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Abstract: Gully erosion is one of the significant environmental issues facing the black soil regions in
Northeast China, and its formation is closely related to various environmental factors. This study
employs multiple machine learning models to assess gully erosion susceptibility in this region. The
primary objective is to evaluate and optimize the top-performing model under high-resolution UAV
data conditions, utilize the optimized best model to identify key factors influencing the occurrence
of gully erosion from 11 variables, and generate a local gully erosion susceptibility map. Using
0.2 m resolution DEM and DOM data obtained from high-resolution UAVs, 2,554,138 pixels from
64 gully and 64 non-gully plots were analyzed and compiled into the research dataset. Twelve models,
including Logistic Regression, K-Nearest Neighbors, Classification and Regression Trees, Random
Forest, Boosted Regression Trees, Adaptive Boosting, Extreme Gradient Boosting, an Artificial Neural
Network, a Convolutional Neural Network, as well as optimized XGBOOST, a CNN with a Multi-
Head Attention mechanism, and an ANN with a Multi-Head Attention Mechanism, were utilized
to evaluate gully erosion susceptibility in the Dahewan area. The performance of each model was
evaluated using ROC curves, and the model fitting performance and robustness were validated
through Accuracy and Cohen’s Kappa statistics, as well as RMSE and MAE indicators. The optimized
XGBOOST model achieved the highest performance with an AUC-ROC of 0.9909, and through SHAP
analysis, we identified roughness as the most significant factor affecting local gully erosion, with a
relative importance of 0.277195. Additionally, the Gully Erosion Susceptibility Map generated by the
optimized XGBOOST model illustrated the distribution of local gully erosion risks.

Keywords: gully erosion; machine learning; unmanned aerial vehicle; susceptibility mapping;
geo-environmental factors

1. Introduction

Gully erosion is a severe soil degradation process, primarily characterized by the
formation of linear or channel-like erosional landforms due to concentrated surface runoff
scouring [1]. This globally widespread phenomenon represents one of the most destructive
forms of soil degradation, threatening agricultural sustainability and environmental stabil-
ity worldwide. This erosion type not only results in soil loss but also destroys farmland
structure, reduces land productivity, and poses a significant threat to the sustainable devel-
opment of agriculture [2]. It also severely impacts water resources and ecosystem health,
leading to substantial environmental and economic losses in affected regions. The initiation
and progression of gully erosion are influenced by a multitude of factors, whose interac-
tions determine the spatial distribution characteristics and temporal evolution patterns of
gully erosion [3].
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Research methods for gully erosion have evolved from qualitative descriptions to
quantitative analyses, and from single-factor studies to comprehensive multi-factor assess-
ments [4]. Over the past decade, with the rapid advancements in GIS and RS technologies,
quantitative assessment methods combined with machine learning algorithms have grad-
ually emerged as research hotspots [5]. In the field of gully distribution modeling, the
primary approaches include topographic threshold models, traditional statistical methods,
and machine learning algorithms. Topographic threshold models, such as the physically
based model proposed by Montgomery and Dietrich, are simple and intuitive but often
neglect the influence of other key factors [6]. Traditional statistical methods, such as dis-
criminant analysis used by Arabamer et al., can account for multiple influencing factors but
exhibit limitations in capturing complex nonlinear relationships [7]. These conventional
methods also struggle with processing large-scale spatial data and handling the intricate
interactions among multiple environmental variables. In contrast, machine learning algo-
rithms demonstrate significant advantages in handling high-dimensional data and complex
nonlinear relationships [8]. Their superior capability in processing massive datasets, captur-
ing subtle patterns, and automatically extracting features makes them particularly suitable
for gully erosion susceptibility assessment.

Since 2015, machine learning algorithms have been widely applied and thoroughly
investigated in gully erosion research, with many studies employing multiple methods
within a single study. For instance, Arabameri et al. [9] and Conoscenti et al. [10] utilized
LR, Avand et al. [11] employed KNN and RF methods, and Pourghasemi et al. [12] applied
the CART method in comparison with other machine learning algorithms. As a prevalent
machine learning method in this field, Amir [13], Arabameri [14], Garosi [15], and Rah-
mati [16] all employed the RF method. Chen [17] utilized both BRT and XGBOOST methods.
Hembram [18] utilized both RF and BRT. In 2021, Arabameri [19] applied the XGBOOST
model for the spatial mapping of gully erosion susceptibility, and Eloudi et al. [20] used AD-
ABOOST, XGBOOST, and RF in their study. Arabameri [21] utilized the ANN model in their
study, and similarly, Garosi [22] also employed the ANN model. Sara [23] applied the CNN
model in their study. In addition, different from the above-mentioned studies focusing on
gully erosion susceptibility assessment, various methodological approaches have evolved
for gully detection and monitoring applications. Conventional methodologies employ
GPS technology to achieve precise measurements and the continuous monitoring of gully
morphological characteristics [24]. Subsequently, advanced semi-automated approaches
have emerged, integrating Geographic Object-Based Image Analysis with machine learning
algorithms for systematic gully network detection [25]. Furthermore, researchers have im-
plemented deep learning-based methodologies for automated gully segmentation utilizing
remote sensing imagery [26,27].

Based on a systematic review of the existing literature and the availability of high-
resolution RS data, this study selects 11 key controlling factors and employs nine native
machine learning algorithms and three optimized machine learning algorithms to sys-
tematically assess gully erosion susceptibility in the Dahewan region. In this study, we
established a comprehensive gully erosion inventory through high-resolution (0.2 m) UAV
surveys and DOM and DEM data. After field validation, 64 gully and 64 non-gully sites
were carefully selected as sample plots, providing a robust foundation for subsequent
machine learning model training and validation. For traditional machine learning models
(excluding ANN and CNN), a 5-fold cross-validation strategy was implemented to ensure
model reliability and stability. The native machine learning models include LR, KNN,
CART, RF, BRT, ADABOOST, XGBOOST, ANNs, and CNNs. The optimized machine
learning algorithms consist of optimized XGBOOST (using Optuna, Gradient Early Stop-
ping, and the Synthetic Minority Over-Sampling Technique) and CNN and ANN models
enhanced with Multi-Head Attention mechanisms. By comparing the performance of these
models on high-resolution data using evaluation metrics such as AUC-ROC, Accuracy,
Cohen’s Kappa statistic, RMSE, and MAE, this study aims to provide a more precise and
reliable methodological foundation for gully erosion susceptibility assessment and offer
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scientific evidence for the formulation of regional soil conservation strategies and ecological
environmental protection.

The primary objectives of this study include the following: (1) improving the perfor-
mance of the top-performing machine learning model through optimization techniques
and enhancing the performance of CNN and ANN models by incorporating Multi-Head
Attention mechanisms; (2) comprehensively comparing the performance of 12 models on a
high-resolution dataset, with traditional machine learning models (excluding ANNs and
CNNs) evaluated through 5-fold cross-validation, using metrics such as AUC-ROC and
Accuracy; and (3) generating the GESM for the study area based on the optimal model
and assessing the relative importance of gully erosion control factors. The combination of
model optimization techniques and high-resolution data analysis is expected to enhance
the Accuracy and reliability of gully erosion susceptibility assessment. Through these
efforts, this study will thoroughly evaluate the application of machine learning models
in high-resolution gully erosion susceptibility assessments, provide more accurate and
reliable prediction tools for soil conservation planning, and contribute to the development
of targeted erosion control strategies. The improved prediction accuracy and factor impor-
tance analysis will directly support decision-makers in implementing cost-effective soil and
water conservation measures, particularly in regions highly susceptible to gully erosion.

2. Materials and Methods
2.1. Study Area

The study area is located in Dahewan Town, Zalantun City, Inner Mongolia Au-
tonomous Region, China, as shown in Figure 1. The topography of the region is predom-
inantly characterized by gentle slopes and rolling hills, and the climate is classified as a
temperate continental semi-humid monsoon climate. The region experiences an annual
mean temperature of 2.4 ◦C, spring mean temperatures ranging from 5.8 ◦C to 9.1 ◦C, and
an annual effective accumulated temperature of 2442.5 ◦C. Spring is generally dry, while
summer experiences abundant rainfall, with the annual precipitation ranging between 400
and 500 mm, primarily concentrated between June and August. As a key area for gully ero-
sion prevention, the region has a gully coverage area of 0.197 km2, which affects 34.75 km2

of the arable land [28]. Figure 1 shows the geographical context and gully characteristics of
the study area: (a) the geographical location of the study area; (b) the spatial distribution
of gully and non-gully areas derived from UAV imagery; (c) field photographs showing
typical gully features; and (d) a UAV-captured gully image with the highlighted gully area.

2.2. Experimental Steps

Based on a systematic review of the existing literature and the availability of high-
resolution remote sensing data, this study selected 11 key influencing factors and employed
nine native machine learning algorithms along with three optimized algorithms to systemat-
ically assess gully erosion susceptibility in the Dahewan region. The research methodology
comprised five main steps. In Step 1, DOM and DEM were used to generate a gully in-
ventory map and obtain a gully dataset comprising 11 influencing factors. The second
step involved standardizing the dataset constructed with the 11 influencing factors and
performing multicollinearity analysis using VIF to remove factors with high multicollinear-
ity. Following this, the performance of nine machine learning methods was evaluated and
compared using AUC-ROC through 5-fold cross-validation to ensure robust model assess-
ment and to select the best-performing model. The fourth step focused on enhancing the
performance of the best-performing model using appropriate optimization methods and
improving the CNN and ANN models by incorporating Multi-Head Attention mechanisms.
Finally, the GESM was generated using the best-performing model, and the relative im-
portance of influencing factors on gully erosion was assessed using the SHAP importance
analysis method. Through these steps, the study provided a comprehensive evaluation of
gully erosion susceptibility, ensuring methodological rigor and the reliability of the results.
The methodological sequence for this study is depicted in Figure 2.
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Figure 2. Flowchart of the methodology used in this study.

2.3. Data and Data Preprocessing

The fundamental data comprised DOM and DEM with a resolution of 0.2 m, obtained
using a DJI Phantom 4 UAV. The identification and validation of the gully samples followed
a two-step process. First, clearly visible gullies were delineated directly from the high-
resolution UAV imagery, where their morphological characteristics were distinct. Second,
for less obvious gully features, field investigations were conducted to verify their presence
and characteristics. During the field validation process, gullies that could be crossed by
agricultural machinery or those that typically disappear after rainy seasons were classified
as shallow gullies and were excluded from the study. The dataset comprised 64 gully
landforms and 64 non-gully landforms as experimental samples. To create a dataset
suitable for modeling, we processed the DEM data using ArcMap10.5, QGIS3.36.1, and
the rasterio1.4.3 and GDAL3.6.2 modules in Python. The Profile curvature, Plan curvature,
and the Aspect and slope data were obtained using ArcMap; the TRI, TPI, and roughness
data were acquired from QGIS. The LS-factor, TWI, and SPI were first derived from flow
data obtained using ArcMap and subsequently calculated using Python’s rasterio package.
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After obtaining 11 raster layers, the GDAL module in Python was used to convert each
of the 11 different TIF files into their corresponding CSV files. After eliminating invalid
values and aligning the coordinates, the dataset was split into a training set (comprising
1,787,994 samples) and a testing set (comprising 766,144 samples) in a 70% to 30% ratio.

2.3.1. Geo-Environmental Factors (GEFs)

Currently, there is no clearly defined global standard for determining the GEFs in-
fluencing gully erosion across different study areas [29,30]. Therefore, based on previous
studies [31–33] and field investigations, eleven key factors were selected. These factors
included Altitude, slope, Aspect, Profile curvature, Plan curvature, TRI, TPI, roughness,
LS Factor, TWI, and SPI (Figure 3). The selection of these factors was determined by their
proven significance in gully erosion processes, the specific environmental characteristics of
the study area, and the availability of high-resolution data. Altitude represents the vertical
distance from the mean sea level, affecting local climate, vegetation, and surface processes.
Slope (in degrees) indicates surface inclination, controlling hydrological processes and soil
erosion [34]. Aspect (0–360◦) refers to slope orientation, affecting local sunlight, moisture
conditions, and vegetation growth [34]. Profile curvature indicates slope changes in the
steepest direction, with positive values showing convex surfaces and negative values show-
ing concave surfaces [35]. Plan curvature describes contour line curvature, determining
water flow convergence and divergence patterns [35]. TRI measures terrain heterogeneity
and surface complexity [36]. TPI identifies landform features by comparing point elevation
with the surrounding average elevation [37]. Roughness quantifies surface irregularity,
influencing water and wind dynamics [38]. LS Factor combines slope length and steep-
ness to assess erosion potential [39]. TWI indicates topographic moisture accumulation
patterns [36,40]. SPI measures potential water flow erosive power [41].

2.3.2. Multicollinearity Analysis

In multivariate statistical analysis, multicollinearity is a problem that requires special
attention. Multicollinearity refers to the phenomenon of high intercorrelations among
predictor variables, which can lead to instability in model estimates, reduce the reliability
of statistical inferences, and affect the predictive performance of the model [42]. To identify
and quantify multicollinearity, researchers typically employ VIF, a widely used statistical
metric [43]. VIF provides an intuitive method to measure the degree of multicollinearity
for each predictor variable. It achieves this by quantifying the extent to which the variance
of regression coefficients increases due to inter-variable correlations [44]. The calculation of
VIF is based on the coefficient of determination (R2) obtained by regressing each predictor
variable against all other predictor variables. Specifically, for the predictor variable Xi, its
VIF is calculated using Equation (1):

VIF =
1(

1 − R2
i
) (1)

where R2
i is the coefficient of determination obtained by regressing Xi as the dependent

variable against all other predictor variables as independent variables. Generally, a VIF
value of 1 indicates no multicollinearity, while a VIF value exceeding 10 is considered
indicative of severe multicollinearity.
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2.4. Methods
2.4.1. Logistic Regression (LR)

Logistic Regression, a widely used statistical method, is employed to model the prob-
ability of binary outcomes based on one or more predictor variables [45]. Despite the
inclusion of the term “regression” in its name, LR is actually a classification algorithm
primarily used to predict categorical dependent variables [46]. The logistic function (also
known as the Sigmoid function) is the core component of LR, translating the linear combi-
nation of input features into probability values ranging from 0 to 1. LR utilizes maximum
likelihood estimation to estimate the coefficients of input features, aiming to find the best
fit that most effectively explains the observed data [47]. In this study, the LR model pa-
rameters were set as follows: penalty = ‘l2’, C = 0.1, solver = ‘LBFGS’, and maximum
iterations = 1000.

2.4.2. K-Nearest Neighbors (KNN)

K-Nearest Neighbors is a simple yet effective non-parametric supervised learning
algorithm, widely applied in classification and regression tasks [48]. The core idea of KNN
is based on the assumption that similar instances possess similar attributes by calculating
the distance between the instance to be classified and all instances in the training set and
selecting the nearest K neighbors for prediction. In classification tasks, KNN determines
the class of the instance to be classified through a majority voting mechanism; whereas in
regression tasks, it predicts the outcome by computing the arithmetic mean or weighted
average of the K-Nearest Neighbors. Common distance metrics include the Euclidean
distance, the Manhattan distance, and the Minkowski distance [49]. In this study, the KNN
model parameter was set as follows: number of neighbors = 10.

2.4.3. Classification and Regression Trees (CART)

Classification and Regression Trees is a widely used decision tree algorithm applicable
to both classification and regression problems. The algorithm constructs the tree structure
through recursive binary splitting, selecting at each split the feature and threshold that
maximally reduce impurity (for classification problems) or minimize the squared error (for
regression problems). CART uses the Gini impurity or information gain as the splitting
criterion for classification problems, and employs the mean squared error for regression
problems [50]. A notable feature of CART is its ability to handle both continuous and
categorical variables while automatically performing feature selection. The tree-building
process continues until the stopping criteria are met, such as the minimum number of
samples per node or the maximum tree depth. To prevent overfitting, CART typically
employs pruning techniques, evaluating subtrees of varying complexity using a validation
set to select the model with the best generalization performance [51]. In this study, the CART
model parameters were set as follows: criterion = ‘Gini impurity’, maximum depth = 10,
minimum samples for split = 5, and minimum samples per leaf = 2.

2.4.4. Random Forest (RF)

Random Forest is a robust ensemble learning method proposed by Breiman in 2001 [52].
It enhances the overall performance and generalization capability of a model by construct-
ing multiple decision trees and combining their predictions. The core idea of RF is to
reduce the risk of overfitting by introducing randomness while maintaining high predictive
accuracy. The main steps of the algorithm include the following: creating multiple subsets
from the original training set using bootstrap sampling; for each subset, randomly selecting
a subset of features at each node split instead of considering all features; and allowing
the decision trees to grow fully without pruning [52]. During the prediction phase, RF
derives the final result by aggregating the predictions of all trees through majority voting
for classification problems or averaging for regression problems. An important feature of
RF is its built-in validation mechanism, known as the Out-of-Bag error, which provides an
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unbiased estimate of the model’s performance [53]. In this study, the RF model parameters
were set as follows: number of estimators = 500 and maximum depth = 50.

2.4.5. Boosted Regression Trees (BRT)

The Boosted Regression Trees method is a powerful ensemble learning method that
combines decision trees with gradient-boosting algorithms [54]. BRT iteratively trains
a series of simple decision trees, where each new tree attempts to correct the residuals
of the preceding trees, thereby progressively enhancing the model’s performance. The
core principle of this approach is to combine multiple “weak learners” into a robust
predictive model [55]. The main steps of BRT include the following: initializing the model’s
predictions to a constant value; calculating the current model’s residuals; training a new
decision tree to fit these residuals; multiplying the new tree’s predictions by a small
learning rate and adding them to the current model; and repeating this process until a
stopping criterion is met. The advantages of BRT include its ability to automatically handle
interactions between features, accommodate various types of predictor variables, exhibit
robustness to outliers, and produce highly accurate predictions [56]. In this study, the BRT
model parameters were set as follows: number of estimators = 500, learning rate = 0.05,
and maximum depth = 5.

2.4.6. Adaptive Boosting (ADABOOST)

Adaptive Boosting is a significant ensemble learning algorithm developed by Freund
and Schapire in 1995. The core concept of ADABOOST is to construct a strong classifier
by adjusting sample weights and combining multiple weak learners. The main steps of
the algorithm include the following: initializing each training sample with equal weights;
iteratively training weak learners, adjusting the sample weights based on the classifica-
tion results of the previous iteration, increasing the weights for misclassified samples and
decreasing the weights for correctly classified ones; calculating the weight of each weak
learner, with better classification performance leading to higher weights; and finally, com-
bining all weak learners with their respective weights to form the final strong classifier. A
notable characteristic of ADABOOST is its sensitivity to outliers, which can lead to overfit-
ting in specific scenarios. However, in practice, ADABOOST generally demonstrates good
generalization capabilities, a phenomenon known as the “boundary effect” [57,58]. In this
study, the ADABOOST model parameters were set as follows: number of estimators = 500,
learning rate = 0.1, and base estimator maximum depth = 3.

2.4.7. Extreme Gradient Boosting (XGBOOST)

Extreme Gradient Boosting is an efficient, flexible, and scalable implementation of
gradient boosting trees, proposed by Chen et al. in 2016. As an improved version of GBDT,
XGBOOST introduces innovations at both the algorithmic and system optimization levels.
Its core principle is to integrate multiple weak learners (decision trees) into a strong learner
by adding new trees in each iteration to fit the residuals of the previous model. The main
features of XGBOOST include the following: utilizing second-order Taylor expansion to
approximate the objective function, thereby enhancing convergence speed; introducing
regularization terms to control model complexity, effectively preventing overfitting; sup-
porting column sampling to further reduce overfitting risk; and implementing efficient
distributed computing to handle large-scale data [59]. In this study, the XGBOOST model
parameters were set as follows: number of estimators = 500, maximum depth = 50, learning
rate = 0.1, and minimum child weight = 1.

2.4.8. Artificial Neural Network (ANN)

An Artificial Neural Network is a machine learning model inspired by biological
neural networks, capable of learning and simulating complex nonlinear relationships.
ANN consists of interconnected artificial neurons organized into multiple layers, including
an input layer, one or more hidden layers, and an output layer [60]. Each neuron receives
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weighted inputs from the preceding layer, processes these inputs through an activation
function, and then transmits the results to the next layer. The learning process of an ANN
is primarily realized through the backpropagation algorithm, which calculates the error
between predicted and actual values and propagates these errors backward through the
network to adjust the network weights [61]. In this study, the ANN model comprised an
input layer and four hidden layers (with 128, 256, 128, and 64 neurons, respectively), each
followed by ReLU activation and dropout (dropout rate = 0.5). The output layer consisted
of a single neuron utilizing Sigmoid activation. The model employed binary cross-entropy
loss and the Adam optimizer (learning rate α = 0.001), with a training batch size = 32,
trained for 50 epochs.

2.4.9. Convolutional Neural Network (CNN)

A Convolutional Neural Network is a type of deep learning model specifically de-
signed to handle grid-like topological data structures, achieving remarkable success in
the field of computer vision [62]. The core concept of a CNN is to automatically learn
and extract local features from data through the use of convolutional layers, a structure
that effectively captures spatial hierarchical relationships within images. A typical CNN
architecture comprises convolutional layers, pooling layers, and fully connected layers.
Convolutional layers employ a series of learnable filters to detect local patterns in the input
data; pooling layers reduce the spatial dimensions of the data through downsampling,
enhancing the model’s translation invariance; and fully connected layers are utilized for the
final classification or regression tasks [63]. In this study, the CNN model comprised three
convolutional layers (with 16, 32, and 64 filters, respectively), each followed by ReLU acti-
vation and maximum pooling. Subsequently, there were three fully connected layers (with
128, 64, and 1 neurons, respectively), culminating in a Sigmoid activation function. The
model utilized binary cross-entropy loss and the Adam optimizer (learning rate α = 0.001),
with training batch size = 32 and trained for 50 epochs.

2.4.10. Multi-Head Attention Mechanism

The Multi-Head Attention mechanism was introduced by Vaswani et al. in 2017 [64].
This mechanism enhances a model’s ability to capture information from different subspaces
by parallelly computing multiple attention “heads.” Each attention head independently
learns a set of linear projections for queries, keys, and values, and then performs scaled
dot-product attention calculations. Specifically, the computation process of Multi-Head
Attention includes the following: linearly projecting the input sequence into multiple sub-
spaces; independently computing attention weights in each subspace; and concatenating
the outputs of each head and integrating them through a linear layer. This design allows
the model to simultaneously focus on different positions within the sequence and extract
features from multiple perspectives, thereby enhancing the model’s expressive capacity and
performance. Multi-Head Attention has demonstrated outstanding performance not only
in Natural Language Processing tasks but also in various other fields, such as computer
vision and recommendation systems [65].

2.4.11. Optuna

Optuna is an automatic Hyperparameter Optimization framework developed by
Preferred Networks and released in 2019 [66]. Its design objective is to provide a flexible,
efficient, and user-friendly tool for optimizing the hyperparameters of machine learning
models. The core principle of Optuna is to treat hyperparameter optimization as a Black-box
Optimization Problem, finding the optimal solution by sampling and evaluating various
hyperparameter configurations.

2.4.12. Gradient Early Stopping

Gradient Early Stopping is a regularization technique used to prevent overfitting
in deep learning models. This method determines when to halt the training process by
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monitoring the model’s performance on the validation set. The core principle is to cease
training when the model’s performance on the validation set begins to decline or no
longer shows significant improvement, as continued training may result in overfitting the
training data. Implementing Gradient Early Stopping typically involves the following steps:
evaluating the model’s validation metrics on the validation set after each training epoch;
updating the best model if performance improves; and stopping training and reverting to
the best model if performance does not improve for several consecutive epochs [67].

2.4.13. Synthetic Minority Over-Sampling Technique (SMOTE)

The Synthetic Minority Over-Sampling Technique is an over-sampling technique used
to address imbalanced classification problems, introduced by Chawla et al. in 2002 [68].
This method increases the number of minority class samples by generating synthetic
samples in the feature space, thereby balancing the dataset. The core principle of SMOTE is
to perform interpolation on minority class samples instead of simply duplicating existing
samples. Its main steps include the following: identifying the K-Nearest Neighbors for each
minority class sample in the feature space; randomly selecting one of these neighbors; and
generating new synthetic instances by randomly choosing a point along the line connecting
the original sample and the selected neighbor [69]. The advantage of SMOTE lies in
its ability to generate new and diverse minority class samples, thereby avoiding model
overfitting caused by simple duplication.

2.4.14. SHapley Additive exPlanations (SHAP)

SHAP, a game theory-based approach, is employed to quantify feature importance in
machine learning model predictions. The methodology calculates the contribution of each
feature by evaluating its marginal effect across all possible feature combinations, thereby
providing both global importance rankings and local feature effects. Unlike traditional
feature importance methods, SHAP allocates the prediction value fairly among features
while accounting for feature interactions and non-linearity. The absolute SHAP values are
averaged across all samples to determine feature importance rankings, where higher values
indicate a stronger influence on model predictions. This approach ensures consistent and
locally accurate interpretations while maintaining a strong theoretical foundation based on
cooperative game theory [70].

2.5. Model Evaluation and Validation

Accuracy is a fundamental metric for evaluating the overall performance of classifica-
tion models, defined as the proportion of correctly predicted samples to the total number
of samples. Its calculation formula is Equation (2):

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Here, True Positives (TP), True Negatives (TN), False Positives (FP), and False Nega-
tives (FN) represent the four possible outcomes of classification results. TP and TN denote
the number of pixels correctly classified as gully occurrence and non-gully occurrence
pixels, respectively. FP indicates the number of non-gully occurrence pixels incorrectly
classified as gully occurrence, while FN represents the number of gully occurrence pixels
incorrectly classified as non-gully occurrence. The kappa coefficient (κ) is used to evaluate
the degree of agreement between the performance of the classification model and that of
random classification [71]. Its calculation formula is Equation (3):

κ =
Pobs − Pexp

1 − Pexp
(3)

Pobs=
TP + TN

n
(4)
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Pexp=
[(TP + FN)(TP + FP) + (FP + TN)(FN + TN)]

n2 (5)

Here, n is the total number of samples. The Kappa value typically ranges between
[−1, 1], where 0 indicates agreement comparable to random classification, and 1 indicates
perfect agreement.

The Area Under the ROC Curve (AUC) provides a single numerical measure of
model performance. The AUC represents the probability that a randomly chosen positive
instance is ranked higher than a randomly chosen negative instance. The AUC value ranges
between [0, 1], where 0.5 indicates random guessing and 1 indicates perfect classification.
The advantage of the AUC is that it is not affected by class imbalance and evaluates the
model’s ranking ability independently of a specific classification threshold [72,73].

The Root Mean Squared Error (RMSE) is a metric that measures the average deviation
between predicted and actual values and is more sensitive to large errors. Its calculation
formula is Equation (6):

RMSE =

√
∑n

i = 1(x1 − x2)
2

n
(6)

where x1 represents the actual value, x2 represents the predicted value, and n is the number
of samples. The unit of the RMSE is the same as that of the dependent variable, facilitating
interpretation.

The Mean Absolute Error (MAE) measures the average absolute deviation between
the predicted and actual values [74]. Its calculation formula is Equation (7):

MAE =
∑n

i = 1|x1 − x2|
n

(7)

The MAE assigns equal weight to all errors and is less sensitive to outliers compared
to the RMSE.

3. Results and Discussion
3.1. Results of Multicollinearity Analysis

To assess the multicollinearity among the selected geological environmental factors,
VIF analysis was conducted (Figure 4). The initial analysis included 11 features, among
which TRI had the highest VIF value of 31.349, significantly exceeding the critical threshold
of 10.0 and indicating a severe multicollinearity issue. After the first iteration of analysis,
the TRI feature with the highest VIF value was removed. In the updated VIF values, TPI
emerged as the feature with the highest VIF value of 11.431, still surpassing the threshold.
In the second iteration, the TPI feature was further removed. The observed exceedance
of VIF thresholds by TRI and TPI can be attributed to their computational dependency
on elevation differentials, which suggests inherent correlations with slope-derived factors,
collectively contributing to multicollinearity. The final results, as shown in Figure 4, indicate
that the remaining nine features have VIF values below the acceptable threshold of 5.0.

3.2. Model Performance

After conducting multicollinearity analysis and dataset construction, this study trained
and evaluated nine machine learning models, including LR, KNN, CART, RF, BRT, AD-
ABOOST, XGBOOST, an ANN, and a CNN. Model performance was quantified using
multiple evaluation metrics, including Accuracy, the Kappa coefficient (κ), the AUC, the
RMSE, and the MAE. The performance metrics of the nine models are presented in Table 1.
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Table 1. Performance metrics of standard models (* represents optimal values).

Metrics LR KNN CART RF BRT ADABOOSTXGBOOST ANN CNN

Accuracy 0.8759
(−0.0761)

0.9369
(−0.0150)

0.9329
(−0.0190)

0.9492
(−0.0027)

0.9460
(−0.0059)

0.9413
(−0.0107)

0.9520
*

0.9039
(−0.0480)

0.9351
(−0.0168)

K 0.7518
(−0.1521)

0.8738
(−0.0301)

0.8659
(−0.0380)

0.8985
(−0.0054)

0.8921
(−0.0118)

0.8826
(−0.0213)

0.9039
*

0.8079
(−0.0960)

0.8702
(−0.0337)

AUC 0.9403
(−0.0500)

0.9794
(−0.0109)

0.9814
(−0.0089)

0.9892
(−0.0011)

0.9879
(−0.0024)

0.9867
(−0.0036)

0.9903
*

0.9683
(−0.0220)

0.9837
(−0.0066)

RMSE 0.3523
(+0.1331)

0.2512
(+0.0320)

0.2589
(+0.0398)

0.2253
(+0.0061)

0.2323
(+0.0131)

0.2423
(+0.0231)

0.2192
*

0.2633
(+0.0441)

0.2193
(+0.0001)

MAE 0.1241
(+0.0761)

0.0631
(+0.0150)

0.0671
(+0.0190)

0.0508
(+0.0027)

0.0540
(+0.0059)

0.0587
(+0.0107)

0.0480
*

0.1468
(+0.0988)

0.1030
(+0.0550)

From Table 1, it can be observed that ensemble learning methods, particularly tree-
based models, exhibit significant advantages in overall performance. The XGBOOST
model achieved optimal performance across all evaluation metrics, with an Accuracy of
95.20%, a κ of 0.9039, an AUC of 99.03%, an RMSE of 0.2192, and an MAE of 0.0480. These
results strongly indicate that XGBOOST possesses exceptional performance and stability
when handling the dataset used in this study. The RF model closely followed this, with
performance metrics marginally inferior to those of XGBOOST. RF attained an Accuracy of
94.92%, which is only 0.28 percentage points lower than that of XGBOOST, and an AUC
of 98.92%, differing by a mere 0.11 percentage points from XGBOOST. This demonstrates
that the RF model performs excellently in both classification tasks and ranking capabilities.
Other ensemble learning methods, such as BRT and ADABOOST, also exhibited strong
performance. BRT achieved an Accuracy of 94.60%, ADABOOST achieved 94.13%, and
both demonstrated AUC values exceeding 98.6%. These findings further validate the
effectiveness of ensemble learning methods in handling complex datasets.

Among the neural network models, the CNN outperformed the traditional ANN. The
CNN demonstrated a significantly higher Accuracy (93.51%) and AUC (98.37%) compared
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to the ANN. Notably, the CNN exhibited an outstanding performance in the RMSE metric,
being only 0.0001 higher than the best-performing XGBOOST model, indicating a potential
advantage of the CNN in reducing prediction errors.

Among traditional machine learning methods, the KNN algorithm displayed remark-
able performance, with an Accuracy of 93.69% and an AUC of 97.94%, surpassing that of
certain deep learning models. This finding emphasizes the significant practical value of
traditional machine learning methods in certain specific tasks. The CART model performed
similarly to the KNN, whereas the LR model exhibited relatively weaker performance
across all metrics, particularly in Accuracy and κ, lagging behind the best model by 7.61
and 15.21 percentage points, respectively.

The relatively poor performance of LR can be attributed to its inherent linear assump-
tions, which may not adequately capture the complex nonlinear relationships between
gully erosion and environmental factors. The superior performance of the CNN over the
ANN indicates that CNN’s convolutional operations are more effective in extracting spatial
patterns and local feature dependencies from the high-resolution terrain data, while tradi-
tional ANN architecture may limit its ability to capture these spatial correlations, resulting
in suboptimal performance.

From Table 2, it can be observed that ensemble learning methods, particularly tree-
based models, exhibit significant advantages in overall performance. The optimized
XGBOOST model achieved the highest level of performance across all evaluation metrics,
significantly outperforming the other two models. Specifically, the optimized XGBOOST
attained an Accuracy of 95.38%, a κ of 0.9077, an AUC of 99.09%, and RMSE and MAE
values of 0.1850 and 0.0747, respectively. These metrics were all denoted as optimal (marked
with *), highlighting the superior performance and stability of the optimized XGBOOST
when handling the given dataset.

Table 2. Performance metrics of optimized models (* represents optimal values).

Metrics Optimized XGBoost ANN (Multi-Head
Attention)

CNN (Multi-Head
Attention)

Accuracy 0.9538 * 0.9227 (−0.0311) 0.9402 (−0.0136)

K 0.9077 * 0.8453 (−0.0624) 0.8804 (−0.0273)

AUC 0.9909 * 0.9770 (−0.0139) 0.9875 (−0.0034)

RMSE 0.1850 * 0.2380 (+0.0530) 0.2093 (+0.0243)

MAE 0.0747 * 0.1086 (+0.0339) 0.0861 (+0.0114)

The CNN with the Multi-Head Attention model ranked second in overall performance.
Its Accuracy was 94.02%, only 1.36 percentage points lower than the optimized XGBOOST.
The model also exhibited excellent performance with a κ of 0.8804 and an AUC of 98.75%,
showing differences of 0.0273 and 0.0034 from the optimal model, respectively. Notably,
while the attention-enhanced CNN slightly lagged behind the optimized XGBOOST in
RMSE (0.2093) and MAE (0.0861) metrics, it still maintained a low error level. This suggests
that the attention-enhanced CNN has significant potential to capture complex features and
reduce prediction errors.

Although the ANN with Multi-Head Attention model lagged behind the other two
models across all metrics, its performance remains noteworthy. The model achieved
an Accuracy of 92.27%, a κ of 0.8453, and an AUC of 97.70%. Despite these metrics
being somewhat lower than those of the optimal model (with the Accuracy differing by
3.11 percentage points and the AUC by 1.39 percentage points), they still demonstrate the
positive impact of the Multi-Head Attention mechanism on enhancing conventional ANN
performance.
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Table 3 presents a performance comparison of the various machine learning and deep
learning models used in this experiment, including their optimized versions, across five
key evaluation metrics: Accuracy, κ, AUC, RMSE, and MAE.

Table 3. Comprehensive performance comparison between standard and optimized models (* repre-
sents optimal values).

Metrics LR KNN CART RF BRT ADABOOST XGBOOST ANN CNN Optimized
XGBoost

ANN
(Multi-Head
Attention)

CNN
(Multi-Head
Attention)

Accuracy 0.8759
(−0.0779)

0.9369
(−0.0169)

0.9329
(−0.0209)

0.9492
(−0.0046)

0.9460
(−0.0078)

0.9413
(−0.0125)

0.9520
(−0.0018)

0.9039
(−0.0499)

0.9351
(−0.0187) 0.9538 * 0.9227

(−0.0311)
0.9402

(−0.0136)

K 0.7518
(−0.1559)

0.8738
(−0.0339)

0.8659
(−0.0418)

0.8985
(−0.0092)

0.8921
(−0.0156)

0.8826
(−0.0251)

0.9039
(−0.0038)

0.8079
(−0.0998)

0.8702
(−0.0375) 0.9077 * 0.8453

(−0.0624)
0.8804

(−0.0273)

AUC 0.9403
(−0.0506)

0.9794
(−0.0115)

0.9814
(−0.0095)

0.9892
(−0.0017)

0.9879
(−0.0030)

0.9867
(−0.0042)

0.9903
(−0.0006)

0.9683
(−0.0226)

0.9837
(−0.0072) 0.9909 * 0.9770

(−0.0139)
0.9875

(−0.0034)

RMSE 0.3523
(+0.1673)

0.2512
(+0.0662)

0.2589
(+0.0739)

0.2253
(+0.0403)

0.2323
(+0.0473)

0.2423
(+0.0573)

0.2192
(+0.0342)

0.2633
(+0.0783)

0.2193
(+0.0343) 0.1850 * 0.2380

(+0.0530)
0.2093

(+0.0243)

MAE 0.1241
(+0.0761)

0.0631
(+0.0150)

0.0671
(+0.0190)

0.0508
(+0.0027)

0.0540
(+0.0059)

0.0587
(+0.0107) 0.0480 * 0.1468

(+0.0988)
0.1030

(+0.0550)
0.0747

(+0.0267)
0.1086

(+0.0606)
0.0861

(+0.0381)

The optimized XGBOOST model demonstrated superior performance across most
evaluation metrics, achieving the highest Accuracy (95.38%), a κ of 0.9077, and an AUC
of 99.09%, while also recording the lowest RMSE (0.1850). Compared to the original
XGBOOST, the optimized version improved the Accuracy by 0.18 percentage points and the
AUC by 0.06 percentage points, thereby substantiating the effectiveness of the optimization
process.

Deep learning models also exhibited significant performance improvements after
incorporating the Multi-Head Attention mechanism, particularly the CNN with the Multi-
Head Attention model, which achieved an Accuracy of 94.02% and an AUC of 98.75%,
noticeably higher than the original CNN model. This underscores the pivotal role of the
attention mechanism in enhancing the expressive capacity of deep learning models. The
CNN model optimized with the Multi-Head Attention mechanism saw an increase in
Accuracy to 94.02 and AUC to 98.75, yet it still did not surpass the XGBOOST model. This
indicates that, within the context of high-resolution UAV data applications, tree-based
ensemble learning models may be more suitable for predicting gully erosion susceptibility.

Notably, despite the overall superior performance of the optimized models, certain
traditional machine learning methods still demonstrated competitiveness on specific met-
rics. For instance, the RF model slightly lagged behind the optimized XGBOOST with an
Accuracy of 94.92% and an AUC of 98.92%, yet it outperformed most other models in the
MAE metric (0.0508). This phenomenon highlights that traditional methods may still be
effective choices for specific tasks or datasets.

The study results also indicate that no single model leads absolutely across all metrics.
For example, although the optimized XGBOOST performed best on most metrics, the
original XGBOOST model slightly outperformed it in the MAE metric (0.0480 versus
0.0747). This phenomenon underscores the necessity of adopting a multi-dimensional
perspective when evaluating model performance and weighing the importance of different
metrics based on specific application requirements.

Overall, the optimized models, particularly the optimized XGBOOST, exhibited the
most outstanding performance across the majority of metrics. Its built-in regularization
mechanisms and parallel processing capabilities enhanced the model’s generalization
ability and computational efficiency [59]. In contrast, models such as KNN and CART
were more susceptible to performance degradation when dealing with high-dimensional
data. Although deep learning models like ANNs and CNNs possess powerful nonlinear
fitting capabilities, their performance was potentially hindered by the high demand for
large-scale, high-quality training data within the scope of this study [75]. Furthermore,
the XGBOOST model’s low sensitivity to parameter settings makes it easier to tune and
optimize, contributing to its superior performance in this study.
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UAV data offers advantages such as high spatial resolution (up to 0.2 m), flexible
acquisition, and low cost, enabling the precise capture of subtle surface changes, including
micro-gullies and minor slope variations, which are critical factors influencing gully erosion
occurrence [76]. High-resolution data allow models to leverage richer feature information,
thereby enhancing prediction accuracy. Additionally, advancements in UAV technology
have significantly improved the timeliness and controllability of data acquisition, making
it suitable for small-scale, detailed environmental studies [77].

3.3. Variable Importance Analysis

This study employed the SHAP method to quantitatively assess the geomorphological
factors influencing gully formation, aiming to deepen the understanding of gully devel-
opment mechanisms and provide a scientific basis for formulating precise soil and water
conservation strategies. As shown in Figure 5, surface roughness and altitude are the most
influential factors, with importance values of 0.277195 and 0.161360, respectively, account-
ing for 80.7 percent of the cumulative importance. This finding underscores the dominant
role of microgeomorphic features and macro topography in the process of gully erosion.
The Aspect, LS Factor, and slope follow, with importance values of 0.031666, 0.020345, and
0.016166, respectively, reflecting the continued relevance of these traditional topographic
parameters in gully development. Although SPI, Profile curvature, TWI, and Plan curvature
have relatively lower importance (all < 0.012), they still provide supplementary information
to the model, contributing to more comprehensive and accurate predictions.
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Surface roughness reflects the degree of topographic undulation; areas with high
roughness typically exhibit more complex landforms, such as gullies, cliffs, and steep
slopes. These landforms tend to concentrate water flow, exacerbating erosion on the
surface [38]. During rainfall events, water flow in areas with higher roughness is more
likely to form turbulence, increasing erosive force and thereby promoting the formation
and development of gullies. The significant impact of surface roughness indicates that
microgeomorphic features play a crucial role in the formation of gullies, emphasizing the
importance of microscale geomorphological management in erosion prevention and control.
In areas prone to gully erosion, measures should be taken to reduce surface roughness, such
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as land leveling or filling small gullies, to decrease water flow concentration and erosion
opportunities.

The impact of altitude on gully erosion primarily lies in its regulation of environmental
factors such as climate, vegetation, and soil. In higher altitude regions, there may be
increased precipitation and lower temperatures, reduced vegetation cover, and poorer soil
stability, making erosion more likely [78]. Conversely, changes in altitude also affect the
topographic slope and water flow velocity, thereby influencing the erosion process. The
importance of altitude in gully erosion highlights the central role of topographic gradients
in gully development, suggesting the necessity of implementing gradient-based soil and
water conservation measures in areas with varied topography.

Other topographic factors, such as the Aspect, LS Factor, slope, and Profile curvature,
also have certain impacts on gully erosion. The slope is a crucial factor influencing the
velocity of surface runoff; steep slopes increase the kinetic energy of water flow, intensi-
fying erosive action [39]. Aspect affects the amount of solar radiation received, thereby
influencing vegetation growth and soil moisture and indirectly impacting the erosion
process [79]. While SPI and TWI showed relatively low importance in this study, these
hydrological indices remain theoretically significant in erosion processes. Their lower
importance values might be attributed to two factors: first, under high-resolution data con-
ditions, these compound indices may be partially redundant with primary terrain factors
like slope and roughness; second, the strong correlation between surface roughness and
water flow patterns might have already captured the hydrological information that SPI and
TWI typically represent. Moreover, the interaction between slope and surface roughness
likely enhances their combined effect on erosion processes, as increased roughness on
steeper slopes can significantly amplify water flow concentration and erosive force. In
this study, the feature importance of Plan curvature was relatively low, possibly because
the variations of this factor had a minor impact on gully erosion within the study area,
or due to the inconspicuous spatial variability of this factor under high-resolution data.
This data-driven importance analysis provides a quantitative foundation for accurately
identifying key factors influencing gully development, thereby aiding in the formulation of
more targeted and cost-effective soil and water conservation measures.

3.4. Gully Erosion Susceptibility Map

This study utilized the optimized XGBOOST model to generate the GESM of the
study area, as depicted in Figure 6. The map intuitively displays the potential risk of
gully erosion within the study area in a high-resolution spatial distribution format. The
susceptibility map employed a binary classification method to divide the study area into
two categories: high susceptibility (38.22 percent) and low susceptibility (61.78 percent).
Although our model could generate multi-class susceptibility levels, this study adopted a
binary classification approach considering the study area’s practical management needs
and local conservation resource constraints. This simplified classification provides clear,
actionable guidance for local environmental protection departments to prioritize areas
requiring gully erosion prevention measures. High susceptibility areas are depicted in
deep red on the map, predominantly concentrated in regions with significant topographic
variability and steep slopes, particularly in the central and northern parts of the study
area. These areas may be more susceptible to gully erosion and thus require priority in the
implementation of soil and water conservation measures. In contrast, low susceptibility
areas are represented in light yellow, primarily located in relatively flat regions, such as the
southern and eastern edges of the study area. The spatial distribution pattern of the GESM
is highly consistent with topographical features, land use types, and previously identified
key influencing factors (such as surface roughness and altitude). This consistency further
validates the reliability and Accuracy of the model employed in this study. By identifying
high susceptibility areas, scientific foundations can be provided for the formulation of land
management and soil and water conservation measures.



Remote Sens. 2024, 16, 4742 18 of 23

Remote Sens. 2025, 17, x FOR PEER REVIEW 20 of 26 
 

 

3.4. Gully Erosion Susceptibility Map 

This study utilized the optimized XGBOOST model to generate the GESM of the 
study area, as depicted in Figure 6. The map intuitively displays the potential risk of gully 
erosion within the study area in a high-resolution spatial distribution format. The suscep-
tibility map employed a binary classification method to divide the study area into two 
categories: high susceptibility (38.22 percent) and low susceptibility (61.78 percent). Alt-
hough our model could generate multi-class susceptibility levels, this study adopted a 
binary classification approach considering the study area’s practical management needs 
and local conservation resource constraints. This simplified classification provides clear, 
actionable guidance for local environmental protection departments to prioritize areas re-
quiring gully erosion prevention measures. High susceptibility areas are depicted in deep 
red on the map, predominantly concentrated in regions with significant topographic var-
iability and steep slopes, particularly in the central and northern parts of the study area. 
These areas may be more susceptible to gully erosion and thus require priority in the im-
plementation of soil and water conservation measures. In contrast, low susceptibility ar-
eas are represented in light yellow, primarily located in relatively flat regions, such as the 
southern and eastern edges of the study area. The spatial distribution paĴern of the GESM 
is highly consistent with topographical features, land use types, and previously identified 
key influencing factors (such as surface roughness and altitude). This consistency further 
validates the reliability and Accuracy of the model employed in this study. By identifying 
high susceptibility areas, scientific foundations can be provided for the formulation of 
land management and soil and water conservation measures. 

 

Figure 6. Gully erosion susceptibility mapping using the optimized XGBOOST mode. 

3.5. Future Work 

Future research could address several critical aspects of gully erosion susceptibility 
modeling. First, considering the data dependency of deep learning models, future studies 
could explore the integration of diverse data sources, including multi-temporal satellite 
imagery, hyperspectral data, soil organic maĴer content, and radioisotope measurements. 
This multi-source data integration could enhance model robustness and provide compre-
hensive insights into gully erosion processes. Additionally, to address the sensitivity of 
traditional models to high-dimensional data, research efforts could focus on developing 

Figure 6. Gully erosion susceptibility mapping using the optimized XGBOOST mode.

3.5. Future Work

Future research could address several critical aspects of gully erosion susceptibility
modeling. First, considering the data dependency of deep learning models, future studies
could explore the integration of diverse data sources, including multi-temporal satellite
imagery, hyperspectral data, soil organic matter content, and radioisotope measurements.
This multi-source data integration could enhance model robustness and provide compre-
hensive insights into gully erosion processes. Additionally, to address the sensitivity of
traditional models to high-dimensional data, research efforts could focus on developing
advanced ensemble frameworks that combine the stability of tree-based models, the fea-
ture extraction capabilities of deep learning models, and the interpretability of traditional
statistical methods. The development of adaptive modeling frameworks that automatically
adjust to varying data quality conditions and dimensional characteristics would be valuable
for broader applications.

Furthermore, several methodological improvements warrant investigation. The tempo-
ral dynamics of gully development require deeper examination through the incorporation
of time series data to better understand and model the evolution process. The implemen-
tation of recursive feature elimination (RFE) techniques could provide a more systematic
approach to feature selection, potentially optimizing input variable selection and improving
model performance [80]. Moreover, future research should focus on validating the GESM
results using independent regions with similar geomorphological characteristics or tempo-
ral datasets from different periods. This external validation would not only strengthen the
model’s reliability but also assess its transferability across different geographical contexts.
Finally, model transferability and applicability need validation across different geographic
contexts to ensure broader practical utility. These enhancements could collectively advance
the field of gully erosion susceptibility assessment and contribute to more effective soil
conservation strategies.

4. Conclusions

This study systematically evaluated the susceptibility of gully erosion in the Northeast
China black soil region by comprehensively applying various advanced machine learning
algorithms. Utilizing high-resolution UAV data and incorporating eleven key environ-
mental factors such as topography and hydrology, a comprehensive predictive modeling
framework was developed. Through rigorous multicollinearity analysis, we optimized the
model inputs, ensuring the reliability and efficiency of the predictions.
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In the model performance evaluation, the optimized XGBOOST algorithm demon-
strated exceptional predictive capabilities, with an AUC value of 99.09 percent, significantly
outperforming other traditional and deep learning models. This result not only validated
the advantages of ensemble learning methods in handling complex geospatial data but
also provided robust methodological support for future gully erosion research. Addition-
ally, the Multi-Head Attention mechanism introduced in this study achieved significant
improvements in enhancing the performance of CNN and ANN models, particularly in
enhancing the models’ spatial awareness and feature extraction efficiency. This innovation
paves new research directions for the application of deep learning in geomorphological
process modeling.

Through SHAP importance analysis, we identified roughness and altitude as the most
critical factors influencing gully formation, with importance scores of 0.277195 and 0.161360,
respectively. These two factors significantly outweighed others, jointly governing the
occurrence of gully erosion. This finding enhanced our understanding of the mechanisms
governing gully development in the Northeast China black soil region, emphasizing the
pivotal roles of micro-topographical features and macro-scale topography in the erosion
process. The GESM generated based on the optimal model revealed that 38.22 percent
of the study area exhibits high erosion susceptibility, providing a scientific basis for the
precise formulation of soil and water conservation strategies.

The innovative aspects of this study are primarily manifested in the following aspects:
First, it represents the first systematic comparison of various machine learning models’
performance in gully erosion prediction at a 0.2 m high-resolution scale. Second, by
incorporating various optimization techniques and introducing a Multi-Head Attention
mechanism, we significantly enhanced the application potential of machine learning and
deep learning models in geomorphological process modeling. Lastly, the research findings
provide precise spatial decision-making support for soil and water conservation practices
in the black soil regions.

Overall, this study not only advanced the methodological development of gully
erosion susceptibility assessment but also provided valuable empirical experience for the
application of machine learning in geomorphological processes. The research findings hold
significant practical implications for enhancing the precision and effectiveness of soil and
water conservation measures, while simultaneously delineating new directions for future
geomorphodynamic research.
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ADABOOST Adaptive Boosting
Adam Adaptive Moment Estimation
ANN Artificial Neural Network
AUC Area Under the ROC Curve
AUC-ROC Area Under the Curve-Receiver Operating Characteristic
BRT Boosted Regression Trees
CART Classification and Regression Trees
CNN Convolutional Neural Network
CSV Comma-Separated Values
DEM Digital Elevation Model
DOM Digital Orthophoto Map
GDAL Geographic Data Abstraction Library
GEFs Geo-environmental Factors
GESM Gully Erosion Susceptibility Map
GIS Geographic Information System
KNN K-Nearest Neighbors
LBFGS Broyden–Fletcher–Goldfarb–Shanno
LR Logistic Regression
MAE Mean Absolute Error
QGIS Quantum Geographic Information System
ReLU Rectified Linear Unit
RF Random Forest
RMSE Root Mean Square Error
ROC Receiver Operating Characteristic
RS Remote Sensing
SMOTE Synthetic Minority Over-Sampling Technique
SPI Stream Power Index
SHAP SHapley Additive exPlanations
TIF Tagged Image File Format
TPI Topographic Position Index
TRI Topographic Ruggedness Index
TWI Topographic Wetness Index
UAV Unmanned Aerial Vehicle
VIF Variance Inflation Factor
XGBOOST Extreme Gradient Boosting
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