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Abstract: With the increase in the number of Global Navigation Satellite System (GNSS) satellites
and their operating frequencies, richer observation data are provided for the tightly coupled Global
Navigation Satellite System/Inertial Navigation System (GNSS/INS). In this paper, we propose
an efficient and robust combined navigation scheme to address the key issues of system accuracy,
robustness, and computational efficiency. The tightly combined system fuses multi-source data such
as the pseudo-range, the pseudo-range rate, and dual-antenna observations from the GNSS and the
horizontal attitude angle from the vertical gyro (VG) in order to realize robust navigation in a sparse
satellite observation environment. In addition, to cope with the high computational load faced by the
system when the satellite observation conditions are good, we propose a weighted quasi-optimal
satellite selection algorithm that reduces the computational burden of the navigation system by
screening the observable satellites while ensuring the accuracy of the observation data. Finally, we
comprehensively evaluate the proposed system through simulation experiments. The results show
that, compared with the loosely coupled navigation system, our system has a significant improvement
in state estimation accuracy and still provides reliable attitude estimation in regions with poor satellite
observation conditions. In addition, in comparison experiments with the optimal satellite selection
algorithm, our proposed satellite selection algorithm demonstrates greater advantages in terms of
computational efficiency and engineering practicability.

Keywords: tightly coupled navigation system; GNSS/INS; computational efficiency; satellite selection
algorithm

1. Introduction

With the rapid development of unmanned aerial vehicles (UAVs), unmanned ships
(USVs), autonomous driving, and other technologies, there is a growing demand for high-
precision real-time navigation. The Global Navigation Satellite System, as a mainstream
means of navigation, has attracted much attention in the industry due to its global coverage,
long-term effectiveness, and all-weather working capability. A GNSS, as a standard navi-
gation sensor, is able to provide reliable positioning services in most situations. However,
in complex environments such as urban canyons and tunnels, GNSS signals are susceptible
to occlusion, leading to navigation interruptions [1]. In addition, GNSS signals increase
in noise when subjected to interference, which, in turn, affects navigation accuracy [2,3].
More importantly, GNSSs are unable to provide all of the navigation status information
required for certain carrier control, such as precise horizontal attitude angles [4]. Therefore,
a single GNSS may have limitations in continuous navigation missions.

In order to overcome the shortcomings of a single sensor and improve the overall per-
formance of the navigation system, it is necessary to introduce other sensors for assistance.
Inertial Measurement Units (IMUs), consisting of gyroscopes and accelerometers, do not
rely on external signals and offer higher autonomy, faster update rates, and more stable
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short-term accuracy. Although IMUs suffer from errors accumulated over time, their fusion
with a GNSS can fully utilize their respective advantages and complement each other [5].
The integrated system composed of a GNSS and an inertial navigation system (INS) is
superior to single-element navigation systems in terms of stability and accuracy. With the
advancement of GNSS receiver and Micro-Electro-Mechanical System (MEMS) technology,
the cost of combined satellite–inertial navigation systems has been reduced significantly,
which paves the way for their wide application in smart driving vehicles.

Currently, the combined navigation schemes based on the integration of a GNSS and
an INS are mainly categorized into loosely coupled (LC), tightly coupled (TC), and deeply
coupled (DC) forms based on the level and complexity of their combination [6]. In the
loosely coupled scheme, the GNSS and INS operate as two independent systems, with the
GNSS being responsible for providing long-term corrections of position and velocity and the
INS providing short-term, high-precision data. Due to its simple structure and redundancy,
the LC scheme is currently the most widely adopted navigation scheme. However, the LC
scheme suffers from the problem of serial filtering in data processing and cannot effectively
utilize GNSS data to assist the INS for navigation when the number of visible satellites is
less than four. Compared to the LC scheme, the deep-coupling scheme fuses GNSS and IMU
data in the signal processing stage, and its distinctive feature is that it utilizes the velocity
information of the INS to assist the tracking loop of the GNSS receiver, which enhances
the receiver’s anti-jamming capability, improves the dynamic performance, and reduces
the dynamic error. However, this scheme requires the high computational capability of
the hardware and is difficult to realize, so it is mainly used in the military and aerospace
fields. For civilian carriers, the performance and cost–benefit ratio of the DC scheme still
need to be further evaluated. The TC scheme fuses GNSS and IMU data at the algorithmic
level with high accuracy and robustness, and even when the satellite observation is poor,
the TC combined system does not need the complete GNSS information to assist the INS,
and fusion processing can be carried out when visible satellites are fewer than four [7].

Although TC schemes are able to maintain combined navigation in environments
where GNSS signals are obstructed, errors due to non-line-of-sight (NLOS) reception in
such environments can be tens of meters or more, with multipath effects being particularly
severe. Signal errors due to reflectors such as high-rise buildings or mountains may reach
the kilometer level [8]. In addition, TC schemes cannot provide effective corrections when
the GNSS signal is completely blocked. Therefore, robust navigation schemes for environ-
ments with severe degradation in GNSS performance have become the focus of researchers’
attention. A common approach to solving such problems is to add additional sensors.
For example, Chang et al. successfully improved the precision of navigation positioning
by integrating 3D laser radar into the navigation system [9]. The radar also reduces the
drift of the inertial navigation system (INS) during long-term GNSS interruptions [10,11].
Wen et al. captured environmental scenes in urban canyons using fisheye cameras, matched
them with satellite positions through calculation, and excluded invisible satellites, thus
achieving better filtering performance [12]. Zhong and NG addressed the limitations of
the GNSS by employing 3D mapping techniques [13,14]. Wu and Jang, on the other hand,
used Ultra-Wide-Band (UWB) technology to cope with the insufficient number of visible
GNSS satellites [15,16]. Some studies have intended to mitigate the impact of degraded
GNSS environments by combining information from additional sensors, such as cameras
and laser scanners [17–20]. Although the aforementioned approaches can mitigate the
impact of GNSS-restricted environments to some extent, the simple addition of sensors
would significantly increase costs. Moreover, certain sensors require extensive preliminary
work, such as pre-built high-definition maps, which are not feasible in new environments.
Additionally, the introduction of additional sensors also increases the complexity of algo-
rithms, making it challenging to meet the higher navigation output frequency requirements
of some carriers. In this study, the vertical gyro (VG) algorithm is employed to assist the
TC scheme in navigation. The VG algorithm determines the maneuvering state based
on the accelerometer output. When the carrier is stationary, moving at a constant speed,
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or experiencing low acceleration, the VG measurements can correct the horizontal atti-
tude, providing the carrier with a certain level of accurate horizontal attitude reference.
Within a certain time frame, the VG algorithm effectively suppresses the divergence of
navigation solution results [21]. This algorithm does not require the addition of extra sensor
equipment and does not impose a significant computational burden, thereby achieving the
high-frequency output of navigation signals.

In addition, with the development of the multi-constellation multi-frequency GNSS,
the measurement update of the TC integrated GNSS/INS can use the multi-satellite pseudo-
range, the pseudo-range rate, Doppler velocity, and other types of observations. If all of
the visible satellite observation data are input into the filter, high-dimensional observation
vector processing will consume great arithmetic power, and embedded processors may not
be able to achieve real-time navigation output. Therefore, to ensure the real-time capability
of the navigation system, it is necessary to select a subset of the observed satellites from
all visible satellites. However, the research on satellite screening algorithms has been
mainly focused on finding the best Geometric Dilution Precision Factor, which is generally
regarded as the amplification of the measurement error, while the positioning accuracy of
satellite navigation is also related to the User Equivalent Range Error [22]. In this paper,
we present a weighted quasi-optimal satellite selection algorithm designed by considering
other relevant terms that determine the accuracy of satellite navigation data and analyze
the performance and efficiency of the method through comparison experiments with the
optimal satellite selection algorithm. Our main contributions are (1) applying the VG
algorithm to the TC integration scheme to give a new fusion scheme, (2) designing a new
satellite selection algorithm by utilizing the correlation term that determines the User
Equivalent Range Error while guaranteeing the real-time capability of the system and the
accuracy of the observation data, (3) making a complete performance comparison of the
navigation algorithm results with the LC and VG-free systems, as well as providing a
comprehensive evaluation of the satellite selection algorithm.

This paper is organized as follows: Section 2 outlines our combined navigation system
model and algorithm. Section 3 describes our given satellite selection algorithm. Section 4
presents simulation experiments on our navigation model and satellite selection algo-
rithm and evaluates the results. In the last section, Section 5, the paper is summarized
and discussed.

2. Integrated Navigation System Model

This section first defines the coordinate systems in the integrated navigation system.
The integrated navigation model uses the pseudo-range and pseudo-range rate as the basic
observational quantities, adopts the classic integration pattern, and combines the vertical
gyroscope algorithm to correct the errors of the gyroscope and accelerometer, allowing the
carrier to maintain acceptable navigation accuracy even when the GNSS signal is weak
or denied.

2.1. Coordinate System Definition

This paper employs a geodetic coordinate system based on the east–north–up (ENU)
convention, with the vehicle’s centroid serving as the origin, designated as the n-frame.
The b-frame is centered on the IMU mounted on the vehicle and is rigidly affixed to
the vehicle, moving in synchrony with it. The absolute positioning of satellites is repre-
sented in the Earth-Centered, Earth-Fixed (ECEF) coordinate system, known as the e-frame.
The interrelations between the coordinate systems utilized in this study are depicted in
Figure 1.
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Figure 1. A schematic diagram of the ECEF navigation coordinate frame and body coordinate frame.
The X-, Y-, and Z-axes and text within the same framework are represented in the same color.

2.2. Combined Navigation Model
2.2.1. System State Vector

In general, the INS provides gyroscopes and accelerometers, which need to be modeled
in the error model of the INS and GNSS. Meanwhile, two or even more kinds of navigation
sensor systems will be used in the actual carrier, each of which uses a different phase
center as a reference datum for navigation, and these sensors will have mounting errors
during installation. In order to facilitate the fusion of the navigation information from the
different systems, in this paper, the lever-arm errors between the inertial group and the
satellite receiver, as well as the time synchronization errors, are also estimated as states.
The random errors of the gyroscope and accelerometer in the three axes of the INS, the
errors of the inertial guidance system, and the receiver clock error are taken together as the
state space of the Kalman filter of the integrated navigation model. The state vector can be
expressed as

X =

[
ϕT (δv)T (δp)T

(
εb
)T (

∇b
)T (

δlb
)T

δt δtu δtru

]T
(1)

where there are a total of 21 state quantities, with the superscript b representing the errors
in the body frame; ϕ denotes the platform attitude angle error; δv is the velocity error along
the east–north–up direction; δp is the position error; εb is the random drift of the gyroscope
in the body frame; ∇b is the random drift of the accelerometer in the body frame; δlb is the
lever-arm errors between inertial guide and guardian guide; δt is the inertial guide and
guardian guide data acquisition time synchronization errors; δtu and δtru are, respectively,
the GNSS receiver’s equivalent clock error corresponding to the distance and the equivalent
clock frequency error corresponding to the distance change rate [23].

2.2.2. State Equation

To clearly explain the state equations, the errors of the INS and the GNSS will be
described separately.

For the INS error state equation, only the random errors of the INS’s three-axis gyro-
scopes and accelerometers, as well as the errors of the INS itself, are considered. The specific
equations are

.
XI (t) = FI(t)XI(t) + GI(t)WI(t) (2)

where the individual matrices are represented as

XI =

[
ϕT (δv)T (δp)T

(
εb
)T (

∇b
)T (

δlb
)T

δt
]T

(3)
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FI =


Maa
Mva
03×3

Mav
Mvv
Mpv

Map
Mvp
Mpp

−Cn
b

03×3
03×3

03×3
Cn

b
03×3

03×4
03×4
03×4

010×19

,

GI =

−Cn
b 03×3

03×3 Cn
b

013×6

, WI =

[
wb
wa

] (4)

detailed definitions of the individual submatrices in the matrix FI can be found in the litera-
ture [23]. Cn

b is the rotation matrix from the b-frame to the n-frame. wb and wa represent the
measured white noise of the gyroscope’s angular velocity and the accelerometer’s specific
force, respectively.

For the GNSS error equation of state, only the receiver clock error is considered.
The specific equation is

.
XG (t) = FG(t)XG(t) + GG(t)WG(t) (5)

where the individual matrices are represented as

XG =
[
δtu δtru

]T, FG =

[
0 1
0 − 1

τtru

]
,

GG =

[
1 0
0 1

]
, WG =

[
wtu
wtru

] (6)

where τtru is the time-dependent constant, and wtu and wtru are white noise.
Equations (3) and (5) can be combined to obtain the system state equation in this

paper:

.
X (t) =

[ .
X I(t).
X G(t)

]
=

[
FI(t) O

O FG(t)

][
XI(t)
XG(t)

]
+

[
GI(t) O

O GG(t)

][
WI(t)
WG(t)

]
(7)

i.e.,
.
X (t) = F(t)X(t) + G(t)W(t)

2.2.3. Observation Equation

There are two types of model observations: one is the horizontal attitude angle
provided by the VG algorithm, and the other is the dual-antenna heading angle, pseudo-
range, and pseudo-range rate from the GNSS.

When using the horizontal attitude angle provided by the VG and the dual-antenna
heading angle provided by GNSS as observations, the observation equation can be obtained as

ZI(t) = HI(t)X(t) + VI(t) (8)

Observation ZI and observation matrix HI can, in turn, be expressed in detail as

ZI(t) =

 θins − θaccel
ϕins − ϕaccel

ψins − ψant

,
{

θaccel = arctan( f , u)
ϕaccel = − arctan(r, u)

(9)

HI(t) =


−e11

e2
20+e2

22

e01
e2

20+e2
22

0 01×18
e01

e2
01+e2

11

−e11
e2

01+e2
11

0 01×18
e01e21

e2
01+e2

11

e11e21
e2

01+e2
11

−1 01×18

 (10)

In observation vector ZI, θins, ϕins, and ψins are the pitch, roll, and yaw angles calculated by
the inertial navigation system; θaccel and ϕaccel represent the pitch and roll angles calculated
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from the vertical gyro observation data, respectively; and the formula is Equation (9), where
r is the rightward acceleration, f is the forward acceleration, u is the upward acceleration,
and ψant is the dual-antenna heading angle provided by the GNSS. In observation matrix
HI, element e is from the rotation matrix Cn

b , whose subscript represents the position of
element e in the rotation matrix Cn

b .
Since the accuracy of the observations obtained by the VG is affected by the harmful

acceleration of the carrier, the practical use of the algorithm stipulates that VG observations
be considered valid when the three-directional acceleration paradigm operations satisfy
the inequality in Equation (11), with glocal representing the local gravitational acceleration.

0.9 ∗ glocal < ∥ Accel r, f ,u∥ < 1.1 ∗ glocal (11)

When using the observations provided by the GNSS, the observation equation is
obtained by considering the pseudo-range and pseudo-range rate observations as

ZG(t) = HG(t)X(t) + VG(t) (12)

Observation ZG and observation matrix HG can, in turn, be expressed in detail as

ZG(t) =
[

PG − PI
ṖG − ṖI

]
,

{
PG − PI =

[
ρG1 − ρI1 ρG2 − ρI2 · · · ρGn − ρIm

]T
ṖG − ṖI =

[
ρ̇G1 − ρ̇I1 ρ̇G2 − ρ̇I2 · · · ρ̇Gn − ρ̇Im

]T (13)

HG(t) =

[
Hρ(t)

Hρ̇(t)

]
(14)

{
Hρ(t) =

[
0m×6 eDa 0m×6 −eDa MpvCn

b eDa Mpvvn
INS Dtu 0m×1

]
Hρ̇(t) =

[
0m×3 Dv Dp 0m×6 −DvCn

b (ω
b
eb×)− Dp MpvCn

b Dvan + Dp Mpvvn
INS 0m×1 Dtru

] (15)

In vector ZG, ρGi − ρIi(i = 1, 2, · · · , m) denotes the difference between the pseudo-range
of the i-th satellite measured by the GNSS and the pseudo-range given by the inertial
navigation calculation, and ρ̇Gi − ρ̇Ii(i = 1, 2, · · · , m) denotes the difference between the
pseudo-range rate of the second satellite measured by the GNSS and the pseudo-range
rate given by the inertial navigation calculation; detailed definitions of the submatrices of
matrix HG can be found in reference [23]; and VG is the noise vector of the pseudo-range
and the pseudo-range rate observation.

The systematic observation equations in this paper can be obtained by combining
Equations (9) and (13), and the systematic observation matrix can be obtained by combining
Equations (10) and (14):

Z(t) =
[

ZI(t)
ZG(t)

]
=

[
HI(t)
HG(t)

]
X(t) +

[
VI(t)
VG(t)

]
(16)

i.e., Z(t) = H(t)X(t) + V(t).

3. Satellite Selection Algorithm

Currently, the major global satellite navigation systems include the United States’ GPS,
China’s BDS, Russia’s GLONASS, and Europe’s Galileo, making up the four major systems.
With the development of multi-constellation and multi-frequency satellite navigation sys-
tems, integrated navigation systems can obtain more pseudo-range and pseudo-range rate
observations during the measurement update period. If all observation signals are directly
input into the filter without any screening, the correlation matrix will be large, leading
to significant computational and memory consumption issues. Furthermore, incorrect
observation inputs would cause deviations in the filtering results. Therefore, in order
to achieve real-time and precise tightly integrated navigation results, it is necessary to
both consider the number of satellite observation inputs and ensure the accuracy of the
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observations. This chapter provides a detailed introduction to the evaluation indicators
of satellite positioning accuracy, as well as the satellite selection algorithm used in the
integrated navigation system designed in this paper.

3.1. Geometric Dilution Precision

The Dilution of Precision (DOP) is an important physical quantity for measuring the
satellite positioning accuracy, which is affected by the geometric structure of the satellites.
The effect of the satellite geometric structure on the position error is also called the GDOP,
which represents the ratio of the position error to the ranging error [24], and is also an
important evaluation index in the satellite selection algorithm. The relationship between
the positioning accuracy of the satellite navigation system and the Geometric Dilution of
Precision can be expressed by the formula

σG = GDOP × σρ (17)

where σG is the standard deviation of the navigation error, and σρ is the uncertainty error
of the pseudo-distance measurement value, also known as User Equivalent Range Error
(UERE). It can be seen that when σρ is certain, the GDOP is smaller, and the smaller the σG
is, the higher the navigation accuracy is. However, different positioning satellites’ σρ values
are generally not the same, and a smaller GDOP does not guarantee higher navigation
and positioning accuracy. In certain situations, when a satellite cluster at a low elevation
angle can provide a better geometric structure, it is more affected by the ionosphere and
troposphere compared to satellites at high elevation angles. It also experiences stronger
multipath interference [5]. The uncertainty error of the pseudo-range measurement will be
significantly larger than that of other satellites, and the positioning accuracy will be greatly
affected at this time. Nevertheless, selecting a satellite combination with a smaller GDOP is
still an important step to improve the integrated navigation accuracy.

The GDOP is defined in detail as

GDOP =

√
trace(GT

u Gu)
−1

=
√

g11 + g22 + g33 + g44 (18)

where
(
GT

u Gu
)−1 can be expressed in the form of the matrix

(
GT

u Gu

)−1
=


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

 (19)

Gu is the matrix associated with the satellite line-of-sight vector

Gu =


los1 1
los2 1

...
...

losm 1

 (20)

losi is the line-of-sight vector from the receiver to satellite i.
At an intuitive level, the structural relationship between the size of the GDOP value

and the spatial distribution of the satellite constellation is shown in the following way: the
larger the GDOP is, the more densely the satellites are distributed in space, and conversely,
the smaller the GDOP is, the more dispersed the satellites are distributed in space. In the
former case, the satellite positioning error is larger, so generally speaking, a dispersed
layout can obtain better navigation results. The satellite selection algorithm is designed
to select the combination of satellites that makes the GDOP stable and smaller within a
shorter time.
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3.2. Quasi-Optimal Satellite Selection Algorithm

The quasi-optimal satellite selection algorithm (QOSA) calculates the geometric redun-
dancy of each satellite with other satellites through the spatial position information of the
visible satellites. It then gradually removes the satellites with the largest redundancy and
updates the sequence of visible satellites until the number of remaining satellites reaches
the required minimum number [25]. The core idea of the algorithm is to establish the satel-
lite redundancy equation, quantify the redundancy, and approximate the optimal satellite
combination with a small amount of computation. The redundancy between two satellites
can be expressed as the following cost function:

Jij = cos 2θij (21)

where θij is the angle between the line-of-sight vectors losi and losj of the two satellites i
and j and the receiver. When the two satellites are co-linear with the receiver, i.e., when θij
is 0◦ or 180◦, the cost function is maximum and the two satellites have the maximum
redundancy, whereas when the line-of-sight vectors of the two satellites are perpendicular,
i.e., when θij is 90◦, the cost function is minimum. In order to select the satellite with
maximum redundancy from multiple satellites, the cost function of a single satellite with
respect to all the satellites should be established. The cost function of a single satellite i can
be expressed as

Ji = ∑
j

cos 2θij (22)

The process of the quasi-optimal satellite selection algorithm can be roughly described
as follows: first, calculate the cost function Ji for each satellite, and then eliminate the
satellites with the largest cost function; if the number of satellites is larger than the desired
value, repeat the process until the number of satellites reaches the selection requirement.

As explained at the end of the previous section, generally, the smaller the satellite
navigation positioning error is, the smaller the GDOP value will be, and the more dispersed
the satellite layout in space is. Due to the quasi-optimal satellite selection algorithm’s
practice of eliminating satellites with maximum redundancy, the final satellite selection
result will tend to disperse the satellite layout in space. Although this algorithm is similar
to a greedy algorithm, each round of the satellite selection algorithm only considers the
current optimal solution and cannot guarantee that the final result is the global optimal
solution, but compared with the large amount of computation that the optimal satellite
selection algorithm needs to calculate the GDOP Ck

m = m!
k!(m−k)! times [26], the quasi-optimal

satellite selection algorithm is more suitable for engineering applications.

3.3. Weighted Quasi-Optimal Satellite Selection Algorithm

Although the quasi-optimal satellite selection algorithm is close to the optimal selection
algorithm and is more efficient, the satellite navigation system positioning accuracy is not
only related to the GDOP but also affected by the uncertainty error of each pseudo-range
measurement value, as shown in Equation (17). Pseudo-range measurements are affected by
atmospheric ionospheric and tropospheric delays, multipath effects, and orbital errors [5].
The signal-to-noise ratio of the satellite signal will decrease with the increase in the noise of
the measured value and increase with the increase in the satellite elevation angle, while the
multipath effect and satellite orbit error will also reduce the signal-to-noise ratio. So, at the
same time, considering the satellite elevation angle, signal-to-noise ratio, and multipath
effect, a weighted quasi-optimal satellite selection algorithm (WQOSA) of the weight
function can be constructed. This paper refers to the literature [27] to give a weight function
construction method:
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Wi =
Emax

Ei
+ αi ·

SNRmax

SNRi
(23)

where Ei and SNRi are the elevation angle and signal-to-noise ratio of satellite i, Emax
and SNRmax are the maximum elevation angle and the maximum signal-to-noise ratio
of the visible satellites in the same calendar element, and αi is the multipath scale factor.
Under normal driving conditions, the multipath scale factor is usually set to 1, and when
multipath effects are encountered, the multipath scale factor can be set to a value greater
than 1. So, the multipath scale factor can be expressed as a function of the reflection coeffi-
cient Rcoe f , which, in turn, is correlated with the carrier-to-noise density ratio (C/N0) [28]:

αi = 1 +

√
Rcoe f − 1√
Rcoe f + 1

Rcoef =
10

(
(C/N0)max

20

)

10

(
(C/N0)i

20

)
(24)

In the above equation, (C/N0)i is the carrier-to-noise ratio of satellite i, which indicates the
strength of the received signal and is usually used to estimate the signal quality [29], and it
can be seen that when the carrier-to-noise ratio is larger, αi is close to 1, which corresponds
to a weaker satellite multipath effect.

Since the cost function of the QOSA has a value range from −1 to +1, to avoid the
impact of positive and negative attributes on the weight function, it is also necessary
to transform the cost function of the QOSA before constructing the cost function of the
WQOSA. In this paper, we present the new cost function:

Jij = ecos 2θij (25)

The cost function for a single satellite i is then expressed as

Ji = ∑
j

ecos 2θij (26)

The cost function for the WQOSA can then be constructed:

Ji = Wi ∑
j

ecos 2θij (27)

The satellite selection process of the WQOSA is similar to that of the QOSA, but it
involves an additional weight calculation process. To provide a clearer illustration of
the satellite selection process of the WQOSA, a flowchart of the algorithm execution is
presented in Figure 2.
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Figure 2. The WQOSA execution flowchart, where N represents the current total number of visible
satellites, and K represents the intended number to be selected.

4. Experiment and Analysis

As described in this section, we validated the performance of the proposed system
through simulation experiments and tests based on a real-world sports car. For the inte-
grated navigation algorithm, this paper will present two sets of comparative experimental
results. In the first set of experiments, we compared our system with a Kalman filtering
system using a loosely coupled algorithm. In the second set of comparative experiments,
we demonstrated how our proposed algorithm enhances the robustness of the system
in an environment where GNSS signals are limited. For the satellite selection algorithm,
this paper will present the algorithm evaluation results and compare its computational
efficiency with that of the optimal algorithm. Through these experiments, we can com-
prehensively assess the performance and efficiency of our proposed system in different
application scenarios.

4.1. Equipment and Solutions

In this study, the inertial navigation components and computational equipment used
in the experiments were all integrated within the TNAV100 flight control computer, which
is a flight control and navigation system specifically designed for unmanned aerial vehicles.
The system internally integrates key components, such as a three-axis gyroscope, a three-
axis accelerometer, and a GNSS module. In particular, the IMU employs an ADIS16470
series MEMS-grade IMU, and the GNSS module is equipped with the UM982 receiver chip
from UNICORECOMM company. Additionally, we set the data sampling frequencies for
the IMU and the GNSS receiver to 200 Hz and 1 Hz, respectively. To ensure the precise
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comparison of error values in the experimental results, this experiment used a navigation
system equipped with a high-precision fiber optic inertial navigation component, the PN133,
as a reference. The output results of this system will serve as the benchmark reference
values for navigation results based on MEMS inertial systems. Figure 3 shows a photograph
of the equipment used in this experiment. Tables 1 and 2 detail the specific parameters
of the inertial sensors of the experimental and reference systems for further technical
comparison and analysis.

Figure 3. Pictures of installed experimental equipment.

Table 1. TNAV100 MEMS specifications.

Gyros Accelerometer

Bias Instability 8 deg/h 10 µg
Nonlinearity ±0.25%FS 1.5%FS

Random Walk 0.35 deg/sqrt(h) 0.04 m/s/sqrt(h)
Bandwidths 550 Hz 600 Hz

Table 2. Reference system performance parameters.

Reference system accuracy

Position
Speed

Vertical Attitude Accuracy
Horizontal Attitude Accuracy

≤0.05 m
0.02 m/s
0.01 deg

0.005 deg

Gyros

Bias
Bias Instability
Random Walk
Absolute Error

≤0.5 deg/h
≤0.5 deg/h

≤0.05 deg/sqrt(h)
0.01 deg/s

Accelerometer
Bias

Bias Instability
Random Walk

≤0.1 mg
≤5 µg

≤5 µg/sqrt(Hz)

4.2. Performance Comparison: TC vs. LC

This experiment was conducted in the Xiamen area of China, during which the test ve-
hicle traversed various special urban road sections, including urban overpasses, green belts,
high-rise buildings, and underground tunnels. These road sections have a significant im-
pact on the navigation system, and the collected data are thus representative of navigation
in urban environments. The test vehicle passed through these sections at a regular driving
speed, with vehicle operation maneuvers including stationary, acceleration, deceleration,
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and turning, reaching a maximum operating speed of nearly 120 km/h, and experimental
data recording lasted for about 70 min.

During the experiment, the vehicle’s travel trajectory was meticulously recorded,
as shown in Figure 4a, which illustrates the changes in satellite visibility throughout the
entire experimental process. When driving through special road sections, the satellite
observation conditions became adverse due to obstruction by buildings and terrain, lead-
ing to significant fluctuations in the number of visible satellites. This phenomenon was
meticulously recorded during the experiment and is presented in Figure 4b in the form of a
satellite count data graph, reflecting the challenges faced by satellite navigation systems in
complex urban environments.
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Figure 4. (a) A satellite map of the vehicle’s travel trajectory and (b) the variation curves of observable
satellites and HDOP during the experiment.

This study aims to delve into the dynamic characteristics of attitude, velocity, and po-
sition errors during the vehicle’s travel. Figure 5a presents a data graph showing the
performance of the loosely coupled (LC) and tightly coupled (TC) integrated navigation
algorithms in terms of attitude angle errors in the horizontal and vertical directions. This
graph reflects the performance differences between the two algorithms in maintaining the
accuracy of vehicle attitude estimation. Figure 5b provides statistics on the velocity errors
of the LC and TC algorithms in the east, north, and vertical directions, demonstrating
the specific impact of different coupling strategies on the accuracy of velocity estimation.
Finally, Figure 6 details the positional errors of the LC and TC algorithms in the three
spatial dimensions of longitude, latitude, and altitude, showcasing the performance of the
two algorithms in terms of positioning accuracy.
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Figure 5. Performance comparison between LC and TC schemes. (a) Comparison chart of attitude
errors in horizontal and vertical directions. (b) Comparison chart of velocity errors in eastward,
northward, and vertical directions.
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Figure 6. Performance comparison between LC and TC schemes. Comparison chart of positional
errors in the three spatial dimensions of longitude, latitude, and altitude.

Figure 4b shows that there is a relatively long period of GNSS denial from 1500 s to
1700 s into the experiment. During this period, the navigation error results significantly
increase. In addition to this, the experimental data also contain several short periods of
GNSS denial. To effectively compare the performance of the LC scheme and the TC scheme
proposed in this paper, we divide the experimental results into two parts: sections of the
road with normal GNSS signals and the entire route, which includes the aforementioned
long period of GNSS denial. These are presented and analyzed separately. Table 3 summa-
rizes the root mean square error (RMSE) of the two coupling schemes in terms of horizontal
attitude, vertical attitude, velocity, and position estimation. This provides a quantitative
basis for the assessment and a comparison of the performance of the two schemes.

Table 3. RMSE comparison of loose and tight coupling schemes.

Scheme GNSS Normal Section GNSS Denial Section

Loose

Horizontal attitude (deg): 0.210
Vertical attitude (deg): 1.59

Velocity (m/s): 0.032
Position (m): 2.81

Velocity (m/s): 0.035
Position (m): 3.88

Tight

Horizontal attitude (deg): 0.078
Vertical attitude (deg): 0.76

Velocity (m/s): 0.026
Position (m): 2.00

Velocity (m/s): 0.028
Position (m): 2.49

From Table 3, it can be seen that the experimental results for both types of road sections
show that the TC scheme provided in this paper performs better than the LC scheme in
terms of attitude, velocity, and position estimation accuracy. The specific improvements are
as follows:

(1) For the GNSS normal road section experimental results, compared with LC, the TC
scheme reduced the RMSE of the horizontal attitude from 0.210 degrees to 0.078 de-
grees, the RMSE of the vertical attitude from 1.59 degrees to 0.76 degrees, the RMSE
of velocity from 0.032 m/s to 0.026 m/s, and the RMSE of position from 2.81 m to
2.00 m. These improvements correspond to approximately 62.68%, 52.20%, 18.75%,
and 28.82% increases in accuracy, respectively.

(2) For the experimental results of the road section containing GNSS denial, the TC
scheme also shows a significant improvement over the LC scheme. In terms of
velocity and position estimation, the TC scheme achieved approximately 20.00% and
35.82% increases in accuracy compared to the LC scheme.
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4.3. Performance Comparison: With VG vs. without VG

For the same dataset as in Section 4.2, this study verified the robustness of the VG
pitch and roll observations on the attitude filtering results under GNSS denial conditions
through simulation of the dataset. The error comparison charts shown in Figure 7a–c,
respectively, demonstrate the performance of the TC integrated navigation algorithm in
terms of horizontal and vertical attitude angle errors, velocity errors, and position errors
for this set of data with and without VG correction.
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Figure 7. Performance comparison between with VG and without VG. (a) Comparison chart of
attitude errors in horizontal and vertical directions. (b) Comparison chart of velocity errors in
eastward, northward, and vertical directions. (c) Comparison chart of positional errors in the three
spatial dimensions of longitude, latitude, and altitude.

From the experimental attitude error in Figure 7a, it can be clearly observed that
during the long period of GNSS denial from 1500 s to 1700 s, the correction effect of the
VG on the estimation of the horizontal attitude angle is quite significant, with the peak
of the maximum error being significantly lower than that of the filtering scheme without
VG correction. However, there is no significant improvement in the vertical attitude error,
velocity error, or position error. To more accurately quantify the effect of VG correction,
Table 4 summarizes the RMSE of the two observation schemes in the estimation of the AVP
(attitude, velocity, position).

Table 4. Comparison of AVP RMSE with and without VG correction.

Without VG With VG

Horizontal attitude (deg) 0.108 0.078
Vertical attitude (deg) 0.80 0.76

Velocity (m/s) 0.031 0.028
Position (m) 2.69 2.39

Consistent with the analysis of various error result graphs, Table 4 shows that the VG
has a certain optimization effect on the AVP estimation accuracy of the carrier, with signif-
icant optimization in the horizontal attitude angle. Specifically, the VG scheme reduced
the RMSE of the horizontal attitude from 0.108 degrees to 0.078 degrees, the RMSE of the
vertical attitude from 0.80 degrees to 0.76 degrees, the RMSE of velocity from 0.031 m/s
to 0.028 m/s, and the RMSE of position from 2.69 m to 2.39 m. These improvements
correspond to approximately 27.78%, 5.00%, 9.68%, and 11.09% increases in accuracy,
respectively.

Based on the aforementioned analysis, we have recognized the significant effect of the
VG in optimizing the estimation of the horizontal attitude. Given that the improvement
effects of the VG on the estimation of other state quantities are not obvious, this study will
not delve further into these aspects. To further verify the optimizing effect of the VG on
the estimation of the horizontal attitude angle and to examine its ability to suppress the
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divergence of the estimation in the carrier under conditions of weakened or denied GNSS
signals, this study intentionally introduced periods where GNSS signals are unavailable to
simulate extreme situations of GNSS signal denial and conduct a detailed analysis. To this
end, we actively added four periods of GNSS signal denial to the experimental data, located
at 500 to 600 s, 2500 to 2600 s, 3400 to 3500 s, and 4000 to 4100 s, each lasting for 100 s.
Figure 8 presents the horizontal attitude estimation results obtained through simulation
during these specific periods.
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Figure 8. Performance comparison chart of attitude errors in horizontal directions with and
without VG.

The conclusion remains within our expectations: Figure 8 shows that the VG has a
positive optimizing effect on the estimation of the horizontal attitude angle during each
long period of GNSS denial. Table 5 summarizes the RMSE of attitude estimation for
the two observation schemes in both the global time period and the period containing
only GNSS denial. Specifically, during the global time period, the VG scheme reduced
the RMSE of the horizontal attitude from 0.149 degrees to 0.081 degrees, and during the
period containing only GNSS denial, it was reduced from 0.240 degrees to 0.098 degrees.
The optimizations in these two types of periods correspond to improvements of 45.63%
and 59.17%, respectively.

Table 5. Horizontal attitude RMSE comparison with and without VG in different periods.

Without VG With VG

Global 0.149 0.081
GNSS denial period 0.240 0.098

4.4. Satellite Selection Algorithm Results

To verify the greater capability of the weighted quasi-optimal satellite selection al-
gorithm presented in this paper for engineering applications compared to the optimal
satellite selection algorithm, this experiment compared the quality of satellite selection and
performance between the two algorithms. The data used in this experiment were collected
in an open area with satellite signals from the GPS and BDS systems. Figure 9a shows the
trajectory of the experimental carrier. Figure 9b, on the other hand, displays the number of
satellites and the GDOP values for all satellites during the experiment.

Before starting the comparative experiment, it was necessary to determine the number
of satellites selected for our experiment. Although there are no strict requirements for the
number of satellites selected, we need to follow a principle that, while ensuring the satellite
navigation positioning accuracy meets requirements, the number of selected satellites
should be as small as possible. The advantage of doing so lies in the fact that it can
reduce the computational scale in the integrated navigation solution, thereby lowering
computational complexity and minimizing the potential impact on the accuracy of error
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estimation. Our approach is to first use the optimal satellite selection algorithm to calculate
the optimal GDOP values at various times for 6 to 17 satellites. Based on these calculations,
we further plot the curve of the average GDOP values under different numbers of satellites.
Through a detailed analysis of this curve, we can select the optimal number of satellites.
In addition, according to the satellite count graph shown in Figure 9b, we observe that
the maximum number of visible satellites is 18. Therefore, when selecting the number of
satellites, we limit the maximum number of considered satellites to 17.
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Figure 9. (a) The vehicle’s travel trajectory and (b) the variation curves of observable satellites and
the GDOP during the experiment.

The GDOP variation curve for the optimal satellite selection algorithm under various
numbers of selected satellites is shown in Figure 10a. It can be visually observed that
as the number of selected satellites increases, the GDOP values at each moment do not
decrease uniformly, but rather, the rate of decrease gradually slows down. To more clearly
demonstrate this rate of decrease, the curve of the average best GDOP values for each
number of selected satellites is displayed in Figure 10b. The results show that when the
number of selected satellites is between 6 and 8, the GDOP value changes by about 0.1;
between 8 and 10, the change is around 0.06; and between 10 and 12, the change is close to
0.03. Beyond 12 satellites, this change drops to about 0.01. Therefore, in order to balance
the reduction in the GDOP and keep the number of selected satellites as small as possible,
we selected 12 satellites for the experiment.
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Figure 10. (a) The GDOP variation curve under various numbers of selected satellites, where the
GDOP decreases as the number of selected satellites increases. (b) The curve showing the variation in
the average best GDOP values for each number of selected satellites.

After determining the number of selected satellites, we conducted simulation experi-
ments for the optimal satellite selection algorithm (OSA), QOSA, and WQOSA. The results
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of the experiments are shown in Figure 11a, which illustrates the GDOP variation curves.
The figure demonstrates that the GDOP variation curves of the QOSA and WQOSA, af-
ter satellite selection, exhibit a similar trend to those obtained by the OSA. However, overall,
the GDOP values of the WQOSA and QOSA are slightly higher than those of the OSA.
The GDOP values of the WQOSA range from 1.5 to 2.5, with occasional values close to
3, but they still fall within the range of excellent positioning accuracy. Through calcula-
tions, we obtained average GDOP values of approximately 1.628 for the OSA, 1.785 for
the QOSA, and 1.809 for the WQOSA. We also analyzed the differences among the three
methods and plotted two GDOP difference curves. From these curves, it can be observed
that the difference between the WQOSA and OSA fluctuates between 0 and 0.5, with an
average difference of approximately 0.1815. The average difference between the QOSA and
WQOSA is 0.0424. Although the WQOA’s GDOP is slightly higher than that of the QOSA,
the difference is relatively small.
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Figure 11. (a) The GDOP curves for the OSA and WQOSA satellite selection, along with the GDOP
difference curve. (b) The variation curves of the satellite selection time consumption for the OSA and
WQOSA using the experimental data.

The above analysis shows that the difference in satellite selection results between
the WQOSA and OSA is very small, and the quality of satellite selection is very close.
To further evaluate the performance of the two, we also compared the time consumption
during the execution process. We analyzed the running times of the two algorithms within
each time element and plotted the running time comparison chart between the OSA and
WQOSA, as shown in Figure 11b. From the chart, it can be clearly observed that there
is a significant difference in the order of magnitude of time consumption between the
two algorithms. After calculation, we found that the average running time of the OSA
is 0.1057 s, while the average running time of the WQOSA is only 0.0002723 s, which is
about a 388 times difference. Considering the 200 Hz sampling frequency of the IMU, our
system must complete one round of correction calculation within 5 ms to meet real-time
requirements. Obviously, the running time of the OSA is far beyond this limit. On the
contrary, the running time of the WQOSA, which is 0.27 ms, not only is far below the
threshold of 5 ms but also meets this condition even in the worst case in this set of data.
Therefore, the WQOSA not only has comparable satellite selection quality to the OSA but
also has a clear advantage in running time, which can fully meet our requirements for
high-performance integrated navigation systems.

To verify the improvement of the WQOSA over the QOSA in satellite selection qual-
ity, we conducted a comparative experiment between the two algorithms. Following
Equation (17), we used the standard deviation of pseudo-range measurement errors as a
substitute for UERE [30] and analyzed the average pseudo-range error standard deviation
of the satellite selection results for both algorithms. A comparison graph, as shown in
Figure 12a, was plotted accordingly. The results in Table 6 show that the WQOSA outper-
forms the QOSA in this metric, with specific average values of 1.787 (WQOSA) and 2.237
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(QOSA). This aligns with our expectations, as the WQOSA considers additional influencing
factors beyond the satellite distribution during the satellite selection process.

Table 6. The average curves of psr-std and nav-err in the mentioned time period for the WQOSA
and QOSA.

Mean Psr-Std Mean Nav-Err

WQOSA 1.787 3.241
QOSA 2.237 3.941
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Figure 12. Every satellite selected in the WQOSA and QOSA has a standard deviation of the pseudo-
range error (psr-std). (a) By taking the average of all psr-std values, we plot the mean values of
psr-std over the experimental time period in the chart. (b) Additionally, we also plot the mean curve
of the navigation error standard deviation (nav-err) for the corresponding time intervals.

Finally, we comprehensively evaluated the satellite selection quality of both algo-
rithms by considering both the GDOP and UERE. The average pseudo-range error standard
deviation at each time point was multiplied by the GDOP, and the results are shown in
Figure 12b. This yielded the navigation error standard deviation curves for both algorithms.
It is evident that in certain time intervals, the satellites selected by both algorithms com-
pletely overlap, resulting in consistent curves during that period. However, for the majority
of the time, the WQOSA exhibits a significantly smaller error standard deviation compared
to the QOSA. Specifically, the average values of the two curves are 3.241 (WQOSA) and
3.941 (QOSA). In conclusion, the WQOSA demonstrates superior satellite selection quality
over the QOSA.

5. Discussion

The simulation experiments carried out in this study comprehensively evaluate the
proposed tightly coupled GNSS/INS navigation system, focusing on the accuracy, ro-
bustness, and computational efficiency of the system. Our results demonstrate several
key findings.

Firstly, the proposed combined navigation scheme shows a significant improvement
in state estimation accuracy compared to the LC navigation system. Even in environments
with poor satellite observation conditions, the TC system provides a reliable attitude esti-
mation. This robustness is attributed to the multi-source data fusion, which includes the
pseudo-range, pseudo-range rate, and dual-antenna observation from the GNSS and the
horizontal attitude angle from the VG. The VG algorithm is particularly effective in correct-
ing horizontal attitude errors during periods of GNSS signal degradation, thereby enhanc-
ing the overall stability of the navigation solution. Secondly, the weighted quasi-optimal
satellite selection algorithm proposed in this paper effectively reduces the computational
burden of the navigation system without compromising the accuracy of the observation
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data. By selectively screening observable satellites, the algorithm maintains high compu-
tational efficiency, which is crucial for real-time navigation applications. The comparison
experiments with the OSA and QOSA highlight the advantages of our method in terms of
both computational efficiency and engineering practicability.

The performance of the TC system under non-line-of-sight (NLOS) conditions and
multipath effects also warrants discussion. Although the TC scheme maintains navigation
functionality in such environments, errors introduced by NLOS reception and multipath
can still be significant. Future work could explore the incorporation of advanced multipath
mitigation techniques or the integration of additional complementary sensors to further
enhance system performance.

In terms of practical applications, the reduced computational load and improved
accuracy make the proposed system highly suitable for smart driving vehicles and other
civilian carriers where cost and real-time performance are critical factors. The integration
of the VG algorithm and the weighted quasi-optimal satellite selection algorithm presents a
balanced approach that addresses both the accuracy and efficiency requirements of modern
navigation systems.

In conclusion, the proposed tightly coupled GNSS/INS navigation system with multi-
source data fusion and an optimized satellite selection algorithm demonstrates significant
improvements in navigation accuracy, robustness, and computational efficiency. These
results support the feasibility of deploying such systems in real-world applications where
high precision and reliability are essential.

6. Conclusions

In this study, we propose a dual-observation tightly coupled state estimation naviga-
tion system based on a GNSS and VG. This system integrates observation data from the dual
antennas of the GNSS, including pseudo-ranges and pseudo-range rates, as well as horizon-
tal attitude data from the VG. Through simulation experiments with vehicle-borne data, we
have demonstrated that the method proposed in this paper provides certain improvements
in navigation state accuracy compared to the filtering method of loosely coupled state
estimation. Furthermore, in environments with sparse measurements, such as during GNSS
denial, the dual-observation scheme in this paper can effectively enhance the robustness of
the navigation system. At the same time, in response to the large computational load and
memory overflow issues of embedded systems brought about by a multi-satellite and multi-
frequency GNSS, this paper proposes a weighted quasi-optimal satellite selection algorithm.
By comparing it with the enumerative form of the optimal satellite selection algorithm in
experimental tests, it is proven that the weighted quasi-optimal satellite selection algorithm
has significant advantages in both engineering practicality and performance.
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