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Abstract

:

The sudden development of systems capable of rapidly acquiring dense point clouds has underscored the importance of data processing and pre-processing prior to modeling. This work presents the implementation of a denoising algorithm for point clouds acquired with LiDAR SLAM systems, aimed at optimizing data processing and the reconstruction of surveyed object geometries for graphical rendering and modeling. Implemented in a MATLAB environment, the algorithm utilizes an approximate modeling of a reference surface with Poisson’s model and a statistical analysis of the distances between the original point cloud and the reconstructed surface. Tested on point clouds from historically significant buildings with complex geometries scanned with three different SLAM systems, the results demonstrate a satisfactory reduction in point density to approximately one third of the original. The filtering process effectively removed about 50% of the points while preserving essential details, facilitating improved restitution and modeling of architectural and structural elements. This approach serves as a valuable tool for noise removal in SLAM-derived datasets, enhancing the accuracy of architectural surveying and heritage documentation.
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1. Introduction


Over the past two decades, 3D modeling using laser scanning techniques based on LiDAR (Light Detection and Ranging) technology has been applied in multiple fields, such as industry, construction, and cultural heritage management [1,2,3,4]. Currently, data acquisition can be performed using static-mode instruments, which require multiple stations to acquire the entire scene, or using mobile systems, which are capable of acquiring data dynamically, i.e., while in motion.



The Mobile Laser Scanner (MLS) technique, based on LiDAR technology, has applications in multiple areas due to its ability to acquire very dense point clouds on a large scale, rapidly scanning large volumes of surfaces with sub-centimeter accuracy [5,6,7]. However, these systems are expensive, primarily because of the embedded inertial system, and cannot be used in indoor environments due to their reliance on Global Navigation Satellite Systems (GNSS) [8].



A possible solution is Indoor Mobile Mapping Systems (IMMS) [9,10], which are similar to MLSs in that they allow on-the-fly acquisition by combining different active or passive sensors. However, they differ in terms of their lower cost, making them attractive to independent professionals and small businesses, and because they do not rely on the GNSS positioning system [11]. Among these IMMS, systems based on the Simultaneous Localization and Mapping (SLAM) technique [12] are among the most versatile, as they find application in numerous fields such as robotics, Building Information Modeling (BIM), and Digital Twin (DT). SLAM algorithms reconstruct a map of the surrounding environment in real time while simultaneously locating the position of the moving mobile platform within the map. Depending on the sensors used, SLAM algorithms can integrate LiDAR sensors (LiDAR SLAM) [13,14] or cameras (Visual SLAM) [15,16].



In recent years, LiDAR SLAM systems have evolved rapidly. They are now capable of acquiring dense point clouds at very high frequencies and at distances that are not too short (up to 80–100 m) and are often used in architectural and cultural heritage fields [17]. However, there is a greater uncertainty of measurement related to the operating principle, which affects the quality of the output data. This results in less accurate and noisier point clouds compared to those acquired with systems that do not use SLAM technology [18].



Noisy point clouds hinder accurate and effective 3D modeling, as they fail to clearly distinguish the various constituent elements of facades or the structural details of buildings, such as the intricate decorations of historically significant structures [19,20].



Some authors have highlighted the challenges of integrating point clouds acquired by LiDAR SLAM systems with those obtained through photogrammetric and laser scanner techniques in the context of cultural heritage [17,21,22]. These studies underline the importance of data accuracy analysis and noise filtering as critical steps for successful integration with other data sources. Among the advantages of LiDAR SLAM systems is the elimination of time-consuming manual post-processing steps for registration and alignment, as the point cloud is already registered in its local coordinate system.



For these reasons, the development of robust denoising algorithms that are reliable and do not excessively manipulate the scanned object is currently the subject of much research [23]. The purpose of such filtering algorithms is to remove noise from the point cloud while preserving its geometric characteristics. Often, a filtering process inevitably results in a loss of detail in the original point cloud; for these reasons, there remains the challenge of identifying a process that achieves a proper balance between preserving the level of detail and reducing noise. Another aspect that should characterize a denoising algorithm is the ability to be self-tuning [24], i.e., not requiring the mathematical model of noise or geometric parameters of the object, such as curvature, as input.



A comprehensive review of the main denoising techniques has been conducted by Xian-Feng Han et al. [25] and Zhou et al. [26]. From the study of relevant literature, it can be seen that although there are many advanced denoising algorithms, data processing remains a crucial and challenging task since there is no single solution. The numerous approaches for denoising point clouds can be classified into five macro-categories based on their criteria: (i) statistical-based, (ii) neighborhood-based, (iii) projection-based, (iv) PDEs-based filtering, and (v) hybrid filtering techniques. It is worth pointing out that there are very few filtering algorithms that exploit only one criterion. In fact, most of the analyzed methodologies integrate multiple denoising criteria, making the algorithms primarily hybrid in nature.



Statistical-based approaches (i) use statistical and probabilistic techniques for the identification and removal of outliers. For example, the algorithm proposed by Shall et al. [27] uses a kernel-based clustering approach and a local likelihood measure associated with each point in the point cloud, expressing the probability that a point is on the exact surface. This methodology returns good results, but sharp edges tend to be smoothed. Avron et al. [28] introduced the L1-sparsity paradigm to denoise the point cloud. Although this method can return good results, points at sharp edges are often removed. There are also other effective methodologies based on the sparse reconstruction principle [29,30]. Narváez et al. [31] propose a weighted variant of the principal component analysis method. This methodology preserves the sharp features of the original surface; however, it does not consider the local curvature, which would improve the denoising results. In contrast, an approach whose limitations include the inability to preserve sharp features is the methodology based on Bayesian statistics [32]. This method exploits edge probability based on curvature values and works only if the noise level is below the curvature threshold that distinguishes edges. There are also algorithms such as curvature extraction [33], which focus primarily on optimal mesh reconstruction rather than cloud filtering.



The neighborhood-based approach (ii) analyzes points close to the generic candidate point for identification and removal of outliers, so the characteristics of neighboring points strongly influence the result. Among these methods are the nonlocal-based methods [34,35,36,37], which remove noise from the point cloud by preserving edges and corners through the identification of self-similarities between non-local patches, except for singular geometries, such as points that have no similarities with their surroundings. One smoothing filter in this category that has been found to be very effective because it tends to preserve edges (edge-preserving) is the bilateral filter, introduced by Tomasi and Manduchi [38] and later used for 3D mesh denoising [39]. Other researchers have used similar methodologies to the bilateral filter, finding it to be very effective [40]. Another category is graph-based denoising methods, which require some geometric features a priori [41,42,43,44].



The projection-based filtering approach (iii) is founded upon projecting original cloud points onto a smooth surface previously interpolated from noisy data using various methods, such as the moving least squares surface [45,46,47]. Generally, these methods vary based on the construction of the smooth surface and the type of projection employed to map the cloud points onto it. Among the most recognized methods is Locally Optimal Projection (LOP) [48,49], which utilizes a novel resampling algorithm to convert noisy scan data into a clean point set surface with reliable normals. The algorithm comprises two phases: an edge-aware method that computes dependable normals away from surface singularities, followed by a bilateral projector that progressively refines towards these singularities. However, this method lacks a local adaptive parameter to control and enhance the sharpness of the final output. Another commonly used method is jet fitting [50], where a jet represents a truncated Taylor expansion. The rationale behind using jets is their ability to encode all local geometric properties, such as normals or curvatures.



The PDE-based filtering approach (iv) relies on partial differential equations, which have proven effective in denoising images, point clouds, or meshes while preserving the main features of the objects [51,52]. This approach is often complemented by other criteria mentioned earlier.



The literature emphasizes the necessity of implementing filtering methodologies tailored to specific applications to reduce computational time. In this regard, several attempts have been made using hybrid filtering techniques (v), which combine two or more filtering methods to process raw point clouds [53,54].



Artificial intelligence (AI) has advanced significantly in recent years, with deep learning-based methods complementing traditional approaches by achieving impressive results in denoising, particularly in neural network architectures tailored for point clouds [26,55]. Deep learning-based denoising methods are categorized into supervised and unsupervised approaches [26]. Supervised methods utilize learning techniques and are further classified into PointNet-based, convolution-based, and autoencoder-based methods, depending on the specific network architecture employed.



The PointNet-based network [56] is well-known for its simplicity and effectiveness, providing a unified framework for a variety of 3D recognition tasks, including object classification and semantic segmentation. Over time, researchers have developed variants of the original PointNet architecture, such as PCPNet [57], which estimates local 3D shape properties in point clouds. PCPNet exhibits robust performance even in the presence of significant noise and outperforms traditional denoising methods, such as bilateral filtering and jet fitting. However, it remains sensitive to outliers and can cause shrinkage of the point cloud. A common limitation of PointNet-based methods is their inability to consider the local neighborhood structure of points. To address this, PointNet++ [56] builds on the original approach by incorporating graph convolution network structures, enabling improved capture of local structural features in point cloud data.



Additionally, these networks cannot learn hierarchical feature representations like standard convolutional neural networks (CNNs). For these reasons, convolution-based architectures have been introduced for point cloud denoising.



Among the methodologies based on CNN architectures, the best known are PointProNet [58], EC-Net [59], and 3PU [60]. These methods, which are very effective, primarily focus on upsampling the point cloud. However, all these methods may be inefficient when dealing with highly noisy point clouds, large holes, or extreme sharp edge objects. An example of convolution-based architecture is the one presented by Pistilli et al. [61], a Graph-Convolutional Point Denoising Network (GPDNet) that uses graph-convolutional layers and is robust even with high levels of noise.



Finally, there are methods based on autoencoder architectures, which essentially consist of three layers: encoder, code, and decoder. Among the most well-known methodologies based on this type of architecture is Pointfilter [62].



Although the differences among algorithms based on supervised training are quite remarkable, they primarily involve the combination of various architectures and loss functions [26]. Supervised approaches show good results in denoising point clouds when trained on large datasets consisting of many pairs of filtered and noisy point clouds. However, producing these datasets is still time-consuming and expensive. When the point cloud to be filtered differs significantly from the dataset used for training, there is a severe degradation in the final output performance.



In such cases, unsupervised deep learning methods can be an ideal solution to overcome this limitation. Unsupervised methods are based on learning methodologies that, unlike supervised methods, do not require a specific labeled dataset for training (i.e., pairs of filtered and noisy clouds). Among the most common methods are total denoising [63], which is sensitive to outliers; the methodology introduced by Chen et al. [64], featuring encoders with a PointNet-like architecture that are equally effective; and the method proposed by Luo et al. [55], which is more versatile due to its mixed supervised and unsupervised approach. Overall, most deep learning-based techniques learn denoising patterns from pairs of noisy and filtered synthetic point clouds. However, algorithms based on traditional methods and those based on deep learning still show limited performance in both reducing real-world noise [64,65], where the noise is much more complex and varies depending on the environment and sensors [66], and filtering point clouds of complex structures that contain not only sharp features (sharp edges, sharp corners, etc.) but also smooth and fine features [67]. Most of the analyzed studies report tests conducted on small objects or environments.



A recent and innovative filtering algorithm was introduced by Dasith de Silva et al. [68]. The results are highly promising for both synthetic data and real architectural datasets, outperforming even advanced deep learning-based filtering algorithms, as demonstrated by comparative analyses. Nonetheless, the algorithm may exhibit low performance when applied to point clouds with low density or inhomogeneous spatial distribution, common characteristics of data acquired using LiDAR SLAM systems.



Our work involves the study of a new hybrid-type denoising algorithm that combines statistical-based and projection-based criteria to remove noise from the original point clouds, optimizing the modeling and final restitution of monumental buildings of architectural interest, which consist of complex geometries. The denoising algorithm, implemented in the MATLAB environment, is based on the approximate modeling of a mesh surface using the Poisson model proposed by Kazhdan et al. [69], a method suitable for modeling noisy point clouds, and the statistical analysis of the distances between the original point cloud and the reconstructed approximate surface. The introduced methodology is not intended to replace established methods found in the literature but aims to make a specific contribution to the processing of data from LiDAR SLAM systems designed specifically for architectural surveying.



The algorithm has been implemented using MATLAB’s AppDesigner R2024b, making it available for use and testing by interested parties. It can be accessed via a link in the “Data Availability Statement” section, subject to the conditions outlined there.




2. Test Cases


The filtering algorithm was tested on SLAM point clouds acquired on objects with complex geometries and/or architectures, characterized by irregular surfaces and fine details that make accurate geometry reconstruction, data restitution, and 3D modeling particularly challenging. SLAM technology, although powerful, tends to generate noise in complex environments, and the proposed algorithm aims to reduce these defects to improve the accuracy of spatial representation.



The first test case is the facade of the Palazzo Fraternità dei Laici in Piazza Grande in Arezzo, Italy (Figure 1). Its construction began in the second half of the 14th century and lasted for nearly two centuries. The facade of the palazzo consists of two adjacent parts: one in the Gothic style, characterized by pointed arches and more elaborate decorations, and the other in the Renaissance style, with more sober lines and rectangular windows, reflecting the stylistic evolution of the building over time.



On the lower part of the Gothic facade are several columns, four of which are vine-shaped, a splayed gate in the center with two single-lancet windows on the sides, and a frescoed lunette. Higher up, two overhangs are noted: the first houses a sculptural group with two lateral rectangular elements and a central semicircular one; the second contains a loggia with an amphora-patterned balustrade and a wooden structure supporting the roof. Finally, the top sail, with three bells and one of the oldest clocks still in operation, completes the facade.



The other two test areas are located in Cetara (SA, Italy): the Viceroy Tower and the church of San Pietro Apostolo (Figure 2a,b).



The Viceroy Tower (Figure 2c) is located near a cliff and has a complex geometry, consisting of a square truncated pyramid base, a double-height square tower with thrones on the sides, and an ovoid Angevin cylindrical tower, partially overlapping and connected by a tunnel. In addition, there is a turret connected by a small bridge. The structure has seven levels: three below the level of the Costiera road, one at street level, and three above, built successively with different materials and techniques.



The church of San Pietro Apostolo is a Christian basilica in the shape of a Latin cross (Figure 2d), with a double-pitched roof and access from a churchyard at the top of a flight of steps. The facade is plastered and has two pilasters with Ionic capitals on either side of the entrance portal, made of bronze and decorated with figures of Saints Peter and Andrew as fishermen. To the right stands a bell tower over 18 m high, with a rectangular base in the first three levels and an octagonal base in the later ones, equipped with mullioned windows on each side. In the center of the transept is a hemispherical dome covered with majolica tiles in the Amalfi Coast style, with four windows in the drum. The interior has a barrel-vaulted nave and side altars, while a walkway connects four chapels. The interior is adorned with plaster and stucco work, features a white marble floor, and has composite pilasters with false Corinthian capitals supporting an entablature. The chancel, raised and enclosed by a marble balustrade, houses the high altar, while behind it is a stained-glass window on the back wall of the apse.



For the first test case (Arezzo), three different datasets acquired with the following instruments were used: (i) ZEB Horizon (GeoSLAM, Ruddington, UK), (ii) BLK2GO (Leica, Heerbrugg, Switzerland), and (iii) XH120 (Stonex, Lissone, Italy). The acquisitions covered the main facade of the palace and were made for the benchmark carried out at the National Conference of the Italian Society of Photogrammetry and Topography (SIFET). The two study areas located in the municipality of Cetara were acquired using the ZEB Horizon (GeoSLAM) system. Table 1 presents the main characteristics of the three SLAM systems used.




3. Methods


The denoising algorithm implemented can be classified as hybrid because it combines statistical-based and projection-based criteria [25]. Specifically, the statistical criterion is used to retain only those points with distances, relative to the reference surface, contained within the given confidence interval. The reference surface fits the noisy points, as in projection-based methodologies, but without projecting the point cloud onto a surface. Denoising is carried out on the point cloud directly acquired by SLAM and treated by open-source software and does not require the use of the proprietary software of the instrument used.



Figure 3 illustrates the workflow of the entire processing procedure. In detail, given the point cloud as input, the algorithm works on cutting the cloud using voxels having assigned sizes (Lbox) and partially overlapping by an aliquot Δ (Figure 3) (by default equal to 1/20 of Lbox). The overlap is needed to remove the edge effect that occurs when reconstructing the approximate surface. The size of the voxel depends on the geometric complexity of the object; by default, for buildings, the value of Lbox is set equal to 2 m. Each point cloud contained in a voxel will be referred to as a sub-cloud from now on. For each sub-cloud extracted, the algorithm performs the following tasks:




	
Generation of the approximate reference surface using the Poisson model.



	
Calculation of the point-surface distance that outputs a vector containing the distances between the point cloud and the generated surface; the sign is assigned according to the direction of the normal to the mesh face and is positive if concordant with the normal to the mesh face.



	
Statistical analysis of the distance vectors to interpolate a Gaussian distribution on the frequency distribution of the distances and then estimation of the confidence interval corresponding to a standard deviation of 0.5 σ (38.29%).



	
Extraction of the points with associated distances within the chosen confidence interval and the generation of the filtered sub-cloud.



	
Elimination of points in the Δ overlap range.








When the process is over, the algorithm merges all filtered sub-clouds into a single point cloud so that it can be used in subsequent modeling steps.



3.1. Modeling the Reference Surface with Poisson’s Model


The first step involves the construction of the approximate reference surface of the sub-cloud using the Poisson model. The algorithm for generating the Poisson surface is based on the methodology introduced by Kazhdan et al. [69] that solves a regularized optimization problem to obtain a smooth surface. The methodological flow consists of three main steps: (i) transform the point samples into a continuous vector field; (ii) solve a Poisson system, containing 3-D Laplacian equations, to find a function whose gradient best describes the point cloud; and (iii) reconstruct the surface from the function equation.



The input parameter for reconstructing the surface is the octree depth, which directly influences the surface resolution. Increasing the octree depth enables the use of higher-resolution functions to fit the indicator function, allowing the reconstructions to capture finer details. This parameter is also used to generate the 3D grid; for example, an octree depth value of 6 corresponds to a 3D grid resolution of 26 (643).



The combination of the octree depth parameter with the voxel size determines the level of detail in the reconstructed surface. An increase in octree depth, combined with a concomitant decrease in LBox, proves more effective for capturing complex geometric features. Conversely, a decrease in octree depth, combined with an increase in LBox, proves more effective for buildings with fewer architectural details.



The Poisson surface is optimal for very noisy point clouds; in the process of generating the surface, new vertices are generated that essentially mediate the positions of the points in the input cloud, consequently lowering the noise. In addition, a two-manifold mesh [70] is always produced that is closed and well oriented. This last aspect is essential for the next step of calculating distances and in associating the sign as a function of the direction of the normal to the mesh face.




3.2. Calculation of Surface-to-Point Distance


The next step (2) relates to the calculation of the distance between the generic point of the sub-cloud and the reference surface, generated with Poisson’s model. For each point belonging to the sub-cloud, the algorithm calculates the shortest distance between the mesh face and the point; we refer to the mesh because the reference surface consists of a mesh generated with the Poisson model.



The structure of the output mesh is composed of two matrices: (i) the matrix containing the 3D coordinates of the vertices of the triangles (nodes) and (ii) the connectivity matrix, containing the row indices of the matrix of the vertices of the triangles of each individual face that is used for connecting the nodes that concur in the generation of the generic mesh face. Thus, the mesh face consists of three vertices, connected through the information contained in the connectivity matrix; the distance will be calculated between the generic (i-th) point of the sub-cloud and the plane passing through the three vertices (nodes) of the (j-th) mesh face. The distance of the i-th point of the sub-cloud to the reference surface is calculated as follows:


   D i  =       a j   x i  +  b j   y i  +  c j   z i  +  d j         a j 2  +  b j 2  +  c j 2        



(1)




where      x i  ,  y i  ,  z i      are the coordinates of the i-th point of the sub-cloud in the local orthogonal system     X , Y , Z    , and      a j  ,  b j  ,  c j  ,  d j      are the coefficients of the general equation of the j-th plane passing through the nodes of the j-th mesh face of the reference surface, close to the point. The coefficients      a j  ,  b j  ,  c j      coincide with the components of the vector normal to the j-th plane     n ¯  j  = [  a j  ,  b j  ,  c j  ]  . The coefficient is calculated as follows:


   d j  = −    a j   x j  +  b j   y j  +  c j   z j     



(2)




where      x j  ,  y j  ,  z j      are the coordinates of a point belonging to the j-th plane, for example, the coordinates of a node of the j-th mesh.



The normal of the j-th plane is calculated by the vector product:


   n ¯  =    Q ¯  −  N ¯    ×    K ¯  −  N ¯     



(3)




where      N ¯  ,  Q ¯  ,  K ¯      are vectors containing the 3D coordinates     X , Y , Z     of the first, second, and third vertices (nodes) of the j-th mesh face, respectively. To speed up the algorithm, the j-th mesh face is chosen so that its centroid is the point closest to the i-th point of the sub-cloud.



This gives a vector   D ∈  ℝ  n , 1     having a number of rows n equal to the number of points in the sub-cloud and containing the distances with the associated sign as a function of the direction of the normal to the mesh face; in particular, the sign is positive if the direction (face-point) is concordant with the normal.




3.3. Statistical Analysis of Distances


The third step (3) involves the statistical analysis of the vector of distances   D ∈  ℝ  n , 1     to remove all points in the sub-cloud outside the chosen confidence interval. To estimate the confidence interval corresponding to the standard deviation given in input, a Gaussian probability density function is interpolated to the frequency distribution of the distances. We are thus assuming that the noise is of Gaussian type, meaning that the noise has a normal distribution as its probability density function [71].



In our case, the vector of distances   D ∈  ℝ  n , 1     with respect to the reference surface is understood as noise and assumes a causal pattern; that is, it represents the fluctuation of the casual errors produced by the instrument during acquisition with respect to the “real” surface represented by the reference surface generated with the Poisson model.



Even in the relevant literature, noise is often assumed to be of Gaussian type [23,26,72,73]; for example, to train denoising ML models or for automatic object classification, Gaussian-type noise is added to synthetic or cleaned clouds. This is because the noise is assumed to be produced by a casual error, i.e., dependent on the survey environment and the survey instrument used, and these noise fluctuations have quite different patterns from systematic or gross errors.



A normal probability density function is then interpolated to the frequency distribution of the distances contained in the vector. Points with associated distances within a confidence interval corresponding to ±0.5 σ are then extracted. Specifically, the confidence interval is estimated with a confidence level of (1 − α) = 38.29%, corresponding to a significance level α = 61.71%. This two-sided interval assigns a probability of 38.29% that the extracted points within this interval belong to the hypothetical true surface, which is approximated using a Poisson model. The two-sided interval is given by the following relation:


     D ¯  −    σ c    n     ,  D ¯  +    σ c    n        



(4)




where   D ¯   is the sample mean,    σ 2    is the sample variance, and  c  is the centile corresponding to 0.5 σ. This assigns a probability of 38.29% that the extracted points within this interval belong to the hypothetical real surface, approximated by the Poisson model. The sub-cloud points contained in this interval will represent the filtered, noise-free points.



A narrower confidence interval implies greater precision in estimating the actual surface, as it includes only those points that, according to the statistical model, have a higher probability of belonging to the real surface. However, a narrower interval also raises the likelihood of excluding points that actually belong to the surface. Conversely, a wider confidence interval includes more points, increasing the likelihood of capturing all the details of the real surface, but also introduces more noise. Therefore, the choice of the confidence interval must balance the precision of the estimate with the need to accurately represent geometric details.





4. Results


The filter was tested on all acquired datasets. Figure 4 shows an example of filtering a generic sub-cloud extracted from the GeoSLAM dataset of Palazzo di Fraternità dei Laici, with respect to some steps of the process. We observe that the denoising algorithm re-turns good results even in the presence of complex geometries, preserving the edges of the objects, which are sometimes smoothed out in the process of filtering. Furthermore, the accordance of the distance frequency distribution with a normal distribution confirms the hypothesis that the cloud noise can be considered as a random error and thus analyzed as a normal random variable; the t-test is passed for almost all samples.



A series of tests were performed by varying the confidence interval to identify the one that best optimized the performance of the filtering algorithm. Specifically, four tests were conducted using confidence intervals ranging from 0.5 σ to 2 σ, with increments of 0.5 σ. Figure 5 shows the test outputs for a detail of the Palazzo di Fraternità dei Laici, extracted from the GeoSLAM dataset. The filtering parameters remained constant across all tests: LBox = 2 m with default overlap (Δ = 1/20 LBox) and an octree depth = 6. The percentage of points removed, as a function of the confidence interval, exhibits an exponential trend (Figure 5e). The algorithm does not present limitations related to the number of points to be processed, ensuring efficient performance even on large datasets. Using a portable workstation (Lenovo, Beijing, China) with 32 GB of RAM and an Intel(R) Core(TM) i7-10875H CPU @ 2.30 GHz, the algorithm processes approximately 12,000 points per second.



4.1. Palazzo di Fraternità dei Laici


The facade of the Palazzo di Fraternità dei Laici was scanned using LiDAR SLAM systems from three different manufacturers: GeoSLAM, Leica, and Stonex. The three datasets differ in terms of density and point cloud noise. A fourth dataset was added, corresponding to the point cloud acquired with the Leica BLK2GO SLAM, which had already been filtered using the manufacturer’s proprietary software. However, no information is available regarding the filtering process applied to this point cloud. Table 2 provides data on both the original and filtered point clouds from the three instruments.



Figure 6 shows excerpts from the four point clouds focusing on three facade details, along with the corresponding clouds filtered using the proposed algorithm. The columns labeled “Filtered” refer to the outputs of the implemented filtering process, while “Original” refers to the point clouds given as input to the algorithm. The data in the table, combined with a simple visual comparison of the three original point clouds, show that the dataset acquired with the BLK2GO is much denser than the others. This higher density results in a more detailed description of the object’s geometry, which is crucial for historic buildings with complex and articulated shapes. The proprietary software filter (see “Leica Filtered” column) reduces the noise in the original cloud but over-filters the data, leading to a loss of detail.



The BLK2GO cloud is also the most precise, as the Gaussian curves interpolating the distance vectors (cloud-surface) show smaller values within the confidence interval chosen for these datasets, compared to those interpolated from the other datasets.



The cloud acquired with Stonex’s SLAM XH120 system is less noisy but significantly less dense than the others; architectural details of the facade (such as cornices, columns, and bas-reliefs) are not represented with the same level of detail as in the other datasets.



More detailed analyses of the filtering results were conducted on specific portions of the facade, highlighted with zoom-in circles in Figure 7a: the wooden portal of the Renaissance wing of the palace, flanked by two stone half-columns (A); the bell tower housing the clock and three bells (B); and the stone gate of the Gothic wing of the palace, which features two single-lancet windows on either side, surmounted by a frescoed lunette with a sculptural group above it (C). In detail (C), Figure 7b–d display excerpts of the original Figure 7(b1–d1) and filtered Figure 7(b2–d2) point clouds for the three datasets, using the algorithm that was implemented. The parameters used for filtering are consistent across all three: Lbox = 2m with default overlap (Δ = 1/20 Lbox) and an octree depth = 6.



Visual comparison of the original and filtered clouds shows a significant reduction in noise, with the difference being most apparent at the bas-reliefs and statues. The best results are obtained with the denser BLK2GO Leica data, which allows for better representation even in the presence of angular elements (Figure 7(c2)).



The density of the GeoSLAM point cloud generally allows for an accurate representation and modeling of the elements in the facade (Figure 7(b1)). Following the application of the filter (Figure 7(b2)), there is a significant improvement in the architectural details, particularly at angular elements and bas-reliefs. The columns are also well delineated following noise removal.



In this dataset, the noise follows a more pronounced Gaussian distribution compared to the other datasets. This distribution leads to better results in the interpolation phase of the Poisson reference surface, resulting in more effective noise reduction.



In contrast, the low density of the XH120 Stonex point cloud limits the detailed modeling of some elements present in the facade, as seen in Figure 7(d2). Despite this, the removal of noise in the original cloud (Figure 7(d1)) at the edges and shaded areas is notable. It is possible that this dataset had already undergone a filtering process during pre-processing in proprietary software, though there is no information available about this. In such cases, the implemented filtering algorithm does not further reduce the density of the input dataset; nor does it cause a loss of detail. The filtered point cloud remains almost identical to the original due to the minimal noise present. Ultimately, the density of the input data appears to be directly proportional to the effectiveness of the filtering.



The profiles obtained along horizontal and vertical sections of the original and filtered clouds related to the three datasets were visually compared. The thickness of the profiles is fixed at 3 cm.



Figure 8 presents the results for the GeoSLAM dataset on the portal (A) and the bell tower (B). Comparing the profiles before and after filtering reveals that much of the noise present in the original cloud was removed without affecting the characteristic architectural elements of the facade, including the bas-reliefs and statues.



In particular, on the bell tower, along the vertical section line drawn approximately 22 m from the floor level, the comparison of the pre- and post-filtering profiles demonstrates the filter’s effectiveness, even for portions of the cloud far from the scanning center and acquired at a high incidence angle. In the filtered cloud, the profile of the bell, as well as part of the clapper and insulator, now appears sharp.



Figure 9 illustrates the results of filtering on the gate (C) of the point cloud from the BLK2GO dataset. A comparison of the profiles on the original and filtered clouds shows that the filtering process produced a clear reduction in noise while preserving geometric details, especially at the edges and column sections.



Figure 10 presents the results of filtering on the point cloud from the XH120 dataset, specifically on a horizontal section excerpt related to the gate (A). The original point cloud (Figure 10b) appears less noisy and, at the same time, less dense than those of the other two analyzed datasets, resulting in a loss of definition in the architectural details of the facade. This is evident both in the filtered point cloud, which is even less dense than the original (Figure 10c), and in the overlap of the two point clouds (Figure 10d).




4.2. The Viceroy Tower and the Church of San Pietro Apostolo in Cetara


The Viceroy Tower and the Church of S. Pietro Apostolo in Cetara were scanned using the ZEB Horizon GeoSLAM system. The point clouds were filtered with the implemented filter, using the same parameters applied to the Arezzo datasets. Both were also surveyed indoors, and the point clouds were co-registered and aligned with Atlascan software, version 1.3.0 (Teledyne).



Figure 11 shows axonometric cross-sections, a perspective view, the west side, and a horizontal profile obtained by cutting the point cloud of the tower with a 3 cm thick section line. The structure is very complex, developing vertically across several levels, and architecturally, it has no particular bas-reliefs or friezes. The objective of the test on this dataset was to assess the algorithm on more complex point clouds, which are not representative of single facades but involve closed volumes. As seen in the figure (Figure 11a,b), the noise present in the clouds representing the masonry, both interior and exterior, was eliminated while preserving all details useful for modeling (Figure 11d,e).



The original point cloud consisted of approximately 125 million points, with an average density of 16,000 points/m2. Filtering removed about 52% of the points, resulting in a cloud with 60 million points and a density of 13,000 points/m2.



By comparing the original point cloud (Figure 11c) with the filtered one (Figure 11f), it is evident that the filtering process removed most of the noise, including the oblique bands visible along the scan lines of the rotating head. Examining the horizontal profiles of the original and filtered point clouds (Figure 11g–i), one can observe the reduced noise in the filtered cloud compared to the original, while noting that the filtering has not reduced the definition of the constructive details and has preserved the edges.



Figure 12 shows several axonometric cross-sections of the original point cloud (Figure 12a–d) and the filtered one (Figure 12e–h) of the Church of San Pietro Apostolo in Cetara.



The original point cloud consisted of approximately 33 million points, with an average density of 8000 points/m2. The filtering removed 54% of the points, resulting in a point cloud of about 15 million points with an average density of 4000 points/m2. From the figure, it can be observed that the filtering process eliminated much of the noise present. Specifically, the denoising enables better identification and modeling of friezes and bas-reliefs; some architectural elements, such as the ornamental details on the columns (Figure 12d,h) and the bas-reliefs on the walls or near the altar (Figure 12c,g), were not clearly visible before the filter was applied. The noise present on the furnishings was also removed. Figure 12i presents a portion of the mesh of the church vault generated from the original point cloud, while Figure 12j displays the same section generated from the filtered point cloud. The filter effectively removes much of the noise while preserving the details of the bas-reliefs.





5. Discussion


The evaluation of the accuracy of the implemented filtering algorithm is carried out by comparing a 3D mesh model, modeled with 3D modeling software, with the corresponding noisy synthetic point cloud subjected to the filtering process. The 3D reference model was chosen to have both linear and curvilinear elements, that is, a very heterogeneous architectural conformation. In detail is a part of a column with a Corinthian capital, modeled with a 3D mesh of about 20,000 faces and 10,000 vertices. The column stem is about 70 cm in diameter, and about 1 m high is the capital. The abacus has a square shape with sides of about 1 m. The complexity of the object will allow the quality of filtering to be estimated even with complex and articulated geometric shapes. The process consists of the following steps:




	
Generation of the 3D mesh model of the column.



	
Generation of the synthetic point cloud (SPC). The SPC is generated with Cloud Compare open-source software to have a density of 50,000 points/m2, which is equal to the average density resulting from the SLAM systems used.



	
Generation of the noisy synthetic point cloud (NSPC). To simulate the noise of a point cloud by SLAM, a Gaussian noise (GN), with normal probability density function, was added to the SPC. The GN is generated in MATLAB environment from the SPC using the following formula:


    G N =  σ  ⋅ r a n d n   # S P C , 3       N S P C = r e s c a l e   G N , − 0.05 , 0.05      



(5)




where (σ) is the standard deviation of the normal distribution describing the spread of noise; the larger the (σ), the more widespread the noise. From some tests, the result is that SLAM systems tend to produce noise with (σ) equal to 0.2. The randn(#,3) function generates an array of random numbers (0 to 1) normally distributed with a number of rows equal to #SPC (number of SPC points) and a number of columns equal to 3. The rescale function will be used to scale the noise over the range of values found in SLAM measurements; that is, if a generic section of a SLAM point cloud is made, the points tend to have an average dispersion of ±5 cm with respect to the true surface. It should be repeated that the NSPC will consist of the generated noisy points only, without the points belonging to the SPC.



	
Application of the filtering algorithm. The NSPC will be subjected to a filtering process by varying the octree depth parameter (6, 8, 10, 12) and using an LBox equal to 1 m, dimensions that would likely be used in case of application to a real case.



	
Calculation of distances between the reference Mesh3D model and the NSPC-filtered model. Finally, a statistical analysis of the distances between the reference 3D model representing the “real surface” and the point clouds obtained from the filtering process will be carried out. The distance will be calculated using the Cloud-to-Mesh Distance function implemented in Cloud Compare software, version 2.13.1. The distance will have positive sign if it agrees with the direction of the normal to the generic mesh face.








Figure 13a displays the 3D mesh model of the column, while Figure 13b shows the NSPC, derived by applying Gaussian noise to the SPC with a standard deviation of σ = 0.2, consisting of approximately 1 million points. The application of the filtering process produced four filtered NSPCs; specifically, for each, the parameters LBox = 1 m and octree depth were set between 6 and 12, in increments of 2 (Figure 13c–f). The frequency distributions of the distances shown in these figures reflect the application of Gaussian-type noise, consistent with what is shown in Figure 4.



In this test, the intention was to simulate an architectural element hypothetically belonging to a much larger building. As a result, it would have been impractical to use an LBox value smaller than 1, as this would have caused a significant increase in computational time. Analyzing the statistical indices, particularly the minimum, maximum, and standard deviation of the distances, it can be stated that setting an octree depth parameter greater than 8 does not lead to significant improvements. The standard deviations of the distances, as well as the minimum and maximum distances, remain unchanged, and the filtered point clouds are nearly identical (Figure 13d,e).



The percentage of points removed is around 47%. In contrast, there is a significant increase in computational time: setting an octree depth = 10 increases computational time by approximately three times compared to an octree depth = 8. An octree depth value of 6 or lower leads to a loss of detail, removing most points associated with leaves and small friezes, but it is highly effective for simple architectural elements, such as linear elements without friezes. In this case, octree depth = 6 eliminated 63% of the points, drastically reducing computational time.



Based on the tests performed, an octree depth = 6 is recommended for structures or buildings that are not particularly architecturally complex. An octree depth = 8 may be an optimal solution for buildings of significant historical interest, characterized by friezes and complex architecture. The LBox value should be between 1 and 2 m.



Regardless of the parameters used, it should be noted that filtering results in a distance difference relative to the actual surface on the same order of magnitude as the accuracy claimed by the manufacturer of the SLAM systems, approximately 6 mm. With this level of uncertainty, small construction details are inevitably lost, but the purpose of this technique is not to model such fine details but rather to create a model on a larger scale, at the building level.



To evaluate the performance and effectiveness of the noise filtering algorithm, the metrics for the Precision, Recall, Accuracy, and F1-Score [74] parameters were calculated, as the octree depth parameter varied. These metrics are essential for understanding how the model balances the ability to correctly identify noise points (Recall) with the ability to avoid false positives (Precision), while also providing an overall evaluation of its performance (Accuracy and F1-Score). The “true” point cloud was defined as consisting only of the NSPC points located within 4 mm of the column mesh. Table 3 presents the metrics calculated for the four tests shown in Figure 13, with LBox = 1 m and a confidence interval of 0.5 σ.



Analyzing the values in Table 3, the algorithm shows a progressive improvement in the analyzed parameters as octree depth increases. In Test 1, the Recall value was low (0.43), indicating difficulty in recognizing noise points.



In the other tests, Recall increases significantly to 0.62, showing an improvement in the algorithm’s ability to identify noise. The Accuracy parameter increases from 0.54 to 0.66, while the F1-Score increases from 0.57 to 0.71, indicating a good balance between Precision and Recall. The increase in octree depth causes an improvement in the values of Recall, Accuracy, and F1-Score, compared with a high and constant value of Precision.



This suggests that the model is robust and well balanced, making it suitable for noise filtering, even in the presence of small, geometrically complex building details. In general, for richly detailed architectural and constructive objects, the filter tends to improve performance as the octree depth parameter increases. It is important to choose an appropriate trade-off between parameter choice and processing time, in line with the intended use, also depending on the scale of representation.




6. Conclusions


The objective of this study was the implementation of a denoising algorithm for point clouds acquired with LiDAR SLAM systems aimed at optimizing the reconstruction of the geometry of surveyed buildings for graphic rendering and modeling purposes. The algorithm was tested on point clouds of historically significant structures, all featuring various complex geometries and acquired using different LiDAR SLAM systems.



The results are quite satisfactory; the tests indicate that filtering significantly enhances geometry extraction, resulting in point clouds with a density of about one third of the original. This improvement is crucial, as large data volumes often necessitate user-driven decimation of point clouds, leading to the loss of essential details. In the performed tests, the implemented filtering process removed approximately 50 percent of the points; this percentage dropped to around 40 percent for very low-density input clouds but never fell below 35 percent.



The proposed method is not intended to replace existing techniques in the literature but is rather intended to assist in noise removal, which often compromises modeling processes. Measurements with these types of SLAM systems are primarily aimed at modeling or graphic rendering of buildings or complexes. The input parameters of the algorithm allow for calibration based on the type of object being analyzed, and the choice of only two parameters facilitates usability for professionals who may not possess extensive knowledge of various algorithms. The Poisson surface proved suitable for modeling very noisy data, as supported by the literature.



Furthermore, the chosen confidence level effectively preserved all points belonging to angular geometries and/or intricate architectural details. The point clouds from the Arezzo dataset were provided during the SIFET 2023 Benchmark without specific guidance on acquisition geometry and parameters set in proprietary software. Overall, these results highlight the potential of the developed algorithm to enhance the quality and usability of LiDAR SLAM data in architectural applications, paving the way for further advancements in the field.
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Figure 1. Palazzo della Fraternità dei Laici test case, in Arezzo: (a) Location: yellow dot; (b) Location of the palace, yellow polygon, Basemap Google; (c) Photo of the main facade of the palace. 
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Figure 2. Cetara test case; (a) Location of the Municipality of Cetara (yellow dot); (b) Cetara Tower and San Pietro Apostolo Church (yellow polygons); (c) Cetara Tower; (d) San Pietro Apostolo Church. 
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Figure 3. Workflow diagram. 
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Figure 4. Example of filtering a generic sub-cloud extracted from the GeoSLAM dataset of Palazzo di Fraternità dei Laici, regarding some steps of the process. (a) Side view of the unfiltered sub-cloud; (b) Frequency histogram of distances computed with respect to the approximate surface with superimposed interpolated normal probability density function; confidence interval 0.5 σ is highlighted in green; (c) Top view of the filtered sub-cloud (red dots) superimposed on the unfiltered one (black dots); (d) Sub-cloud of panel (a) after the filtering process. 
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Figure 5. Test outputs for different confidence intervals: (a–d) 3 cm thick sections, showing the filtered point cloud in red and the original point cloud in white; (a1–d1) Perspective views of the filtered point cloud sections; (e) Graph depicting the percentage of points removed as a function of the confidence interval; (f) Excerpt of the original point cloud (GeoSLAM); (g) Photograph of the detail of the Palazzo di Fraternità dei Laici. 
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Figure 6. Visual comparison of excerpts from the point clouds of the different datasets analyzed and their corresponding filtered clouds. 
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Figure 7. (a) Façade of the Palazzo di Fraternità dei Laici, with zoomed-in left-wing portal (A), bell tower (B), and right-wing gate (C); (b–d) Point clouds of gate (C), with color scale according to intensity values; (b1–d1): original, unfiltered clouds; (b2–d2): filtered clouds. 
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Figure 8. GeoSLAM point cloud of the portal (A) and the bell tower (B); (a1,a2) Perspective view of the filtered point cloud, with the section line of the analyzed profile highlighted in red; (b1,b2) Profile of the original point cloud; (c1,c2) Profile of the point cloud after the filtering process; (d1,d2) Overlay of the profiles; (e,f) Zoomed-in views of the sections shown in panels (d1,d2). 
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Figure 9. BLK2GO point cloud of the gate (C); (a) Perspective view of the filtered point cloud, with the section line of the analyzed profile highlighted in red; (b) Profile of the original point cloud; (b1) Zoomed-in view of the profile within the yellow box; (c) Profile of the point cloud after the filtering process; (c1) Zoomed-in view of the profile within the yellow box. 
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Figure 10. XH120 point cloud of the gate (A); (a) Perspective view of the filtered point cloud, with the section line of the analyzed profile highlighted in red; (b) Profile of the original point cloud; (c) Profile of the point cloud after the filtering process; (d) Overlay of the profiles. 
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Figure 11. Tower of Cetara; (a–c,g) Original point clouds; (d–f,h) Filtered point clouds; (i) Zoomed-in horizontal profiles from the yellow frames in (g,h), with filtered points in red and original ones in white. 
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Figure 12. Axonometric cross-sections of the S. Pietro Apostolo Church; (a–d) Original point clouds; (e–h) Filtered point clouds; (i) Mesh from original point cloud; (j) Mesh from filtered point cloud; (k) Section from original point cloud; (l) Section from filtered point cloud. 
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Figure 13. Test on synthetic point cloud; (a) 3D Mesh model of the column; (b) Noisy synthetic point cloud (NSPC); (c–f) Frequency distributions of differences between the filtered NSPC and 3D model as octree depth varies (6 to 12), with the color scale based on cloud-to-mesh distances. The red line represents the fitted normal distribution. 
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Table 1. Main characteristics of the SLAM systems used.
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	SLAM Systems
	ZEB Horizon (GeoSLAM)
	BLK2GO (Leica)
	XH120 (Stonex)





	Frequency (kHz)
	300
	420
	~656



	Range (m)
	100
	25
	120



	Relative Accuracy * (mm)
	up to 6
	up to 10
	up to 6



	FOV (deg)
	360 × 270
	360 × 270
	360 × 270







* in controlled environment.













 





Table 2. Metrics of point clouds acquired with SLAM systems.
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	Dataset
	# Pts Original Cloud (Mln)
	Average Density Noisy Cloud (Pts/m2)
	% Points Removed by Filtering
	Average Density Filtered Cloud (Pts/m2)





	ZEB Horizon (GeoSLAM)
	17
	35,000
	53
	14,000



	BLK2GO (Leica)
	40
	72,000
	50
	42,000



	XH120 (Stonex)
	8
	16,000
	37
	11,000










 





Table 3. Metrics for the tests in Figure 13 (LBox = 1 m, confidence interval = 0.5 σ).
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	Test
	Octree Depth
	Precision
	Recall
	Accuracy
	F1-Score





	1
	6
	0.82
	0.43
	0.54
	0.57



	2
	8
	0.82
	0.59
	0.62
	0.68



	3
	10
	0.82
	0.62
	0.64
	0.71



	4
	12
	0.82
	0.62
	0.66
	0.71
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