with micro-stages of R5. This higher error rate during the R5 stage can
likely be attributed to the subtle physiological changes that occur as the kernels transition
from Early Dent to Black Layer, which are not easily distinguishable using remote sensing
data. The other 48 were associated with the VE (emergence to seedling) and R4 (dough
micro-stages). The same changes during VE and R4 are most likely too subtle to be picked
up by the optical signal.

4.3. Performance of Spectral Indices and Bands

In the second experiment, our focus shifted to the input data. We computed various
spectral indices derived from PF and used the bands most sensitive to vegetation dynamics
(green, red and NIR), as explained in Section 3.1, as input to our proposed DTW method
(method 3). For each input type, we conducted experiments separately and evaluated
their performance across different phenological stages. Figure 9 shows the performance for
NDVI, MCARI, CVI and NDWI indices over all micro-stages. Comparative analysis was
conducted to assess the effectiveness of each input type in accurately detecting phenological
micro-stages within the target field (RSME values for the selected micro-stages are given
in Appendix A Tables A1 and A3, while the MedAE values are given in Appendix A
Tables A2 and A4).

Figure 9. Variability of the RMSE in days for the selected micro-stages across different indices.

No single vegetation index outperformed the others across all micro-stages. However,
we observed that NDVI and MCARI are the most reliable input types for these 70 micro-
stages. For both of them, the average median errors for all stages was around 4 days. For
58 micro-stages, the median error difference was less than 1 day for these two indices.
Table 4 shows the performance of the proposed method based on NDVI and MCARI
indices for a subset of micro-stages. We observed that MCARI provides better results for
the R1 and VT stages. Although CVI has the smallest error from V10 to V16, the RMSE
through the reproductive stages and early in the season (V1–V9) is higher than NDVI
and MCARI. NDWI always has higher RMSE than at least one other index, except in the
Blister—Milk micro-stage. DTW applied to individual spectral bands did not show better
performances overall than when applied to spectral indices, and so the spectral bands were
discarded from any further analysis. For single-variable methods like DTW, spectral indices
seem to be better suited as they combine two or more wavelengths (bands) to enhance the
information content of the underlying dataset.
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Table 4. Performance of the proposed method based on NDVI and MCARI for some selected stages
using PF. The bold font shows the best performance for each stage. Values for all phases are provided
in Appendix A Tables A1–A4.

Phenology Stages RMSE (Days) MedAE (Days) MAE (Days)
Macro Micro NDVI MCARI NDVI MCARI NDVI MCARI

V1 1-leaf 7.6 6.7 6.0 4.0 6.2 5.6
V4 4-leaf 4.6 4.3 3.0 3.0 5.5 4.3
V4 4–5-leaf 4.6 4.6 3.0 2.5 3.3 3.3
V6 6-leaf 4.8 4.8 2.0 2.0 3.2 3.2
VT Silk—Brown Silk 6.8 3.9 5.5 3.0 5.6 3.1
VT Tassel 7.2 5.1 6.0 4.0 6.5 4.3
VT Tassel—Silk 7.2 3.9 5.0 3.0 5.7 3.3
R1 Pollen Shed 6.9 5.8 5.0 3.0 5.5 4.3
R1 Silking—Blister 5.6 5.1 5.0 2.0 4.6 3.8
R5 2/3 Milk Line 10.7 9.4 6.0 4.0 7.8 6.9
R5 Early–Mid Dent 6.3 7.8 4.5 6.0 4.8 6.4
R5 Early Dent 5.6 7.0 4.0 6.0 4.6 6.0
R5 Full Dent 7.3 8.7 5.0 6.0 5.8 6.6
R5 Mid–Full Dent 7.4 8.5 4.0 6.0 5.4 6.9

4.4. Comparison of Planet Fusion and HLS

We compared PF to publicly available HLS. For each data source, we evaluated the
DTW performance using NDVI and MCARI, as detailed in the preceding section. Figure 10
illustrates the differences in the HLS and PF NDVI time series and detected micro-stages
for two example fields. We compared the RMSE performance of the best PF-based DTW
solution with that of the best HLS-based DTW solution for each micro-stage. For PF, MCARI
performs the best overall, while for HLS, NDVI performs the best overall. PF’s average
RMSE values are 2.5 days lower than HLS’s average RMSE values over all 70 micro-stages
(RSME values for the selected micro-stages are given in Appendix A Tables A5 and A6).
We observed the biggest differences for V2, R1 and early R5.

Figure 10. NDVI time series of PF and HLS with predicted phenology dates for randomly selected
micro-stages on two randomly selected fields.

Figure 11 illustrates the comparison between the best PF and HLS DTW solutions for
two example macro-stages V4 and R1. During V4–V6 is when nitrogen fertilizer is applied
during the growing season (in small doses and in addition to pre-planting) with V6 marking
the beginning of rapid growth and uptakes of larger amounts of water and nutrients [50].
Growing conditions around flowering (R1 silking) are important for determining yield,
and water stress or shading in this phase negatively affects yield [51]. The orange color
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represents the observed and predicted days for each observation in the V4 stage, which
includes the 4-leaf and 4–5 leaf micro-stages. The pink color indicates the observed and
predicted days for each observation in the R1 flowering stage (Figure 11b). When we count
the number of micro-stages where at least 80% of the samples were detected within a
five-day error margin, HLS achieved this accuracy only for the 5–6-leaf stage, with a rate
of 80.4%. In contrast, the PF-based method detected at least 80% of the samples within
a five-day error margin for all micro-stages from ‘3–4-leaf’ to ‘7–8-leaf’, with the highest
sample ratio being 86% for the ‘5–6-leaf’ stage. HLS had its worst performance at the
‘seedling’ stage, where only 59% of the samples were detected within a 10-day error margin.
The PF method’s lowest ratio was 67%, observed at the ‘16–17-leaf’ stage within a 10-day
error margin.

We observed similar patterns for the rest of the phenological stages. Figure 12 shows
a one-to-one comparison for macro-stages V8, R4 and R5. For both data sources (PF and
HLS), we picked the index with the best performance, as mentioned above. As mentioned
in Section 4.2, the R5 macro-stage has a higher error margin compared to other stages.

(a) (b)

Figure 11. Comparison of the best PF and HLS DTW solutions for two macro-stages (comparison
between observation DOY and predicted DOY). Orange and pink colors represent V4 and R1 macro-
stages, respectively. Solid lines, dotted lines and dashed lines represent zero error, 5-day buffer
and 10-day buffer. (a) Stage: V4 and R1; data: PF; index: MCARI. (b) Stage: V4 and R1; data: HLS;
index: NDVI.

(a) (b)

(c) (d)

Figure 12. Cont.
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(e) (f)

Figure 12. Comparison of the best PF and HLS DTW solutions for three macro-stages (comparison
between observation DOY and predicted DOY). Each row represents a different macro-stage where the
left images are PF-based and the right ones are HLS-based predictions. Solid lines, dotted lines and
dashed lines represent zero error, 5-day buffer and 10-day buffer. (a) Stage: R4; data: PF; index: MCARI.
(b) Stage: R4; data: HLS; index: NDVI. (c) Stage: R5; data: PF, Index: MCARI. (d) Stage: R5; data: HLS;
index: NDVI. (e) Stage: V8; data: PF; index: MCARI. (f) Stage: V8; data: HLS; index: MCARI.

4.5. Visual Validation for PIAF Fields

It is essential to assess the robustness of the proposed model against temporal and spa-
tial variability. To accomplish this, we utilized the PIAF dataset, as outlined in Section 2.2.2.
All fields were located in Germany, with observation years being either 2018 or 2019. We
used all Kansas fields as templates and applied our model to these seven fields. Due to the
limited number of fields and observations (22 observations), we could only visually validate
the model and conclude only on the overall performance. Additionally, the phenology
dataset employed different categorizations of phenology stages following the BBCH scale.
Therefore, our aim was to detect macro-stages corresponding to BBCH stages (as shown in
Table 1). Figure 13 displays the BBCH stage of an observation and the detection results of
the corresponding US-scale macro-stages for four different fields. If the observed macro-
stage falls within the detected micro-stages (e.g., Figure 13d), we consider the macro-stage
prediction correct. Otherwise, we calculate the distance between the observation and the
nearest prediction of the related micro-stages. In total, 9 out of the 22 observations (41%)
were error-free. The average error for all observations was 3.6 days. Similar to our KSU
dataset results, most predictions were within a 10-day buffer compared to the ground truth.

(a) (b)

(c) (d)

Figure 13. Outputs of the proposed method for four fields and macro-stages in Germany (a–d).
The dashed line indicates the observation in the PIAF dataset with the BBCH code, while ‘x‘ marks
represent the detected related micro-stages. Each vertical line represents one week.
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5. Discussion and Conclusions

In this study, we proposed a novel method for maize phenology detection using
Dynamic Time Warping (DTW) applied to daily time series of optical imagery. We compared
the novel analysis-ready PF data and HLS data, limiting the analysis to the spectral bands
both datasets had in common (R, G, B, NIR). Both were processed using daily datasets to
evaluate the possibility of capturing subtle changes in crop development. We evaluated the
model’s performance across 70 micro-stages, leveraging a dataset comprising more than
200 fields and 3235 observations. Our DTW strategy aligns target fields with templates,
calculates distances between time series and derives confidence scores for predictions.
Unlike methods relying on a singular template [28], our approach preserves crucial patterns
in the data. We highlight the significance of individual observations in prediction accuracy
and reduce the impact of potential labeling issues. In addition to examining individual
bands, we investigated eight commonly employed indices as inputs. Our observations
revealed that NDVI and MCARI indices show particular promise. Across all stages, for PF,
the average median errors for both indices were approximately 4 days. Notably, we
found that MCARI yields comparatively superior results, especially for the VT and R1
stages, at the transition between vegetative and reproductive stages and during the peak of
biomass. This could be due to NDVI and MCARI more closely representing the physical
characteristics of each maize growth stage. Both VI have been shown to have a strong
correlation with maize canopy cover changes [52] and NDVI has been shown to strongly
relate to biomass accumulation in the V1–V10 macro-stages [53]. Although the EVI and
EVI2 also measure these features, NDVI has been shown to better characterize the start-
of-season growth for maize [54]. In the reproductive growth stages, MCARI has been
demonstrated to have a stronger relationship with chlorophyll content than NDVI and
CVI [55], possibly due to the saturation of NDVI at high biomass levels and CVI being
largely driven by greenness. CVI also performed better in the V10–V16 stages due to
greenness and saturation of NDVI. For HLS, NDVI performed better overall.

Additionally, for the best result with PF-MCARI, we observed that the difference
between observation and prediction was equal to or less than 5 days for 2025 of the
observations (65%), and 2900 (90%) of the observations had a maximum distance of 10 days.
For all micro-stages from ‘3-4-leaf’ to ‘7-8-leaf’, at least 80% of the samples were detected
within a five-day error margin, with the highest accuracy reaching 86%. Only 3% of the
overall observations had a difference of more than 15 days, with more than half of these
observations belonging to the micro-stages of R5, the last macro-stage before maturity. This
macro-stage contains the highest number of micro-stages. The performance of the proposed
method is particularly promising, considering that field observers did not visit the fields
daily. Consequently, reported observations may not accurately represent the exact initiation
of each stage. Furthermore, it is impractical and logistically challenging to compile a
dataset where phenological stages are recorded daily throughout the growing season across
multiple fields. Such an undertaking would require substantial labor and resources, which
are often not feasible. Additionally, many micro-stages are nearly imperceptible to the
naked eye, complicating accurate field observations. Therefore, expecting zero-day error
is unrealistic. Given these constraints, the fact that 97% of the provided predictions fall
within acceptable limits underscores the robustness and reliability of the proposed method.

To understand the advantages of Planet Fusion (PF), a daily gap-free, cloud-free,
harmonized analysis-ready image dataset, we compared it with the publicly available HLS
dataset. PF outperforms HLS, with significant improvements observed in key phenological
stages like V4, R1 and late R5. PF is analysis-ready data supplied at a daily resolution,
whereas HLS needed to undergo interpolation to produce a daily time series. The selected
interpolation approach has an impact on the time series characteristics. As different
interpolation approaches were not compared as part of this study, it is possible that the
performance of HLS could be improved with a different interpolation algorithm or a
more complex gap-filling approach using previous years and proximate pixel values, like
PF processing. However, it seems probable that the largest impact on performance is
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attributable to the difference in raw image volume. Across the year 2017 in the Kansas
dataset, for each field, an average of 110.99 PlanetScope observations formed the basis
of PF for gap-filling. On the other hand, an average of 44.25 HLS observations were
interpolated into a daily time series. Note that the eastern Kansas site had many cloud
days and lower data frequency. The average number of days between observations was
8.33 for HLS and 3.25 for PF. As there are more images in PF, it is more likely to have
captured changes in spectral reflectance that might indicate changes in the phenological
stage. This is exacerbated by the HLS data for 2017 including only one of the Sentinel-2
satellites until July 6th. The increased cadence of PlanetScope data as a source constellation
and the gap-filling approach of PF, which also uses signals from other sensors such as
Sentinel-2, may be the reason that phenology micro-stages can be better identified in PF.

Finally, we aimed to demonstrate the model’s transferability to different regions
and years. We used the Kansas dataset observations to detect stages in seven fields in
Germany during 2019 and 2020. The average error was 3.6 days for the 22 observations.
The results show its potential applicability across diverse regions and years. However,
to provide statistically proven results, it is crucial to increase the number of fields from
Germany or obtain additional data from any other region. Unfortunately, phenology
observation datasets at this level of detail are very difficult to access. These detailed
datasets are not available for all regions globally, limiting the applicability of this approach
outside of North America and Europe. Our study hints at what could be achieved when
such detailed phenology datasets are combined with the latest technology in remote
sensing and machine learning. Further data are needed to validate these approaches for
regional-scale research. Remote sensing data could improve crop growth models which
are currently based on weather data only (e.g., [56,57]) and show variability in predictive
power throughout the season. While our study demonstrates the robustness and efficiency
of the DTW algorithm in detecting maize phenology stages, we did not focus on optimizing
the computational aspects of the code. For application in very large regions, further
optimization may be necessary. Additionally, the DTW method can be used in a knowledge
distillation framework, where it serves as a teacher model to train a deep learning-based
solution, thereby enhancing scalability and performance.

As a direction for future research, we aim to expand the scope of our study by redefin-
ing the problem. Instead of identifying a single day of year (DOY) for each micro-stage,
we intend to approach it as a segmentation problem, where the model predicts both the
start and end dates of each micro-stage. This adjustment will provide a more compre-
hensive understanding of the phenological dynamics. Furthermore, we intend to explore
the variations in plant growth within individual fields. Rather than relying on a single
median or mean value for a given day, we aim to leverage the entire field’s pixel data to
capture phenology variability within each field accurately. Lastly, we will explore in-season
phenology detection for fields where it is known that the planted crop is maize. Our cur-
rent methodology focuses on retrospectively analyzing the entire time series to determine
the timing of each stage; although understanding historical crop phenology is crucial for
understanding long-term trends in agricultural productivity and management, there is a
growing need in various application domains to ascertain the current phenological stage for
timely decision-making. By addressing these aspects, we aim to enhance the robustness and
applicability of our model across diverse agricultural landscapes and temporal contexts.
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Appendix A

Table A1. RMSE in days for the selected vegetative micro-stages calculated for the selected indices
and bands using Planet Fusion (best values are in bold).
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VE: Emerging 7.4 8.2 8.1 7.4 8.1 7.3 7.9 8.6 7.7 10.8

VE: Emerging—Seedling 8.5 8.7 7.3 8.5 8.3 8.6 8.2 5.9 5.9 8.2

VE: Seedling 8.6 9.3 7.9 8.5 9.6 8.4 9.1 8.0 7.9 8.5

VE: Seedling—1-leaf 6.5 6.5 5.8 6.5 6.0 6.6 6.3 6.6 6.4 8.7

V1: 1-leaf 7.6 6.7 6.8 7.5 9.6 7.5 8.2 8.2 7.7 12.2

V1: 1–2-leaf 7.4 7.6 7.1 7.5 8.0 7.5 7.7 6.5 6.6 9.9

V2: 2-leaf 5.9 6.2 5.5 5.9 6.5 6.0 6.1 5.4 5.0 8.4

V2: 2–3-leaf 8.8 7.9 8.9 8.8 7.3 8.8 8.1 9.2 9.7 9.3

V3: 3-leaf 5.8 5.7 5.6 5.8 6.9 5.9 6.2 6.3 6.1 7.8

V3: 3–4-leaf 3.6 3.5 3.4 3.5 4.5 3.6 3.8 4.3 4.2 7.6

V4: 4-leaf 4.6 4.3 4.2 4.6 5.4 4.6 5.0 4.9 4.5 7.8

V4: 4–5-leaf 4.6 4.6 4.6 4.6 5.4 4.6 4.8 5.9 5.5 7.4

V5: 5-leaf 7.5 6.8 7.7 7.5 6.9 7.5 7.3 8.0 8.3 8.4

V5: 5–6-leaf 3.5 3.3 3.3 3.5 3.8 3.5 3.6 4.0 4.0 7.9

V6: 6-leaf 4.8 4.8 4.9 4.8 5.0 4.8 4.7 5.2 5.1 7.6

V6: 6–7-leaf 4.6 4.5 4.6 4.5 4.9 4.5 4.6 5.1 4.9 6.0

V7: 7-leaf 7.8 6.9 8.1 7.8 5.9 7.9 7.5 8.6 8.7 7.6

V7: 7–8-leaf 4.4 4.0 4.5 4.2 4.4 4.3 4.2 4.8 4.7 5.0

V8: 8-leaf 6.5 6.5 6.6 6.5 6.0 6.5 6.3 6.5 6.6 7.8

V8: 8–9-leaf 6.6 6.2 7.0 6.6 5.3 6.6 6.5 7.1 7.3 6.8

V9: 9-leaf 6.7 6.9 6.9 6.8 6.6 6.8 6.7 6.8 6.8 6.8

V9: 9–10-leaf 5.3 5.0 5.4 5.2 5.4 5.1 5.3 5.7 5.6 5.1

V10: 10-leaf 6.4 5.3 6.5 6.3 4.5 6.4 6.0 5.6 6.2 4.7

V11: 10–11-leaf 7.9 6.7 8.4 7.8 5.7 7.8 7.3 8.5 8.7 6.2
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Table A1. Cont.
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V11: 11-leaf 7.9 7.6 8.3 7.8 6.7 7.9 7.6 7.2 7.7 8.9

V12: 11–12-leaf 6.9 6.3 6.9 6.9 5.9 6.8 6.7 6.6 6.9 5.3

V12: 12-leaf 7.5 6.9 7.9 7.4 5.6 7.5 6.9 6.7 7.2 6.5

V12: 12–13-leaf 6.8 6.0 6.9 6.8 5.4 6.8 6.4 6.4 6.7 5.8

V13: 13-leaf 12.2 10.3 13.4 12.1 7.8 12.4 11.5 12.7 13.5 7.0

V13: 13–14-leaf 6.3 5.8 6.2 6.2 5.6 6.2 5.9 6.4 6.4 5.3

V14: 14–15-leaf 6.8 5.3 7.2 6.8 5.0 6.8 6.2 6.4 6.4 5.3

V15: 15–16-leaf 6.0 5.5 6.1 6.0 5.2 6.2 6.3 5.5 5.7 5.4

V16: 16-leaf—Tassel 7.7 6.9 8.8 7.7 5.9 7.6 7.0 8.5 9.2 6.3

VT: Tassel 7.2 5.1 6.9 7.2 5.9 7.1 6.9 7.1 6.6 6.0

VT: Tassel—Silk 7.2 3.9 7.1 7.2 4.4 7.2 6.3 6.0 6.9 4.3

VT: Silk—Brown Silk 6.8 3.9 6.9 6.8 6.1 6.7 6.0 7.6 8.1 6.1

Table A2. MedAE in days for the selected vegetative micro-stages calculated for the selected indices
and bands using Planet Fusion (best values are in bold).
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VE: Emerging 4.0 6.0 5.5 4.0 5.5 4.0 5.0 6.5 5.0 7.5

VE: Emerging—Seedling 5.0 4.0 5.0 5.5 6.0 6.0 5.5 4.0 4.5 4.0

VE: Seedling 6.0 6.0 6.0 6.0 8.0 6.0 7.0 6.0 5.0 4.0

VE: Seedling—1-leaf 4.0 5.0 4.0 4.0 4.0 4.0 5.0 5.0 5.0 7.0

V1: 1-leaf 6.0 4.0 5.0 6.0 5.0 6.0 5.0 3.0 4.0 5.0

V1: 1–2-leaf 5.0 4.0 4.0 5.0 5.0 5.0 5.0 3.0 4.0 6.0

V2: 2-leaf 3.5 3.0 3.0 3.5 3.5 3.5 3.5 3.0 2.5 5.0

V2: 2–3-leaf 3.0 3.0 2.0 3.0 2.0 2.5 3.0 3.0 3.0 5.0

V3: 3-leaf 3.5 3.0 3.0 3.0 4.0 3.5 4.0 3.5 3.0 5.0

V3: 3–4-leaf 2.0 2.0 2.0 2.0 2.5 2.0 2.5 3.0 2.0 3.0

V4: 4-leaf 3.0 3.0 3.0 3.0 4.0 3.0 4.0 3.0 3.0 4.0

V4: 4–5-leaf 3.0 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0

V5: 5-leaf 3.0 2.0 3.0 3.0 3.5 3.0 3.0 3.0 3.0 5.0

V5: 5–6-leaf 3.0 2.0 2.0 3.0 3.0 3.0 2.0 3.0 3.0 4.0

V6: 6-leaf 2.0 2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 4.0

V6: 6–7-leaf 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0

V7: 7-leaf 3.0 3.0 3.0 3.0 3.5 3.0 3.0 2.0 2.0 4.0

V7: 7–8-leaf 3.0 2.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 3.0

V8: 8-leaf 4.0 4.0 4.0 4.0 3.5 4.0 4.0 4.0 4.0 3.0

V8: 8–9-leaf 3.0 3.5 3.0 3.0 3.5 3.0 3.0 3.0 3.0 3.5
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Table A2. Cont.
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V9: 9-leaf 3.0 3.0 2.0 3.0 4.0 3.0 3.0 3.0 3.0 4.0

V9: 9–10-leaf 4.0 3.0 4.0 4.0 3.5 4.0 4.0 4.0 4.0 3.0

V10: 10-leaf 3.0 3.0 4.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0

V11: 11-leaf 5.5 6.0 5.5 5.5 4.0 5.5 5.0 4.0 5.0 6.0

V12: 12-leaf 5.0 4.0 5.0 5.0 5.0 5.0 4.0 5.0 5.0 5.0

V12: 12–13-leaf 5.0 4.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 4.0

V13: 13-leaf 6.0 6.0 5.0 5.0 6.0 5.0 6.0 6.0 6.0 5.0

V13: 13–14-leaf 5.0 5.0 5.0 5.0 4.0 5.0 5.0 6.0 6.0 4.0

V14: 14–15-leaf 4.0 3.0 5.0 4.0 3.0 4.0 4.0 5.0 4.0 3.0

V15: 15–16-leaf 5.0 6.0 4.0 5.0 3.0 5.0 4.0 3.0 4.0 3.0

V16: 16-leaf—Tassel 5.5 5.0 5.0 5.0 4.0 5.0 5.0 5.0 6.0 5.0

VT: Tassel 6.0 4.0 5.5 6.0 4.5 6.0 6.0 5.5 5.0 5.0

VT: Tassel—Silk 5.0 3.0 4.5 5.0 3.0 5.0 5.0 5.0 6.0 3.0

VT: Silk—Brown Silk 5.5 3.0 5.0 5.5 5.0 5.5 4.0 8.0 8.0 2.5

Table A3. RMSE in days for the selected reproductive micro-stages calculated for indices and bands
using Planet Fusion (best values are in bold).
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R1: Pollen Shed 6.9 5.8 7.4 6.8 5.2 6.9 6.2 7.3 7.7 6.1

R1: Silking—Blister 5.6 5.1 6.2 5.6 5.5 5.6 5.2 6.1 5.6 5.9

R2: Blister 6.6 5.2 7.1 6.5 5.7 6.5 5.8 6.6 6.8 7.2

R2: Blister—Milk 4.8 4.8 5.6 4.7 5.5 4.8 4.3 4.2 4.6 6.0

R3: Milk 5.8 5.4 6.5 5.8 6.2 5.7 5.5 6.8 6.3 7.3

R3: Milk—Dough 5.6 6.0 6.4 5.6 6.2 5.6 5.2 5.5 5.5 7.5

R4: Dough 6.5 6.5 7.8 6.5 7.0 6.5 6.1 6.1 6.1 7.7

R4: Soft Dough 7.6 7.8 10.2 7.6 7.9 7.6 6.7 8.9 9.1 8.6

R4: Hard Dough 5.3 6.1 6.5 5.4 7.1 5.3 5.2 6.5 6.3 7.0

R4: Dough—Early Dent 6.3 6.4 7.4 6.3 8.2 6.4 5.9 6.4 6.2 8.3

R5: Early Dent 5.6 7.0 7.2 5.6 8.6 5.6 6.0 5.9 6.0 8.6

R5: Early—Mid Dent 6.3 7.8 8.0 6.3 9.1 6.3 6.7 6.7 6.7 9.1

R5: Mid Dent 7.3 7.1 6.7 7.4 9.5 7.2 8.0 7.4 6.6 7.4

R5: Mid—Full Dent 7.4 8.5 7.3 7.3 9.5 7.4 7.8 7.1 6.2 10.6

R5: Full Dent 7.3 8.7 9.3 7.2 8.9 7.3 7.1 7.2 6.9 9.6

R5: 1/8 Milk Line 6.7 7.5 7.8 6.7 9.5 6.7 6.9 7.5 7.1 8.8

R5: 1/8–1/4 Milk Line 7.1 7.6 8.2 7.0 9.8 7.1 7.4 8.3 7.5 9.3

R5: 1/4 Milk Line 7.6 7.4 8.2 7.5 9.6 7.5 7.9 7.9 7.5 8.0
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Table A3. Cont.
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R5: 1/4–1/3 Milk Line 8.7 8.6 8.9 8.6 11.6 8.6 9.1 10.0 8.7 10.1

R5: 1/3–1/2 Milk Line 8.6 8.5 9.1 8.6 12.1 8.5 9.2 8.5 8.6 8.6

R5: 1/2 Milk Line 7.3 7.2 7.4 7.3 10.8 7.3 8.1 8.4 7.7 8.1

R5: 1/2–2/3 Milk Line 8.0 7.8 8.2 7.9 11.2 8.0 8.4 8.0 8.2 9.2

R5: 2/3 Milk Line 10.7 9.4 11.0 10.6 13.8 10.6 11.2 10.6 10.8 10.3

R5: 2/3–3/4 Milk Line 7.9 7.8 8.4 7.9 10.4 7.8 8.1 7.6 7.9 9.3

R5: 3/4 Milk Line 8.1 7.5 7.7 8.1 11.5 8.1 8.4 12.0 9.0 10.3

R5: 3/4–7/8 Milk Line 7.6 7.7 8.0 7.5 11.1 7.5 7.9 10.2 8.2 9.1

R5: 7/8 Milk Line 4.7 5.3 5.0 4.7 9.0 4.7 5.3 8.2 5.6 7.1

R5: 7/8 Milk L.—Black L. 8.7 9.3 8.9 8.7 12.1 8.7 9.1 9.2 8.5 12.4

R5: Black Layer 8.3 7.8 8.2 8.2 12.0 8.1 9.1 10.8 7.9 8.5

Table A4. MedAE in days for the selected reproductive micro-stages calculated for indices and bands
using Planet Fusion (best values are in bold).
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R1: Pollen Shed 5.0 3.0 4.0 5.0 4.0 4.5 5.0 5.0 5.0 4.0

R1: Silking—Blister 5.0 2.0 4.0 5.0 4.0 5.0 4.0 4.0 5.0 4.0

R2: Blister 5.0 4.0 4.0 4.5 3.0 4.5 4.0 4.5 4.0 5.0

R2: Blister—Milk 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 4.0

R3: Milk 3.0 4.0 4.5 3.0 4.0 3.0 3.0 4.0 3.5 5.0

R3: Milk—Dough 4.0 5.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 5.0

R4: Dough 4.0 4.0 6.0 4.0 4.0 4.0 4.0 3.0 4.0 6.0

R4: Soft Dough 4.0 4.0 6.0 4.0 5.0 4.0 4.0 4.0 5.0 6.0

R4: Hard Dough 3.0 5.0 4.0 3.0 5.0 3.0 3.0 4.0 3.0 5.0

R4: Dough—Early Dent 4.0 6.0 6.0 4.0 5.0 4.0 3.0 3.0 4.0 7.0

R5: Early Dent 4.0 6.0 5.0 5.0 6.0 5.0 5.0 4.0 4.0 7.0

R5: Early–Mid Dent 4.5 6.0 5.0 4.5 6.5 4.5 5.0 4.0 5.0 7.0

R5: Mid Dent 5.0 4.0 5.0 5.0 8.0 4.0 6.0 4.0 4.0 6.0

R5: Mid–Full Dent 4.0 6.0 6.0 4.0 6.0 4.0 4.0 4.0 4.0 7.0

R5: Full Dent 5.0 6.0 6.0 5.0 7.5 5.0 6.0 5.0 6.0 7.0

R5: 1/8 Milk Line 5.0 5.0 7.0 5.0 6.0 5.0 4.0 4.0 5.0 6.0

R5: 1/8–1/4 Milk Line 4.0 5.0 6.0 4.0 6.0 4.0 4.0 6.0 5.0 6.0

R5: 1/4 Milk Line 4.0 5.0 5.0 4.0 5.0 4.0 4.0 5.0 5.0 5.0

R5: 1/4–1/3 Milk Line 6.0 6.5 6.0 6.0 7.0 6.0 6.0 6.5 7.0 7.0

R5: 1/3–1/2 Milk Line 5.0 5.0 5.5 5.0 6.0 5.0 5.0 6.0 5.0 6.0

R5: 1/2 Milk Line 5.0 5.0 5.0 5.0 7.0 5.0 5.0 5.0 5.0 5.0
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Table A4. Cont.
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R5: 1/2–2/3 Milk Line 5.0 4.0 5.0 5.0 6.0 5.0 5.0 5.0 6.0 5.0

R5: 2/3 Milk Line 6.0 4.0 6.0 6.0 5.0 6.0 5.0 6.0 5.0 7.0

R5: 2/3–3/4 Milk Line 3.0 4.0 4.5 3.0 6.0 3.0 4.0 4.5 5.0 6.0

R5: 3/4 Milk Line 4.0 5.0 4.0 4.0 5.0 4.0 5.0 7.0 3.0 6.0

R5: 3/4–7/8 Milk Line 4.5 4.5 5.0 4.5 6.5 4.5 5.0 8.5 4.0 8.0

R5: 7/8 Milk Line 3.0 3.0 4.0 3.0 5.0 3.0 4.0 6.0 3.0 4.0

R5: 7/8 Milk L.—Black L. 5.0 5.0 4.0 5.0 7.0 5.0 5.0 6.0 4.0 7.0

R5: Black Layer 6.0 5.0 5.0 6.0 7.0 6.0 7.0 6.0 5.0 7.0

Table A5. Comparison of PF and HLS RMSE performances for the selected vegetative micro-stages.
For each micro-stage, the best PF- and HLS-based performance values are given in bold.

Stage PF NDVI PF MCARI HLS NDVI HLS MCARI

VE: Emerging 7.4 8.2 14.0 9.5

VE: Emerging—Seedling 8.5 8.7 10.1 11.6

VE: Seedling 8.6 9.3 10.8 13.2

VE: Seedling—1-leaf 6.5 6.5 11.2 9.7

V1: 1-leaf 7.6 6.7 7.5 11.6

V1: 1–2-leaf 7.4 7.6 9.2 9.9

V2: 2-leaf 5.9 6.2 8.2 11.7

V2: 2–3-leaf 8.8 7.9 8.6 9.5

V3: 3-leaf 5.8 5.7 9.4 8.8

V3: 3–4-leaf 3.6 3.5 7.4 7.4

V4: 4-leaf 4.6 4.3 6.9 10.5

V4: 4–5-leaf 4.6 4.6 6.2 6.0

V5: 5-leaf 7.5 6.8 7.9 9.9

V5: 5–6-leaf 3.5 3.3 4.4 5.7

V6: 6-leaf 4.8 4.8 5.9 7.0

V6: 6–7-leaf 4.6 4.5 6.6 8.0

V7: 7-leaf 7.8 6.9 7.3 7.2

V7: 7–8-leaf 4.4 4.0 6.1 5.4

V8: 8-leaf 6.5 6.5 7.1 7.3

V8: 8–9-leaf 6.6 6.2 9.0 7.9

V9: 9-leaf 6.7 6.9 6.8 6.5

V9: 9–10-leaf 5.3 5.0 8.1 6.9

V10: 10-leaf 6.4 5.3 7.1 14.4

V10: 10–11-leaf 7.9 6.7 11.0 9.3

V11: 11-leaf 7.9 7.6 8.6 8.3

V11: 11–12-leaf 6.9 6.3 9.6 8.8
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Table A5. Cont.

Stage PF NDVI PF MCARI HLS NDVI HLS MCARI

V12: 12-leaf 7.5 6.9 7.7 8.0

V12: 12–13-leaf 6.8 6.0 9.2 9.7

V13: 13-leaf 12.2 10.3 13.2 13.5

V13: 13–14-leaf 6.3 5.8 8.9 7.7

V14: 14–15-leaf 6.8 5.3 10.2 8.7

V15: 15–16-leaf 6.0 5.5 12.3 11.2

V16: 16-leaf—Tassel 7.7 6.9 12.1 10.3

VT: Tassel 7.2 5.1 10.7 8.9

VT: Tassel—Silk 7.2 3.9 9.9 9.8

VT: Silk—Brown Silk 6.8 3.9 6.4 4.5

Table A6. Comparison of PF and HLS RMSE performances for the selected reproductive micro-stages.
For each micro-stage, the best PF- and HLS-based performance values are given in bold.

Stage PF NDVI PF MCARI HLS NDVI HLS MCARI

R1: Pollen Shed 6.9 5.8 10.4 9.4

R1: Silking—Blister 5.6 5.1 11.4 7.9

R2: Blister 6.6 5.2 9.2 9.1

R2: Blister—Milk 4.8 4.8 10.4 7.9

R3: Milk 5.8 5.4 11.0 11.2

R3: Milk—Dough 5.6 6.0 9.1 9.3

R4: Dough 6.5 6.5 9.9 8.2

R4: Soft Dough 7.6 7.8 10.0 8.1

R4: Hard Dough 5.3 6.1 9.7 11.6

R4: Dough—Early Dent 6.3 6.4 8.0 7.8

R5: Early Dent 5.6 7.0 9.0 8.1

R5: Early–Mid Dent 6.3 7.8 7.5 7.9

R5: Mid Dent 7.3 7.1 8.7 12.8

R5: Mid–Full Dent 7.4 8.5 10.9 10.3

R5: Full Dent 7.3 8.7 10.1 9.7

R5: 1/8 Milk Line 6.7 7.5 9.7 8.9

R5: 1/8-1/4 Milk Line 7.1 7.6 9.3 9.3

R5: 1/4 Milk Line 7.6 7.4 10.0 9.3

R5: 1/4-1/3 Milk Line 8.7 8.6 9.6 8.5

R5: 1/3-1/2 Milk Line 8.6 8.5 10.2 9.5

R5: 1/2 Milk Line 7.3 7.2 7.7 7.6

R5: 1/2-2/3 Milk Line 8.0 7.8 10.3 9.5

R5: 2/3 Milk Line 10.7 9.4 10.6 10.3

R5: 2/3-3/4 Milk Line 7.9 7.8 7.9 10.2

R5: 3/4 Milk Line 8.1 7.5 7.2 8.3
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Table A6. Cont.

Stage PF NDVI PF MCARI HLS NDVI HLS MCARI

R5: 3/4-7/8 Milk Line 7.6 7.7 10.6 9.2

R5: 7/8 Milk Line 4.7 5.3 6.0 6.7

R5: 7/8 Milk Line—B. Layer 8.7 9.3 9.1 10.6

R5: Black Layer 8.3 7.8 11.4 7.7

Average (all stages) 6.9 6.5 9.0 9.1
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