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Abstract: The Gravity Recovery and Climate Experiment (GRACE) enables large-scale monitoring of
terrestrial water storage changes, significantly contributing to hydrology and related fields. However,
the coarse resolution of groundwater storage anomaly (GWSA) data limits local-scale research
utilizing GRACE and GRACE-FO missions. In this study, we develop a regional downscaling model
based on the linear regression relationship between GWSA and environmental variables, reducing
the grid resolution of GWSA obtained from GRACE from approximately 25 km to 1 km. First, we
estimate the missing values of monthly continuous terrestrial water storage anomaly (TWSA) for the
period from 2003 to 2020 using interpolated multi-channel singular spectrum analysis (IMSSA). Next,
we apply the water balance equation to separate GWSA from TWSA, which is provided jointly by the
Global Land Data Assimilation System (GLDAS) and the distributed ecohydrological model ESSI-3.
We then employ a partial least squares regression (PLSR) model to identify the most significant
environmental variables related to GWSA. Precipitation (Prec), normalized difference vegetation
index (NDVI), and actual evapotranspiration (AET), with variable importance in projection (VIP)
values greater than 1.0, are recognized as effective variables for reconstructing long-term, high-
resolution groundwater storage changes. Finally, we downscale and reconstruct the long-term
(2003–2020), high-resolution (1 km × 1 km) monthly GWSA in the Songhua River Basin using
fused and supplemented GRACE/GRACE-FO data, employing either geographically weighted
regression (GWR) or random forest (RF) models. The results demonstrate superior performance
of the GWR model (CC = 0.995, NSE = 0.989, RMSE = 2.505 mm) compared to the RF model in
downscaling. The downscaled GWSA in the Songhua River Basin not only achieves high spatial
resolution but also exhibits improved accuracy when compared to in situ groundwater observation
records. This research enhances understanding of spatiotemporal variations in regional groundwater
due to local agricultural and industrial water use, providing a scientific basis for regional water
resource management.

Keywords: GRACE; GWSA; downscaling method; Songhua River Basin; ESSI-3 model

1. Introduction

Water is fundamental to human life, economic activities, and ecosystem sustainabil-
ity, with groundwater serving as a critical resource for drinking water, irrigation, and
industry [1–6]. However, groundwater depletion driven by climate change and over-
extraction poses significant challenges, while short-term groundwater storage fluctuations
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are often linked to extreme weather events such as droughts and floods [7–10]. Understand-
ing the spatiotemporal dynamics of groundwater storage anomalies (GWSA) is essential
for assessing climate impacts and ensuring sustainable water resource management [11,12].

Traditional groundwater monitoring relies on extensive well networks, but these are
often costly, time-intensive, and geographically constrained, resulting in sparse and uneven
data coverage [13–16]. The introduction of GRACE satellite data in 2002 revolutionized
large-scale GWSA research by providing accurate terrestrial water storage anomaly (TWSA)
measurements, particularly benefiting data-scarce regions [17–21]. GRACE data have been
widely applied to investigate groundwater depletion globally, including in the Mississippi
River Basin, India, and China’s Yangtze River Basin [11,22,23].

Beyond groundwater studies, GRACE has been utilized for diverse applications
such as extreme hydrometeorological events, river water storage fluctuations, and glacier
melting [24–35]. Despite its utility, GWSA cannot be directly retrieved from GRACE data
and requires integration with complementary datasets [2,36]. For example, Feng et al. (2013)
derived GWSA in North China by subtracting GLDAS soil moisture data from GRACE
TWSA [37]. Similarly, Amiri et al. (2023) analyzed groundwater trends in Yazd Province,
Iran, using GRACE and GLDAS components [38]. Zhang et al. (2022) combined GLDAS
and independent component analysis to extract GWSA for the Haihe River Basin, achieving
strong agreement with SWAT hydrological model simulations [36].

Despite significant advancements, the application of GRACE data in hydrology and
water resource management faces limitations, particularly data gaps and coarse spatial
resolution [39,40]. Gaps in GRACE data, notably during the 2017–2018 transition to GRACE-
FO, stem from satellite sampling constraints and cumulative observations, leading to
incomplete time series [41,42]. To address these gaps, researchers have employed various
reconstruction techniques, including machine learning and statistical methods [42–44].
For instance, Sun et al. (2019) developed a deep convolutional neural network (CNN) to
reconcile discrepancies between GRACE-derived and NOAH-simulated TWSA, bridging
the mission transition gap [45]. Similarly, multi-channel singular spectrum analysis (MSSA)
has proven effective, with Gauer et al. (2023) demonstrating its ability to reconstruct
continuous GRACE data with minimal noise and improved temporal coverage [46–49].

However, coarse spatial resolution of GRACE limits its applicability for localized
studies. Current products, such as those from the University of Texas Center for Space
Research (CSR), offer resolutions of 0.5◦ to 0.25◦, derived from a 3◦ × 3◦ grid, which
remains inadequate for small-scale aquifer or basin analysis [50–53]. Enhancing spatial
resolution of GRACE is essential for accurately capturing TWSA and GWSA variations in
finer-scale regions [54,55].

Two primary approaches exist for downscaling GRACE data, i.e., dynamic and statisti-
cal methods [56,57]. Dynamic approaches integrate GRACE observations with hydrological
models, leveraging physical mechanisms, but involve complex calculations sensitive to
boundary conditions [58–61]. In contrast, statistical methods establish predictive relation-
ships between coarse-resolution GRACE data and auxiliary variables, enabling finer-scale
predictions [62]. These methods, while dependent on high-quality predictor variables, offer
simpler and effective alternatives for improving the spatial resolution of GRACE and have
been widely adopted for localized applications [50,63,64].

Yin et al. (2018) successfully downscaled GRACE-derived GWSA from 110 km to 2 km
in the North China Plain by leveraging the strong correlation between evapotranspiration
(ET) data and GWSA, capturing sub-grid heterogeneity [65]. Other studies have applied
multiple regression, artificial neural networks, and extreme gradient boosting to reduce
TWSA resolution in Michigan’s Lower Peninsula to 0.125◦ (120 km2) using variables such as
precipitation, NDVI, snow cover, streamflow, water levels, surface temperature, soil mois-
ture, air temperature, and ET [66]. In the Haihe River Basin, multivariate linear regression
(MLR), random forest (RF), and NoahV2.1 models were used to downscale GRACE-based
GWSA from 1◦ to 0.25◦, with the RF model showing the best performance [67]. Zhang et al.
(2021) applied random forest and extreme gradient boosting to downscale GRACE and
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GLDAS data from 1◦ to 0.25◦ to 1 km, respectively, for GWS analysis in China (2004–2016).
However, the annual temporal resolution of the GWSA data limits its ability to capture
monthly variations, affecting its application in hydrological research, particularly for flood
and drought events [55].

The coarse resolution of GRACE data and the missing values between GRACE and
GRACE-FO remain significant constraints in hydrological studies. To address this, this
study generates a continuous GRACE TWSA dataset using the interpolated multi-channel
singular spectrum analysis (IMSSA) method, integrating the partial least squares regres-
sion (PLSR) model, GLDAS, and the ESSI-3 ecohydrological model. By constructing a
downscaling regression model, this research aims to effectively downscale GRACE-derived
GWSA data. Key contributions of this paper include: (a) improved temporal consistency
of GRACE TWSA through the IMSSA method; (b) enhanced quality of ESSI_GWSA data
over GLDAS_GWSA, which relies on GLDAS water storage components and continuous
TWSA; (c) use of the PLSR model to identify climate variables influencing water storage
changes, aiding the downscaling model; and (d) development and application of geograph-
ically weighted regression (GWR) and RF downscaling models in the Songhua River Basin,
producing high-quality monthly GWSA data at a 1 km resolution for 2003–2020.

2. Study Area

The Songhua River Basin, located in northeastern China (119◦52′–132◦31′E,
41◦42′–51◦38′N), spans over 550,000 km2 and is one of China’s seven major river basins. As
a key tributary of the Heilongjiang River, it is divided into three sub-basins: the Nenjiang
River Basin (west), the Upper Songhua River Basin (south), and the Lower Songhua River
Basin (northeast) [68] (Figure 1). The basin experiences a temperate monsoon climate,
with cold, dry winters (temperatures often below −30 ◦C) and warm, humid summers
influenced by maritime air currents, reaching up to 30 ◦C. Annual precipitation ranges
from 400 to 800 mm, with the majority falling during the summer months [69,70].
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Geologically, the basin is predominantly composed of Quaternary sediments, includ-
ing alluvial and lacustrine deposits that form the main aquifers. These sediments, composed
of sand, gravel, and clay, support both confined and unconfined aquifers, which provide
critical groundwater for agricultural, industrial, and domestic use. The mountainous areas
contain fractured metamorphic and igneous rock aquifers, but their contribution to regional
groundwater is minimal compared to the sedimentary aquifers.

The topography of the basin is diverse, including mountains, hills, basins, and plains.
The Songnen Plain, located centrally and in the southwest, is a major agricultural hub,
producing commercial crops such as soybeans, corn, and rice. Groundwater irrigation is
vital for sustaining agricultural production in this area [2,71].

3. Materials and Methodology
3.1. Input Datasets

This study utilized a range of datasets, including satellite observations, reanalysis
products, model outputs, and ground-based data, as detailed below.

3.1.1. GRACE/GRACE-FO Data

The GRACE mission, launched in March 2002 by NASA and the German Aerospace
Center (DLR), operated until June 2017, monitoring global water resources, glacier melt, sea-
level changes, and Earth’s mass distribution through gravitational field variations [72,73].
Its successor, GRACE-FO, was launched in May 2018 after an 11-month delay [74].

GRACE and GRACE-FO collected high-precision monthly TWS anomaly data, pro-
cessed by institutions like NASA’s JPL, GFZ, and CSR. These data, widely applied across
various disciplines, are available in spherical harmonic (SHC) and Mascon solutions, with
grid spatial resolutions ranging from 0.25◦ to 1◦ [27,57]. This study uses CSR RL06 Mascon
data (0.25◦ grid resolution) to analyze GWS changes in the Songhua River Basin from 2003
to 2020. The research baseline (2005–2010) aligns with groundwater well data availability,
and TWSA-derived GWSA anomalies are calculated relative to this baseline. The CSR
data are publicly accessible at https://www2.csr.utexas.edu/grace/RL06_mascons.html
(accessed on 10 August 2024).

3.1.2. GLDAS Model Data

GLDAS, developed by NASA GSFC and NOAA, integrates satellite and ground-based
observations using advanced land surface modeling and data assimilation techniques [75].
This study uses monthly soil moisture storage (SMS), canopy water storage (CWS), and
snow water equivalent (SWE) from the GLDAS Noah-v2.1 model (0.25◦ resolution) for
2003–2020, with data processed based on the research baseline period. It is worth noting
that the GLDAS Noah model does not include the GWS component, and the daily scale
product of the GLDAS CLSM includes the GWS component.

To validate the GRACE data filled using the interpolated multi-channel singular
spectrum analysis method (IMSSA), the community land surface model (CLSM) from
GLDAS was processed to obtain TWSA data that aligns with the new research baseline. It
is important to note that CLSM TWSA does not include surface water storage components,
such as lakes, reservoirs, and rivers [17]. Previous research indicates that changes in surface
water within the study area can be considered negligible compared to variations in soil
moisture and GWS [2,76]. Therefore, this study focuses on verifying and analyzing the
trends in TWSA changes based on the filled GRACE data.

3.1.3. ESSI-3 Model Data

The ESSI-3 model, developed by Zhang Wanchang, provides monthly averages of soil
moisture storage (SMS), canopy water storage (CWS), and snow water equivalent (SWE)
from 2003 to 2020. As a hydrological framework with independent intellectual property
rights, ESSI-3 assesses the impacts of climate change and surface changes on hydrological

https://www2.csr.utexas.edu/grace/RL06_mascons.html


Remote Sens. 2024, 16, 4566 5 of 28

processes [77,78]. Its robustness in analyzing watershed hydrological components has been
widely demonstrated [79–83].

3.1.4. Environmental Variables

Environmental variables used for downscaling GRACE data include precipitation
(prec), NDVI, actual evapotranspiration (AET), land surface temperature (LST), soil mois-
ture (SM), and air temperature (temp), selected for their significant contributions in previous
studies [14,17,84].

High-resolution precipitation data (1 km) were validated against meteorological
records in the Songhua River Basin [70]. NDVI data were obtained from MODIS Terra
(MOD13A3, 1 km) via NASA’s LP DAAC. AET data were derived from the SSEBop model
using MODIS data from the USGS FEWS NET portal (1 km) [85].

Monthly LST averages were calculated from MODIS data (MOD11A2, 1 km). The
SM dataset, developed using machine learning and validated against ground observa-
tions, combines data from the China Meteorological Administration and other sources
(1 km) [86,87]. Air temperature data, downscaled using the Delta method from CRU and
WorldClim datasets, were verified against independent meteorological stations [88–91].

3.1.5. Ground-Based Measurements

The groundwater level borehole measurement data were obtained from the China
Geological Environment Monitoring Groundwater Level Yearbook for the years 2005–2011,
2013, 2015, and 2016, with observation intervals ranging from 5 to 20 days. This study
compiled 1006 records over a decade within the study area. Groundwater level anomaly
(GLA) was calculated by subtracting the long-term baseline average (2005–2010) for each
observation. GLA was then converted to groundwater storage anomaly (GWSA) using the
specific yield (Sy) parameter from the PCR-GLOBWB model.

3.2. Methodology

This study follows a structured approach. First, the IMSSA method was applied to
fill missing values in the GRACE and GRACE-FO datasets prior to estimating GWSA.
Next, using the water balance equation, GWSA was isolated from the TWSA derived from
GRACE data, incorporating water storage components from the GLDAS and ESSI-3 models,
such as SMS, SWE, and CWS.

Subsequently, PLSR was employed to assess the contributions of selected environ-
mental variables to the GRACE-based GWSA, with VIP scores guiding the final selection.
Using the chosen variables—Prec, NDVI, and AET—a linear regression model was devel-
oped with GWR and random forest (RF) methods. This model linked GWSA to auxiliary
variables at a coarse scale (0.25◦).

The derived correlation was then used to predict GWSA at a finer spatial resolution of
1 km, based on high-resolution environmental variables matching this scale. The research
workflow is depicted in Figure 2.

3.2.1. Partial Least Squares Regression

In the initial phase of this study, we identified environmental variables previously
shown to correlate significantly with GWSA. The selected variables included Prec, NDVI,
AET, LST, SM, and temp [14,17,92].

We employed the partial least squares regression (PLSR) method to assess the contri-
butions of these environmental variables to GWSA in the study area. PLSR is a supervised
learning algorithm that integrates the strengths of principal component analysis (PCA)
and multivariate linear regression (MLR). It is particularly well suited for addressing
high-dimensional, multicollinear, and multi-response variable regression challenges [93].
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PLSR effectively incorporates information from both the target variable and the ex-
planatory variables, allowing for an efficient analysis of the relationships between a single
target variable and multiple predictors [94]. The VIP value is utilized within PLSR to
evaluate the significance of each explanatory variable in relation to the target variable’s
predictive capacity. A higher VIP value indicates a greater contribution of that variable to
the prediction of GWSA [95]. Typically, explanatory variables with VIP values exceeding
1.0 are recognized as of greater importance to the model.

The VIP value is calculated as the weighted sum of squares of each explanatory
variable across all components, as described below:

VIPj =

√√√√p
∑A

a=1 Sa(Y, ta )×W2
ja

∑A
a=1 Sa(Y, ta )

(1)
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where p is the number of explanatory variables; A is the number of selected components;
Sa(Y, ta) is the contribution of component ta to the target variable Y; and Wja is the weight
of the explanatory variable Xj in component ta.

3.2.2. Interpolated Multi-Channel Singular Spectrum Analysis

Multi-channel singular spectrum analysis (MSSA) is a time series analysis method
that separates signals from noise or different sources by performing singular value decom-
position on multivariate time series and spatial and temporal correlations associated with
channels or time series [96]. It is commonly used for denoising, trend extraction, periodic
analysis, and missing value interpolation of time series data [46,47,49]. In this study, for the
Songhua River Basin, before performing missing value prediction, we first perform linear
interpolation on a small part of the missing value data to ensure the integrity of the time
series data. Then, the interpolated MSSA method is used to predict the missing GRACE
TWS data, and finally a continuously reconstructed TWS dataset is obtained. The method
is mainly divided into the following steps:

(1) Constructing the Embedding Matrix

Select a window length L (L ≪ N). For each time series, construct its trajectory matrix:

Xk =


xk,1 xk,2 · · · xk,N−L+1
xk,2 xk,3 · · · xk,N−L+2

...
...

. . .
...

xk,L xk,L+1 · · · xk,N

 (2)

The trajectory matrix is stacked vertically to generate the embedding matrix X:

X =


X1
X2
...

XK

 (3)

where K is the number of spatial locations and N is the length of each time series.

(2) Singular Value Decomposition (SVD)

X =∑r
i=1λiUiVT

i (4)

where r is the rank of the embedding matrix. The singular values λi indicate the importance
of each decomposed component. High values correspond to the main trends and periodic
patterns in the data, and low values usually correspond to noise. The left singular vectors
Ui represent the main patterns of the data in different channels in the time series. The right
singular vectors Vi represent the time pattern, revealing important time structures and
patterns in the time series, such as seasonal changes or trends.

(3) Time Series Reconstruction

Time series reconstruction is based on the previously calculated main components
(singular values and singular vectors) to reconstruct a matrix that approximates the original
time series. This matrix can fill in missing values and remove noise. For details, please
refer to [97,98].

3.2.3. Groundwater Storage Anomaly Estimation

The TWSA derived from GRACE represents changes in surface water and groundwater
storage relative to the long-term average observed from 2005 to 2010. This encompasses
various components, including soil moisture, groundwater, snow and ice storage, as well
as the water volume in lakes and rivers [17]. Previous analyses and related studies indicate
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that the primary contributors to changes in TWSA within the Songhua River Basin are soil
moisture storage anomaly (SMSA), snow water equivalent anomaly (SWEA), and canopy
water storage anomaly (CWSA) [2]. Consequently, TWSA and GWSA in this study can be
calculated using the following formula:

TWSA = GWSA + SMSA + SWEA + CWSA (5)

GWSA = TWSA − (SMSA + SWEA + CWSA) (6)

where GWSA is the groundwater storage anomaly; SMSA is the soil moisture anomaly;
SWEA is the snow water equivalent anomaly; and CWSA is the canopy water storage
anomaly.

3.2.4. Random Forest Method

The RF algorithm is an ensemble machine learning method based on decision trees [99].
Initially proposed by Breiman et al. (2001), it has since gained widespread application in
classification, regression, feature selection, and various other research domains [100,101].
RF operates by constructing multiple decision trees, each built from a random subset of the
original dataset and a randomly selected subset of features. The final prediction is derived
from averaging the predictions of all individual trees. The process consists of several
key steps:

Data Preparation: Match high-resolution auxiliary variables with low-resolution target
variables to create input data, which is then randomly divided into training and validation sets.

Feature Selection: For each training sample in the training set, select a subset of
features to construct a decision tree.

Model Fitting: Fit the regression model to the training samples and generate predic-
tions from the individual decision tree.

Model Aggregation: Combine all individual decision trees to form a random forest
model, yielding the optimal prediction.

Parameter optimization is a critical step in enhancing model performance and im-
proving prediction accuracy. Among the parameters, the number of trees significantly
influences the model’s predictive results. In this study, we employed a random grid search
method to identify the optimal parameter values.

In this section, we matched the selected explanatory variables with the spatial reso-
lution of the GWSA derived from GRACE to establish a statistical relationship between
GWSA and the explanatory variables at the original resolution. Utilizing these explanatory
variables at fine resolution, we constructed an RF regression model to predict GWSA at a
finer scale. Finally, a residual correction was performed based on the predicted results and
the original GWSA data.

3.2.5. Geographically Weighted Regression Model

Geographically weighted regression (GWR) is a spatial local regression model that not
only constructs a dynamic relationship between the target variable and the explanatory
variable but also introduces spatial weights into the model to deal with the spatial hetero-
geneity of the variables [102]. The traditional regression model assumes that the regression
coefficient is constant throughout the study area; that is, the relationship between the
variables is spatially consistent [103]. For example, changes in precipitation and ground-
water reserves have different patterns and relationships in different spatial locations [70].
Therefore, when downscaling GWSA, the GWR method also performs well by taking into
account the spatial non-stationary relationship between the dependent variable and the
predictor variable [17,104]. The model can be expressed as follows:

yi = β0(µi,υi) + ∑n
k=1 βk(µi,υi)xik + εi (7)
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where yi represents the dependent variable; xik represents the kth independent variable;
(µi,υi) represents the geographic coordinates of the i-th point; β0(µi,υi) represents the
intercept of the i-th point; βk(µi,υi) represents the coefficient of xik; and εi represents the
residual of the i-th point.

The regression parameters in the GWR model change with the change in spatial
location, and the calculation formula of the parameters is as follows:

β(ui, vi) =
(

XTw(ui, vi)X
)−1

XTw(ui, vi)y (8)

where β(ui, vi) represents the local coefficient of the position (ui, vi); X and y are the
vectors of the explanatory variables and the dependent variables respectively; and w(ui, vi)
represents the weight matrix of the i-th point.

The commonly used methods for calculating the weight matrix include the Gaussian
kernel function (Gaussian), exponential kernel function (Exponential), quadratic kernel
function (Bi-square), cubic kernel function (Tri cube), etc. The method used in this study is
the Gaussian kernel function:

Wij= exp (− (dij/b)2 ) (9)

where Wij is the weight of observation position j; dij is the distance between observation
points i and j; and b is the bandwidth size of the kernel function.

Determining the appropriate bandwidth parameter is crucial to the accuracy of geo-
graphically weighted regression estimation. Therefore, this study selected the improved
AIC information criterion (AICc) method to determine the optimal modeling bandwidth.

AICc = 2nln(σ̂)+nln(2π)+n
[

n + tr(S)
n − 2 − tr(S)

]
(10)

where n is the number of sample points; the matrix S is the projection matrix from the
observed value to the fitted value; tr(S) represents the trajectory of the hat matrix; and σ̂ is
the maximum likelihood estimate of the random error term.

3.2.6. Hydrological Model ESSI-3

In this study, we employed the distributed ecohydrological model ESSI-3 to calculate
monthly SMS, CWS, and SWE at a spatial resolution of 1 km. Anomalies of these variables
were subsequently derived based on the baseline period from 2005 to 2010. ESSI-3 is a
grid-based distributed hydrological model that simulates three layers of soil aquifers, each
exhibiting distinct thicknesses and significant parameter heterogeneity. The model captures
the fluxes between these layers while accounting for the energy–water interaction processes
at the soil–atmosphere interface and shallow groundwater.

In addition to modeling vertical hydrological fluxes and storage dynamics, the ESSI-3
model incorporates horizontal runoff processes. Runoff is classified into three components:
surface runoff (including snowmelt runoff), soil flow, and subsurface runoff. These compo-
nents converge into river channels and outlets via various media, including slopes, soils,
and underground aquifers. For a more detailed description of the ESSI-3 model, please
refer to the related studies [77–82,105,106].

To effectively drive the ESSI-3 model, we gathered essential model-driving data on
meteorological conditions, soil characteristics, vegetation types, topography, and other
relevant factors. Table 1 provides details regarding the type, spatial resolution, and temporal
resolution of the driving data. The ESSI-3 model was executed at a spatial resolution of
1 km for the period from 2000 to 2020. The first three years were designated as the model’s
warm-up period, followed by verification of runoff simulation results using available
measured hydrological data from selected years.
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Table 1. Detailed information of ESSI-3 model-driving data.

Type Variable Data Source Resolution
and Time

Meteorology

Precipitation

ERA5_land
(https://www.ecmwf.int/en/
forecasts/datasets) (accessed on 15
August 2024)

0.1◦, 1 h,
2000–2020

temperature
Wind speed
Surface air pressure
Surface net solar
radiation
Surface solar radiation
Relative humidity

Soil property

Bulk density SoilGrids
(https://www.soilgrids.org)
(accessed on 15 August 2024)

1 km, fixed
Clay content mass
fraction
Silt content mass
fraction
Sand content mass
fraction

Vegetation
parameter

Leaf area index (LAI)
GLOBMAP LAI
(https://zenodo.org/) (accessed
on 15 August 2024)

8 km, 8-day,
2000–2020

Land use/cover
(LULC)

Resources and Environment Data
Cloud Platform
(http://www.resdc.cn) (accessed
on 15 August 2024)

1 km, yearly,
2001–2020

Tree cover fraction
MODIS
(https://lpdaac.usgs.gov)
(accessed on 15 August 2024)

500 m, fixed, 2010

Others
DEM SRTMDEM

(https://www.gscloud.cn)
(accessed on 15 August 2024)
Water Yearbook

90 m, fixed
monthly,
2010–2020

Streamflow at Jiamusi
and Xiaoergou
Stations

3.2.7. Evaluation Indicators

This study employs three indicators to assess the downscaling results and the simula-
tion outcomes of the hydrological model: Root Mean Square Error (RMSE), Nash-Sutcliffe
Efficiency (NSE), and Correlation Coefficient (CC). Both CC and NSE values range from
0 to 1, with higher values indicating superior simulation and downscaling performance.
Conversely, a lower RMSE value signifies greater accuracy in the predicted GWSA. The
formulas for calculating these indicators are as follows:

CC =
∑n

i=1 (Xi −
-
X)(Yi −

-
Y )√

∑n
i=1 (Xi −

-
X )2

√
∑n

i=1 (Yi −
-
Y )2

(11)

RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2 (12)

NSE = 1 − ∑n
i=1 (Yi − Xi)

2

∑n
i=1

(
Xi −

-
X
)2 (13)

where Y represents the observed value, X represents the predicted value;
-
Y and

-
X represent

the average values of Y and X, respectively; and n represents the number of datasets.

4. Results
4.1. Reconstruction of Missing GRACE/GRACE-FO Data

During the period from 2002 to 2020, a total of 33 months of data were missing
from the GRACE and GRACE-FO datasets. To solve this problem, we used interpolated
multi-channel singular spectrum analysis (IMSSA), firstly filling in some missing values
of GRACE TWSA data with linear interpolation, then predicting the large-scale miss-

https://www.ecmwf.int/en/forecasts/datasets
https://www.ecmwf.int/en/forecasts/datasets
https://www.soilgrids.org
https://zenodo.org/
http://www.resdc.cn
https://lpdaac.usgs.gov
https://www.gscloud.cn
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ing data between GRACE and GRACE-FO data, and finally obtaining complete GRACE
TWSA data. The CLSM of GLDAS is currently the only global model that incorporates ad-
vanced data assimilation processes, including elegant estimation, to generate hydrological
fluxes [20,39,74]. We utilized this model to verify the trends observed in the reconstructed
data. The results indicate a high correlation coefficient (CC) of 0.88 between the recon-
structed GRACE TWSA and the CLSM TWSA (Figure 3). This strong correlation demon-
strates that the changing trends of the reconstructed GRACE TWSA align closely with those
of the CLSM TWSA.
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To further validate the accuracy of the IMSSA method, we randomly selected a subset
of observations spanning 24 months and compared the predicted TWSA with the original
GRACE TWSA. The results demonstrate that the IMSSA method exhibits robust perfor-
mance, achieving high accuracy. As illustrated in Figure 4, the CC between the predicted
and observed results was 0.981, while the RMSE was 3.715 mm. These findings confirm the
feasibility of using the IMSSA method for predicting missing GRACE TWSA data. Addi-
tionally, recent studies have further substantiated the effectiveness of the IMSSA method in
reconstructing TWSA data [46,47,49].
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4.2. Performance of Hydrological Models and Determination of Water Storage Components

In this study, GWSA was first isolated from GRACE TWSA by utilizing the water
storage components—SMS, SWE, and CWS—derived from the GLDAS and ESSI-3 models,
in accordance with the water balance equation. Subsequently, a linear regression model
was established to explore the relationship between environmental variables and GWSA,
which was then applied in the downscaling process.

Prior to constructing the downscaling model, we compared GWSA estimates derived
from different models, specifically CLDAS_GWSA and ESSI_GWSA. The results from both
GWSA models were validated using groundwater well observation data collected from
the study area. Before verifying the GWSA observational data, the performance of the
ESSI-3 model was evaluated. To achieve this, runoff observations from the Xiaoergou and
Jiamusi hydrological stations in the Songhua River Basin were selected for calibration and
validation. The model performance was assessed using the NSE and CC as evaluation
metrics as shown in Table 2. The observation period (2010–2020) was divided into a
calibration phase (2010–2014) and a validation phase (2015–2020). The ESSI-3 model’s
performance during both phases across the two hydrological stations is summarized in
Figure 5 and Table 3. The NSE values for both the calibration and validation periods
at the stations were approximately 0.8, indicating strong model applicability within the
Songhua River Basin. These findings demonstrate the effectiveness of the ESSI-3 model
in simulating hydrological processes in the region, laying a solid foundation for the next
phase of research.

Table 2. Accuracy analysis of NSE and CC at two hydrological stations during calibration (2010–2014)
and validation (2015–2020) periods.

Hydrological
Stations

Calibration
(2010–2015)

Validation
(2016–2020)

Entire Period
(2010–2020)

NSE CC NSE CC NSE CC

Xiaoergou 0.82 0.91 0.79 0.89 0.81 0.90

Jiamusi 0.85 0.93 0.84 0.92 0.84 0.93

Table 3. Comparative analysis of the accuracy of ESSI_GWSA and GLDAS_GWSA based on in
situ grids.

Grids
GLDAS GWSA ESSI GWSA

CC RMSE CC RMSE

A1 0.106 44.811 0.509 25.561

A2 0.420 62.641 0.427 57.469

A3 0.414 85.754 0.464 67.216

A4 0.502 81.472 0.590 41.714

A5 −0.112 153.509 0.467 134.324

A6 −0.191 49.167 0.664 23.417

A7 0.332 73.991 0.218 53.525

A8 −0.313 73.664 0.484 35.731

A9 0.248 66.622 −0.315 59.016



Remote Sens. 2024, 16, 4566 13 of 28

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 30 
 

 

Table 2. Accuracy analysis of NSE and CC at two hydrological stations during calibration (2010–
2014) and validation (2015–2020) periods. 

Hydrological 
Stations 

Calibration 
zzzz(2010–2015) 

Validation zzzz(2016–
2020) 

Entire 
Periodzzzz(2010–2020) 

NSE CC NSE CC NSE CC 
Xiaoergou 0.82 0.91 0.79 0.89 0.81 0.90 

Jiamusi 0.85 0.93 0.84 0.92 0.84 0.93 

 
Figure 5. Comparison of measured and simulated discharges during the calibration period (2010–
2014) and validation period (2015–2020) of two hydrological stations: (a) Xiaoergou station and (b) 
Jiamusi station. 

Table 3. Comparative analysis of the accuracy of ESSI_GWSA and GLDAS_GWSA based on in situ 
grids. 

Grids 
GLDAS GWSA ESSI GWSA 

CC RMSE CC RMSE 
A1 0.106 44.811 0.509 25.561 

Figure 5. Comparison of measured and simulated discharges during the calibration period
(2010–2014) and validation period (2015–2020) of two hydrological stations: (a) Xiaoergou station and
(b) Jiamusi station.

To address the sparse distribution of groundwater well observation points, we divided
the study area into 1◦ × 1◦ grids to ensure the continuity of data across different time
periods and to improve the reliability of data verification. Each grid was assigned a unique
identifier, resulting in nine grids labeled A1 to A9, as shown in Figure 6. Groundwater
well observation records within each grid were processed by calculating their mean values
and adjusting for the baseline period. The accuracy of these processed records was then
evaluated against the GWSA data generated by various models within each grid. Table 3
summarizes the verification results, highlighting that the GWSA derived from the ESSI-3
model (ESSI_GWSA) demonstrated a stronger correlation with groundwater well observa-
tions and a lower RMSE than the GWSA derived from GLDAS (GLDAS_GWSA). Based on
these findings, the ESSI_GWSA was selected for further downscaling model development.
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4.3. Selection of Environmental Variables

The selection of environmental variables is critical to the construction of downscaling
models [70]. After reviewing numerous studies on the downscaling of GRACE data and
considering the specific conditions of the Songhua River Basin, we selected Prec, LST, AET,
NDVI, Temp, and SM as potential environmental variables [14,17,62,67,92]. While human
activities significantly impact GWSA variations, they are often not included in GWSA
downscaling models due to the challenges related to the spatial and temporal scales of
human activity data and data availability [14]. As a result, human activity factors are rarely
considered as predictors in such studies.

The six candidate environmental variables, along with the GWSA separated from
GRACE TWSA, were used as input and target variables, respectively, in the PLSR model.
The VIP values for each environmental variable, as illustrated in Figure 7, reveal that the
VIP values of Prec, AET, and NDVI are all greater than 1.0. This indicates that these three
variables have the strongest influence on GWSA in the Songhua River Basin. Consequently,
Prec, AET, and NDVI were selected as the final environmental variables for the GWSA
downscaling model, which is based on GWR and RF methods.

4.4. Comparison of Downscaling Models

We employed Prec, AET, and NDVI as auxiliary variables, with GWSA from GRACE
TWSA as the target, to develop GWR and RF downscaling models at a coarse scale (0.25◦).
These models were applied to produce high-resolution (1 km) downscaled results.
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Both GWR and RF models have distinct advantages in downscaling applications [17,92].
GWR captures spatial heterogeneity through local regression, making it suitable for areas
with complex climate and topography, such as the Songhua River Basin. It better reflects
spatial trends of GWSA data but requires optimization of the geographic weight matrix
and has relatively low computational efficiency. Additionally, it struggles with fitting
multidimensional nonlinear relationships. In contrast, the RF model handles nonlinear re-
lationships and complex interactions more effectively, making it ideal for high-dimensional
features and climate factor modeling. However, it poorly describes spatial continuity,
particularly in data-sparse areas, which may introduce some deviations. To compare model
performance, we evaluated both methods using three metrics: CC, NSE, and RMSE.

The downscaling results are presented in Figures 8 and 9 and Table 4. Figure 8 illus-
trates the annual average spatial changes in GWSA in the Songhua River Basin from 2003
to 2020, both before and after downscaling. Notably, the downscaled results, GWR_GWSA
and RF_GWSA, provide more detailed spatial information compared to the coarse spatial
resolution of the original GWSA while preserving the spatial distribution trends of the
original data. This indicates the effectiveness of the downscaling models.
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Table 4. Comparative analysis of the accuracy of GWR_GWSA and RF_GWSA based on original
GWSA data.

CC NSE RMSE

GWR_GWSA 0.995 0.989 2.505

RF_GWSA 0.950 0.893 7.668

In terms of data quality, the two downscaling models demonstrate differing perfor-
mances. As shown in these figures, GWR_GWSA achieves higher accuracy with a CC of
0.995, an NSE of 0.989, and n RMSE of 2.505 mm, while RF_GWSA exhibits lower accuracy,
with a CC of 0.950, an NSE of 0.893, and an RMSE of 7.668 mm, respectively.

Additionally, regarding spatial distribution, RF_GWSA displays a certain degree
of spatial discreteness, whereas GWR_GWSA maintains the same spatial continuity as
the original GWSA data. This observation suggests that the GWR downscaling model
effectively incorporates the influence of surrounding spatial information. This also proves
our previous analysis of the differences between the GWR and RF models. Overall, these
results indicate that the GWR downscaling model outperforms RF_GWSA in constructing
a downscaling model for GWSA in the Songhua River Basin.

4.5. Analysis of GWSA Downscaling Results

Among the two downscaling schemes evaluated, the GWR model demonstrated
superior performance, achieving higher NSE values and lower RMSE compared to the
alternative approach. To further elucidate the downscaling results of GWR_GWSA, we
compared the GWSA at the original grid resolution of 0.25◦ with the downscaled GWSA at
1 km.

As illustrated in Figures 10 and 11, the downscaled GWSA exhibits a spatial distribu-
tion that is consistent with the original GWSA derived from GRACE. Both datasets reveal
higher spatial distributions in the central and southern regions of the study area, with lower
values observed in the eastern and western areas. The spatial distribution maps of GWSA
before and after downscaling across different months demonstrate a strong correspondence
between the two datasets. This indicates that the downscaling model effectively preserves the
original spatial variation information while refining the GWSA data to a resolution of 1 km.
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Figure 10. Spatial distribution of multi-year monthly average GWSA at original grid resolution in the
Songhua River Basin (0.25◦).

Figures 12 and 13 illustrate that, compared to the data quality prior to downscaling,
the results obtained after downscaling exhibit enhanced spatial resolution of GWSA and
improved data accuracy. This improvement further validates the effectiveness of the GWR
model for GWSA downscaling.

Figure 14 illustrates the geographical changes in GWSA in 2005, comparing GRACE-
derived values with GWR-scaled values. The high-resolution GWSA measurements along
the sample lines reveal intricate spatial variations that are obscured in the coarse-resolution
data. The three sample lines (L1, L2, and L3) encompass 12, 18, and 20 pixels of the original
GWSA data, respectively (Figure 14c), while the downscaled GWSA data correspond to
337, 521, and 568 pixels (Figure 14d). This downscaling effectively captures local spatial
variations that are challenging to detect at the original resolution. Notably, the downscaled
data exhibit significant spatial variability across the sample lines, whereas the original
GWSA is represented by homogeneous pixels, as shown in Figure 14c. This indicates that
the downscaled results not only align with the original GWSA but also provide enhanced
detail in spatial heterogeneity.
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Figure 11. Spatial distribution of multi-year monthly average GWSA after downscaling in the
Songhua River Basin (1 km).
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5. Discussion
5.1. Performance of the Proposed Downscaling Model and Method

The GWR downscaling method, which integrates GRACE TWSA data with the ESSI-3
model, demonstrates robust performance in reconstructing high-resolution GWSA in the
Songhua River Basin. While the GLDAS is commonly employed for downscaling GRACE
data, this study verifies and compares GWSA derived from both the ESSI-3 model and
GLDAS against groundwater observation data. The results indicate that the ESSI-3 model
not only exhibits strong hydrological simulation performance (NSE > 0.8) but also shows a
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higher consistency with observed data. Utilizing this model as a target variable enhances
the quality of the downscaling results.

The downscaling model’s effectiveness is fundamentally based on the linear regression
relationship between the target and environmental variables. Consequently, the selection
of environmental variables is critical for achieving accurate downscaling outcomes. In this
study, the PLSR method was employed to assess the importance of various environmental
variables, identifying those with VIP values greater than 1.0, specifically, Prec, AET, and
NDVI, as the final environmental variables.

Moreover, the choice of downscaling model significantly influences the results. A
comparative analysis of the GWR and RF models revealed that the GWR model exhibited
more stable performance than the RF model. This finding reinforces the potential for
integrating the ESSI-3 model with the GWR approach for effective GRACE downscaling.

5.2. Analysis of GWSA Change Trend in the Songhua River Basin

The Songhua River Basin, located in the northeasternmost region of China, serves
as a crucial freshwater source for supporting the rapid industrial and agricultural devel-
opment in the area. In recent years, accelerated economic growth and climate change
have exacerbated the depletion of water resources, leading to insufficient groundwater
supplies in certain regions and even potential exhaustion [2,51,68,107,108]. Consequently,
monitoring the long-term, high-resolution spatiotemporal changes in groundwater is vital
for sustainable water management in the basin.

Figures 15 and 16 illustrate the long-term changes in GWSA values and the spatial dis-
tribution of trend values in the Songhua River Basin, respectively. As depicted in Figure 15,
the fluctuations in both the original monthly GWSA and the downscaled GWSA data are
largely consistent throughout the study period, further demonstrating the effectiveness of
the GWR model for GWSA downscaling.
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Figure 16. Spatial distribution of GWSA change trends after downscaling in the Songhua River Basin
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From 2003 to 2020, the downscaled GWSA exhibited an overall declining trend
at a rate of −0.50 ± 0.42 mm/year, while the original GWSA decreased at a rate of
−0.49 ± 0.41 mm/year. The monthly GWSA fluctuations during this period can be cate-
gorized into four distinct phases: (I) January 2003 to July 2009, (II) August 2009 to May
2012, (III) June 2012 to April 2019, and (IV) May 2019 to December 2020, with each phase
represented by different colors in Figure 15. Notably, the GWSA trend during period I was
relatively stable, while periods II and III exhibited a clear upward trajectory, followed by a
decline in period IV.

The annual GWSA trend in the Songhua River Basin can also be divided into three
periods: from 2003 to 2008, the GWSA increased at a rate of 1.04 mm/year; from 2009 to
2013, it decreased at −2.39 mm/year; and from 2014 to 2020, it further declined at a rate of
−0.68 mm/year. These findings align with the research results of other scholars studying
GWSA in the Songhua River Basin [2].

The spatial distribution of GWSA trends post-downscaling reveals that most areas in
the eastern, southern, and western regions of the Songhua River Basin exhibit a downward
trend, while some northern and northeastern areas show an upward trend. This spatial
variation is primarily attributed to urban development and agricultural irrigation, as
indicated by land use data.

5.3. Analysis of LULC and GWSA Changes

Land use/land cover (LULC) is one of the indicators that directly reflect changes in
human activities. This section discusses the response relationship between human activities
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and GWSA changes by analyzing the spatiotemporal changes of LULC and GWSA from
2003 to 2020.

As shown in Figures 16a and 17, and Table 5, three of the six major land use types
exhibited a decline during the study period, with the water body experiencing the largest
decrease (−26%). The remaining three types showed an increase, with urban land seeing
the largest rise (21%). Overall, the GWSA in the Songhua River Basin from 2003 to 2020
displayed a downward trend, closely linked to changes in land use types. The expansion of
cultivated land, coupled with the reduction in the number of forest, grassland, and water
bodies, likely increased agricultural irrigation demand, decreased soil water storage, and
limited groundwater recharge, contributing to the decline in GWSA. The growth of urban
and unused land further intensified groundwater extraction, reduced surface permeability,
and hindered groundwater recharge, exacerbating the GWSA decline.
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Table 5. LULC change rate in the Songhua River Basin from 2003 to 2020.

2003 (km2) 2020 (km2) Change Rate (%)

Crop 201,245 209,316 4

Forest 218,133 214,339 −2

Grassland 66,556 59,437 −11

Water 14,341 10,545 −26

Building 13,644 16,462 21

Unutilized land 35,936 39,500 10

Spatially, the central and southern regions of the basin showed a more pronounced
decrease in GWSA, coinciding with significant increases in urban and unused land and
declines in forest, grassland, and water bodies. These land use changes have a marked
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impact on the downward trend of GWSA. The expansion of cultivated land and urbaniza-
tion are key drivers of GWSA reduction, while the loss of forests, grasslands, and water
bodies, alongside the growth of unused land, indirectly reduces groundwater recharge,
further depleting groundwater resources. This analysis provides valuable insights into the
mechanisms by which land use changes affect regional groundwater reserves and offers a
scientific basis for water resource management and land use planning.

5.4. Limitations and Research Prospects

Although the GWSA downscaling study has yielded promising results in the Songhua
River Basin, several uncertainties and challenges remain that may affect the quality of
the final downscaling outputs. Firstly, to mitigate uncertainties associated with GRACE
data, this study utilized mascon data, which is generally regarded as superior to the
original spherical harmonic data. However, variations in the models and data processing
techniques employed can introduce inherent uncertainties in the mascon solutions [109].
Future research could explore the fusion of various GRACE data products using machine
learning and artificial intelligence methodologies to enhance the quality of TWSA data,
thereby reducing uncertainties related to GRACE measurements [110,111].

Secondly, while an IMSSA method was successfully employed to address missing data,
uncertainties persisted. Future studies could investigate alternative methods for deriving
TWSA data, such as Seasonal Trend Decomposition using LOESS (STL) and other machine
learning approaches, potentially integrating or comparing these results with continuous
TWSA data derived from the IMSSA method.

Thirdly, uncertainties in water storage components derived from hydrological models,
including the ESSI-3 and GLDAS models, present additional challenges. A potential solu-
tion lies in coupling outputs from different models [112], yet the integration of hydrological
models with varying research backgrounds and scales remains a recognized difficulty
in hydrology.

Lastly, the limited availability of groundwater observation data in the study area
affects the calibration and validation of research findings. The existing groundwater well
observation data in the Songhua River Basin are relatively sparse in both temporal and
spatial dimensions. Consequently, when evaluating GWSA results, we can only perform
a rough verification of the observation point coverage using a grid approach. Future
efforts should focus on collecting more comprehensive groundwater observation data to
facilitate better analysis and validation of GRACE products. Additionally, integrating high-
accuracy measurement data with downscaling results could further enhance the precision of
the findings.

6. Conclusions

The coarse resolution of GRACE observations presents challenges in studying the
dynamic changes in water resources at local scales. While various methods, including
machine learning and neural networks, have been applied to downscale GWSA data, most
studies have not addressed the estimation of missing data between GRACE and GRACE-FO
prior to downscaling. Furthermore, there is a scarcity of research detailing the identification
of environmental explanatory variables and the effectiveness of different downscaling
schemes during model construction.

This study integrates continuous GRACE TWSA data derived from the IMSSA method
with outputs from the ESSI-3 model and the GLDAS model, employing the water balance
equation to generate long-term continuous GWSA data spanning from 2003 to 2020. The
PLSR model identifies key climate factors influencing GWSA in the Songhua River Basin,
including Prec, AET, and NDVI, with VIP scores exceeding 1.0. These factors are utilized as
environmental explanatory variables for the GWSA downscaling model.

Subsequently, GWR and RF machine learning algorithms are applied to the downscal-
ing model, successfully enhancing the spatial grid resolution of GWSA data from 0.25◦

to 1 km. The results indicate that the GWR model outperforms the RF model, effectively
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identifying spatial variations in the original GRACE-derived GWSA while preserving
the overall characteristics of the data. Verification against GWSA data before and after
downscaling, as well as groundwater observation records, corroborates these findings.
Specifically, the CC and RMSE of the downscaled results improved by 25.6% and decreased
by 14.6%, respectively, compared to the original GWSA.

In summary, the downscaling scheme proposed in this study not only captures detailed
spatial variation information but also enhances data continuity. This method demonstrates
significant application potential, with higher-resolution GWSA data contributing positively
to the understanding of spatiotemporal changes in local water resources. Furthermore, it
provides valuable quantitative information for effective regional management of agricul-
tural and industrial water resources.
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