Retrieval of Vegetation Indices and Vegetation Fraction in Highly Compact Urban Areas: A 3D Radiative Transfer Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. DART Model
2.1.1. Input Parameters
- (1)
- Heterogeneous buildings (Rwall ≠ Rroof): walls and roofs are made of different materials, the roof material is always designated as “roof_tile_ceramic_red_new”, while the wall facet reflectance (Rwall) is set to 0.3, 0.6, 0.9, 1.0, 1.2 or 1.5 times the RstdW, respectively.
- (2)
- Homogeneous buildings (Rwall = Rroof): the materials of the wall and roof are always the same, and the material reflectance is 0.3, 0.6, 0.9, 1.0, 1.2 or 1.5 times the RstdW, respectively.
2.1.2. Output Parameters
2.2. Retrieval of FVC
2.3. Correction Model for NDVI in Urban Areas
2.4. Model Validation
- (1)
- True FVC: the L3C class image product with a spatial resolution of 0.78 m from Jilin-1 (https://www.jl1mall.com/, accessed on 15 October 2024) on 10 May 2020 was selected for analysis. The FVC values were calculated and aggregated to 30 m.
- (2)
- Original FVC: the Level2 Tier1 class image product with a spatial resolution of 30 m from Landsat 8 (https://earthexplorer.usgs.gov, accessed on 15 October 2024) on 17 May 2020 was used as the source data for calculating the original FVC values.
- (3)
- Modified FVC: The SVF was calculated using DSM datasets (https://portal.csdi.gov.hk/geoportal/?lang=en&datasetId=cedd_rcd_1629267205233_87895, accessed on 15 October 2024) with a spatial resolution of 0.5 m in 2020 and resampled to 30 m. The reflectance in the red and near-infrared bands of the Landsat 8 image was corrected using Equation (9), after which the modified FVC values could be calculated.
3. Results
3.1. Effects of Urban Geometry on NDVI
3.2. Effects of Building Materials on NDVI
3.3. Accuracy of Three FVC Estimation Methods
- (a)
- Homogeneous building under shadow conditions (Rwall = Rroof, 10:00 am)
- (b)
- Homogeneous building under sunlit conditions (Rwall = Rroof, 12:00 pm)
- (c)
- Heterogeneous building under shadow conditions (Rwall ≠ Rroof, 10:00 am)
- (d)
- Heterogeneous building under sunlit conditions (Rwall ≠ Rroof, 12:00 pm)
3.4. Validation
4. Discussion
5. Conclusions
- (1)
- When building wall and roof materials are heterogeneous, the effects of material differences on the NDVI are essentially negligible if there is minimal or no shadow components within the mixed urban pixels in space-borne satellite images. Conversely, when shadow components are present, the effects are non-negligible (Section 3.2).
- (2)
- The NDVI of an urban mixed pixel is determined by a combination of the pixel’s internal shadow components, which increase the NDVI, and the proportion of building area, which decreases the NDVI (Section 4). To enhance the accuracy of NDVI-based FVC algorithms, the ideal NDVI exclusively reflects the vegetation component and is not affected by buildings. When the H/W increases, the NDVI will be underestimated because of the reduced NIR reflectance caused by multiple scattering and reabsorption (Section 3.1), which will affect the accuracy of NDVI-based FVC algorithms.
- (3)
- Introducing the SVF to correct the NDVI has proven an effective means of estimating the urban FVC (Section 3.4). Further improvements in the FVC estimation accuracy may be achieved by combining this approach with the characteristics of the study area and the FVC algorithm selection recommendations (Section 3.3).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Wu, S.; Yu, W.; An, J.; Lin, C.; Chen, B. Remote sensing of urban greenspace exposure and equality: Scaling effects from greenspace and population mapping. Urban For. Urban Green. 2023, 90, 128136. [Google Scholar] [CrossRef]
- Chen, W.; Huang, H.; Dong, J.; Zhang, Y.; Tian, Y.; Yang, Z. Social functional mapping of urban green space using remote sensing and social sensing data. ISPRS J. Photogramm. Remote Sens. 2018, 146, 436–452. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, M.; Marinoni, A.; Liu, X. UGS-1m: Fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework. Earth Syst. Sci. Data 2023, 15, 555–577. [Google Scholar] [CrossRef]
- Yang, J.; He, Y.; Oguchi, T. An endmember optimization approach for linear spectral unmixing of fine-scale urban imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 137–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Harris, A.; Balzter, H. Characterizing fractional vegetation cover and land surface temperature based on sub-pixel fractional impervious surfaces from Landsat TM/ETM+. Int. J. Remote Sens. 2015, 36, 4213–4232. [Google Scholar] [CrossRef]
- Nguyen, T. Fractional Vegetation Cover Change Detection in Megacities Using Landsat Time-Series Images: A Case Study of Hanoi City (Vietnam) During 1986–2019. Geogr. Environ. Sustain. 2019, 12, 175–187. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, W.; Ren, Z.; Zhao, Y.; Liao, Y.; Ge, Y.; Wang, J.; He, J.; Gu, Y.; Wang, Y.; et al. Multi-scale Feature Fusion and Transformer Network for urban green space segmentation from high-resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103514. [Google Scholar] [CrossRef]
- Li, T.; Meng, Q. A mixture emissivity analysis method for urban land surface temperature retrieval from Landsat 8 data. Landsc. Urban Plan. 2018, 179, 63–71. [Google Scholar] [CrossRef]
- Li, Z.-L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.-H.; Yan, G. Land surface emissivity retrieval from satellite data. Int. J. Remote Sens. 2012, 34, 3084–3127. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Kotthaus, S.; Smith, T.E.L.; Wooster, M.J.; Grimmond, C.S.B. Derivation of an urban materials spectral library through emittance and reflectance spectroscopy. ISPRS J. Photogramm. Remote Sens. 2014, 94, 194–212. [Google Scholar] [CrossRef]
- Yang, S.; Li, S.; Zhang, B.; Yu, R.; Li, C.; Hu, J.; Liu, S.; Cheng, E.; Lou, Z.; Peng, D. Accurate estimation of fractional vegetation cover for winter wheat by integrated unmanned aerial systems and satellite images. Front. Plant Sci. 2023, 14, 1220137. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Liu, Q.; Zhang, Z.; Dong, Y. Comparative Study of Fractional Vegetation Cover Estimation Methods Based on Fine Spatial Resolution Images for Three Vegetation Types. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Mu, X.; Zhao, T.; Ruan, G.; Song, J.; Wang, J.; Yan, G.; McVicar, T.R.; Yan, K.; Gao, Z.; Liu, Y.; et al. High Spatial Resolution and High Temporal Frequency (30-m/15-day) Fractional Vegetation Cover Estimation over China Using Multiple Remote Sensing Datasets: Method Development and Validation. J. Meteorol. Res. 2021, 35, 128–147. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, T.; Li, Y.; Li, Y.; Bu, C.; Zhang, Q.J.C.G.S. Comparative analysis of fractional vegetation cover estimation based on multi-sensor data in a semi-arid sandy area. Chin. Geogr. Sci. 2019, 29, 166–180. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Verrelst, J.; Calvo, L.; Suárez-Seoane, S. Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire. Remote Sens. Environ. 2021, 255, 112304. [Google Scholar] [CrossRef]
- Lee, G.; Kim, G.; Min, G.; Kim, M.; Jung, S.; Hwang, J.; Cho, S.J.A.S. Vegetation classification in urban areas by combining UAV-based NDVI and thermal infrared image. Appl. Sci. 2022, 13, 515. [Google Scholar] [CrossRef]
- Song, W.; Zhao, T.; Mu, X.; Zhong, B.; Zhao, J.; Yan, G.; Wang, L.; Niu, Z. Using a Vegetation Index-Based Mixture Model to Estimate Fractional Vegetation Cover Products by Jointly Using Multiple Satellite Data: Method and Feasibility Analysis. Forests 2022, 13, 691. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, M.; Lin, H. Estimating the urban fractional vegetation cover using an object-based mixture analysis method and Sentinel-2 MSI imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 341–350. [Google Scholar] [CrossRef]
- Heinl, M.; Hammerle, A.; Tappeiner, U.; Leitinger, G. Determinants of urban–rural land surface temperature differences—A landscape scale perspective. Landsc. Urban Plan. 2015, 134, 33–42. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.-H.; Li, W.; Yang, P.; Cao, Y. Exploring the impact of green space health on runoff reduction using NDVI. Urban For. Urban Green. 2017, 28, 81–87. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.P.; Lauret, N.; Yin, T.; Landier, L.; Kallel, A.; Malenovský, Z.; Bitar, A.A.; Aval, J.; Benhmida, S.; Qi, J.; et al. DART: Recent Advances in Remote Sensing Data Modeling with Atmosphere, Polarization, and Chlorophyll Fluorescence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2640–2649. [Google Scholar] [CrossRef]
- Pinty, B.; Gobron, N.; Widlowski, J.-L.; Gerstl, S.A.W.; Verstraete, M.M.; Antunes, M.; Bacour, C.; Gascon, F.; Gastellu, J.-P.; Goel, N.; et al. Radiation transfer model intercomparison (RAMI) exercise. J. Geophys. Res. Atmos. 2001, 106, 11937–11956. [Google Scholar] [CrossRef]
- Pinty, B.; Widlowski, J.L.; Taberner, M.; Gobron, N.; Verstraete, M.; Disney, M.; Gascon, F.; Gastellu-Etchegorry, J.-P.; Jiang, L.; Kuusk, A.; et al. Radiation Transfer Model Intercomparison (RAMI) exercise: Results from the second phase. J. Geophys. Res. 2004, 109, D06210. [Google Scholar] [CrossRef]
- Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.-P.; Gobron, N.; Kuusk, A.; Lavergne, T.; et al. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models. J. Geophys. Res. 2007, 112, D09111. [Google Scholar] [CrossRef]
- Widlowski, J.L.; Pinty, B.; Lopatka, M.; Atzberger, C.; Buzica, D.; Chelle, M.; Disney, M.; Gastellu-Etchegorry, J.-P.; Gerboles, M.; Gobron, N.; et al. The 4th radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528. J. Geophys. Res. 2013, 118, 6869–6890. [Google Scholar] [CrossRef]
- Widlowski, J.L.; Robustelli, M.; Disney, M.; Gastellu-Etchegorry, J.-P.; Lavergne, T.; Lewis, P.; North, P.R.J.; Pinty, B.; Thompson, R.; Verstraete, M. The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models. Remote Sens. Environ. 2007, 112, 1144–1150. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.-P.; Guillevic, P.; Zagolski, F.; Demarez, V.; Trichon, V.; Deering, D.; Leroy, M. Modeling BRF and Radiation Regime of Boreal and Tropical Forests. Remote Sens. Environ. 1999, 68, 281–316. [Google Scholar] [CrossRef]
- Zhen, Z.; Gastellu-Etchegorry, J.-P.; Chen, S.; Yin, T.; Chavanon, E.; Lauret, N.; Guilleuxj, J. Quantitative Analysis of DART Calibration Accuracy for Retrieving Spectral Signatures Over Urban Area. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10057–10068. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.-P.; Yin, T.; Lauret, N.; Cajgfinger, T.; Gregoire, T.; Grau, E.; Féret, J.-B.; Lopes, M.; Guilleux, J.; Dedieu, G.; et al. Discrete Anisotropic Radiative Transfer (DART 5) for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes. Remote Sens. 2015, 7, 1667–1701. [Google Scholar] [CrossRef]
- Yan, G.; Jiao, Z.-H.; Wang, T.; Mu, X. Modeling surface longwave radiation over high-relief terrain. Remote Sens. Environ. 2020, 237, 111556. [Google Scholar] [CrossRef]
- Dissegna, A.; Yin, T.; Wu, H.; Lauret, N.; Wei, S.; Gastellu-Etchegorry, J.-P.; Grêt-Regamey, A. Modeling Mean Radiant Temperature Distribution in Urban Landscapes Using DART. Remote Sens. 2021, 13, 1443. [Google Scholar] [CrossRef]
- Wang, Y.; Lauret, N.; Gastellu-Etchegorry, J.-P. DART radiative transfer modelling for sloping landscapes. Remote Sens. Environ. 2020, 247, 111902. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, D.; Gastellu-Etchegorry, J.-P.; Jinxin, Y.; Qian, Y. Impact of 3-D structures on directional effective emissivity in urban areas based on DART model. Build. Environ. 2023, 239, 110410. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Frederic, B.; Clevers, J.G.P.W.; Steven, M. The Robustness of Canopy Gap Fraction Estimates from Red and Near-Infrared Reflectances: A Comparison of Approaches. Remote Sens. Environ. 1995, 54, 141–151. [Google Scholar] [CrossRef]
- Carlson, T.; Ripley, D. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Yang, J. Study of Urban Geometric Effects on Urban Surface Temperature Retrieval and Energy Flux Modelling: An Application in Hong Kong. Ph.D. Thesis, Hong Kong Polytechnic University, Hong Kong, China, 2017. [Google Scholar]
- Kokalj, Ž.; Zaksek, K.; Oštir, K.; Pehani, P.; Čotar, K.; Somrak, M. Relief Visualization Toolbox, ver. 2.2.1 Manual. 2019. Available online: https://iaps.zrc-sazu.si/sites/default/files/rvt_2.2.1_0.pdf (accessed on 29 December 2024). [CrossRef]
- Liu, X.; Chen, Y.; Mu, X.; Yan, G.; Xie, D.; Ma, X.; Yan, K.; Song, W.; Liu, Z. Correction for the Sun-Angle Effect on the NDVI Based on Path Length. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Bhang, K.J.; Lee, J.-D. Consideration of NDVI and Surface Temperature Calculation from Satellite Imagery in Urban Areas: A Case Study for Gumi, Korea. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2017, 35, 23–30. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zou, Y. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Peddle, D.; Brunke, S.; Hall, F.; Johnson, R. A Comparison of Spectral Mixture Analysis and Ten Vegetation Indices for Estimating Boreal Forest Biophysical Information from Airborne Data. Can. J. Remote Sens. 2001, 27, 627–635. [Google Scholar] [CrossRef]
- Adeline, K.R.M.; Chen, M.; Briottet, X.; Pang, S.K.; Paparoditis, N. Shadow detection in very high spatial resolution aerial images: A comparative study. ISPRS J. Photogramm. Remote Sens. 2013, 80, 21–38. [Google Scholar] [CrossRef]
- Thomas, C.; Doz, S.; Briottet, X.; Lachérade, S. AMARTIS v2: 3D Radiative Transfer Code in the [0.4; 2.5 µm] Spectral Domain Dedicated to Urban Areas. Remote Sens. 2011, 3, 1914–1942. [Google Scholar] [CrossRef]
Module | Value | |
---|---|---|
Atmosphere Property | Irradiance Spectral Database | Solar_constant |
Irradiance Table | TOASolar_THKUR | |
Irradiance Model | irradiance | |
Scene Property | Location | Latitude: 23°25′48″N, Longitude: 113°15′36″E |
Size | Scene size: 40 m × 50 m, Cell size: 0.5 m × 0.5 m × 0.5 m | |
Sun Position | Shadow Condition | Elevation: 56.07°, Azimuth: 82.41° |
Sunlit Condition | Elevation: 83.5°, Azimuth: 88.67° | |
Sensor View Direction | View Angle | Elevation: 90° |
Spectral Band | Red Band | Central wavelength: 0.6545 μm Spectral bandwidth: 0.037 μm |
Near-infrared Band | Central wavelength: 0.865 μm Spectral bandwidth: 0.028 μm |
Band | 0.3 RstdW | 0.6 RstdW | 0.9 RstdW | 1.0 RstdW | 1.2 RstdW | 1.5 RstdW |
---|---|---|---|---|---|---|
Red (0.636 μm–0.673 μm) | 0.0999 | 0.1999 | 0.2998 | 0.3331 | 0.3997 | 0.4997 |
NIR (0.851 μm–0.879 μm) | 0.1000 | 0.2000 | 0.3001 | 0.3334 | 0.4001 | 0.5001 |
Module | Scenes With Vegetation |
---|---|
FVC | 0.1/0.15/0.2/0.25/0.3 |
Leaf Area Index | 0.30/0.45/0.60/0.75/0.90 |
Vegetation Type | Leaf type: grass_rye |
Trunk type: bark_deciduous | |
Tree | Height below crown: 2.5 m |
Diameter below crown: 0.166 m | |
Height within the tree crown: 1.5 m | |
Tree Crown | Crown shape: ellipsoid |
Crown height: 3.5 m | |
First axis: 1.663 m | |
Second axis: 1.663 m |
Parameters | Scenes With Building | |
---|---|---|
Building Material | Heterogeneous building (Rwall ≠ Rroof) | Rroof, Rwall = 0.3/0.6/0.9/1.0/1.2/1.5 RstdW |
Homogeneous building (Rwall = Rroof) | Rwall = Rroof = 0.3/0.6/0.9/1.0/1.2/1.5 RstdW | |
Building Geometry | H/W | 0.75/1.0/1.5/3.0/4.0 |
λp | 0.1/0.1875/0.3/0.4375/0.6 |
FVC | NDVImean |
---|---|
0.10 | 0.301 |
0.15 | 0.352 |
0.20 | 0.398 |
0.25 | 0.441 |
0.30 | 0.477 |
FVC_1 | FVC_2 | FVC_3 | ||||
RMSE | 0.128 | 0.070 | 0.124 | |||
BIAS | 0.096 | −0.003 | −0.104 | |||
FVC_1 | ||||||
Rwall = Rroof (10:00 am) | Rwall = Rroof (12:00 pm) | Rwall ≠ Rroof (10:00 am) | Rwall ≠ Rroof (12:00 pm) | |||
RMSE | 0.163 | 0.084 | 0.162 | 0.074 | ||
BIAS | 0.133 | 0.057 | 0.148 | 0.048 | ||
FVC_2 | ||||||
Rwall = Rroof (10:00 am) | Rwall = Rroof (12:00 pm) | Rwall ≠ Rroof (10:00 am) | Rwall ≠ Rroof (12:00 pm) | |||
RMSE | 0.074 | 0.073 | 0.060 | 0.077 | ||
BIAS | 0.010 | −0.049 | 0.018 | −0.057 | ||
FVC_3 | ||||||
Rwall = Rroof (10:00 am) | Rwall = Rroof (12:00 pm) | Rwall ≠ Rroof (10:00 am) | Rwall ≠ Rroof (12:00 pm) | |||
RMSE | 0.107 | 0.141 | 0.095 | 0.146 | ||
BIAS | −0.079 | −0.129 | −0.074 | −0.135 |
FVC_1 | FVC_2 | FVC_3 | ||
Before Correction | RMSE | 0.249 | 0.183 | 0.169 |
BIAS | 0.205 | 0.144 | 0.098 | |
After Correction | RMSE | 0.164 | 0.114 | 0.087 |
BIAS | 0.119 | 0.080 | 0.040 |
0 < True FVC ≤ 0.1 | ||||
FVC_1 | FVC_2 | FVC_3 | ||
Before Correction | RMSE | 0.250 | 0.177 | 0.142 |
BIAS | 0.216 | 0.151 | 0.082 | |
After Correction | RMSE | 0.173 | 0.117 | 0.080 |
BIAS | 0.139 | 0.102 | 0.030 | |
0.1 < True FVC ≤ 0.2 | 0.1 < True FVC ≤ 0.3 | |||
FVC_1 | FVC_2 | FVC_3 | ||
Before Correction | RMSE | 0.123 | 0.073 | 0.257 |
BIAS | 0.103 | 0.050 | 0.229 | |
After Correction | RMSE | 0.089 | 0.050 | 0.173 |
BIAS | 0.053 | 0.023 | 0.130 | |
0.2 < True FVC ≤ 0.3 | ||||
FVC_1 | FVC_2 | |||
Before Correction | RMSE | 0.104 | 0.200 | |
BIAS | 0.068 | 0.159 | ||
After Correction | RMSE | 0.084 | 0.124 | |
BIAS | 0.035 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Feng, L.; Yang, J.; Xu, Y.; Ho, H.C.; Luo, R.; Menenti, M.; Wong, M.S. Retrieval of Vegetation Indices and Vegetation Fraction in Highly Compact Urban Areas: A 3D Radiative Transfer Approach. Remote Sens. 2025, 17, 143. https://doi.org/10.3390/rs17010143
Xue W, Feng L, Yang J, Xu Y, Ho HC, Luo R, Menenti M, Wong MS. Retrieval of Vegetation Indices and Vegetation Fraction in Highly Compact Urban Areas: A 3D Radiative Transfer Approach. Remote Sensing. 2025; 17(1):143. https://doi.org/10.3390/rs17010143
Chicago/Turabian StyleXue, Wenya, Liping Feng, Jinxin Yang, Yong Xu, Hung Chak Ho, Renbo Luo, Massimo Menenti, and Man Sing Wong. 2025. "Retrieval of Vegetation Indices and Vegetation Fraction in Highly Compact Urban Areas: A 3D Radiative Transfer Approach" Remote Sensing 17, no. 1: 143. https://doi.org/10.3390/rs17010143
APA StyleXue, W., Feng, L., Yang, J., Xu, Y., Ho, H. C., Luo, R., Menenti, M., & Wong, M. S. (2025). Retrieval of Vegetation Indices and Vegetation Fraction in Highly Compact Urban Areas: A 3D Radiative Transfer Approach. Remote Sensing, 17(1), 143. https://doi.org/10.3390/rs17010143