Correction of CAMS PM10 Reanalysis Improves AI-Based Dust Event Forecast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. In-Situ Data
2.1.2. CAMS PM10 Reanalysis
2.1.3. Correction Model Inputs
2.1.4. CAMS Forecasts
2.1.5. Dust Event Definition
2.2. The Machine-Learning Setup
2.3. The PM10 Correction Model
2.4. AI-Based Dust Event Forecasting
3. Results
3.1. PM10 Correction Model Performance
3.2. AI-Based Dust Event Forecasting with Bias-Corrected PM10
3.3. CAMS PM10 Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, RG3005. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Goudie, A.S. Desert dust and human health disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Ward-Caviness, C.K.; Nwanaji-Enwerem, J.C.; Wolf, K.; Wahl, S.; Colicino, E.; Trevisi, L.; Kloog, I.; Just, A.C.; Vokonas, P.; Cyrys, J.; et al. Long-term exposure to air pollution is associated with biological aging. Oncotarget 2016, 7, 74510. [Google Scholar] [CrossRef] [PubMed]
- Sarafian, R.; Kloog, I.; Rosenblatt, J.D. Optimal-design domain-adaptation for exposure prediction in two-stage epidemiological studies. J. Expo. Sci. Environ. Epidemiol. 2022, 33, 963–970. [Google Scholar] [CrossRef]
- Nissenbaum, D.; Sarafian, R.; Rudich, Y.; Raveh-Rubin, S. Six types of dust events in Eastern Mediterranean identified using unsupervised machine-learning classification. Atmos. Environ. 2023, 309, 119902. [Google Scholar] [CrossRef]
- Fazzini, P.; Montuori, M.; Pasini, A.; Cuzzucoli, A.; Crotti, I.; Campana, E.F.; Petracchini, F.; Dobricic, S. Forecasting PM Levels Using Machine Learning Models in the Arctic: A Comparative Study. Remote Sens. 2023, 15, 3348. [Google Scholar] [CrossRef]
- Fluck, E.; Raveh-Rubin, S. Dry air intrusions link Rossby wave breaking to large-scale dust storms in Northwest Africa: Four extreme cases. Atmos. Res. 2023, 286, 106663. [Google Scholar] [CrossRef]
- Baladima, F.; Thomas, J.L.; Voisin, D.; Dumont, M.; Junquas, C.; Kumar, R.; Lavaysse, C.; Marelle, L.; Parrington, M.; Flemming, J. Modeling an extreme dust deposition event to the French Alpine seasonal snowpack in April 2018: Meteorological context and predictions of dust deposition. J. Geophys. Res. Atmos. 2022, 127, e2021JD035745. [Google Scholar] [CrossRef]
- Szpiro, A.A.; Paciorek, C.J. Measurement error in two-stage analyses, with application to air pollution epidemiology. Environmetrics 2013, 24, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Sarafian, R.; Nissenbaum, D.; Raveh-Rubin, S.; Agrawal, V.; Rudich, Y. Deep multi-task learning for early warnings of dust events implemented for the Middle East. npj Clim. Atmos. Sci. 2023, 6, 23. [Google Scholar] [CrossRef]
- Pappa, A.; Kioutsioukis, I. Forecasting particulate pollution in an urban area: From copernicus to sub-km scale. Atmosphere 2021, 12, 881. [Google Scholar] [CrossRef]
- Stortini, M.; Arvani, B.; Deserti, M. Operational forecast and daily assessment of the air quality in Italy: A copernicus-CAMS downstream service. Atmosphere 2020, 11, 447. [Google Scholar] [CrossRef]
- Ryu, Y.H.; Min, S.K. Long-term evaluation of atmospheric composition reanalyses from CAMS, TCR-2, and MERRA-2 over South Korea: Insights into applications, implications, and limitations. Atmos. Environ. 2021, 246, 118062. [Google Scholar] [CrossRef]
- Sekmoudi, I.; Khomsi, K.; Faieq, S.; Idrissi, L. Assessment of global and regional PM 10 CAMSRA data: Comparison to observed data in Morocco. Environ. Sci. Pollut. Res. 2021, 28, 29984–29997. [Google Scholar] [CrossRef]
- Ali, M.A.; Bilal, M.; Wang, Y.; Nichol, J.E.; Mhawish, A.; Qiu, Z.; de Leeuw, G.; Zhang, Y.; Zhan, Y.; Liao, K.; et al. Accuracy assessment of CAMS and MERRA-2 reanalysis PM2.5 and PM10 concentrations over China. Atmos. Environ. 2022, 288, 119297. [Google Scholar] [CrossRef]
- Shtein, A.; Kloog, I.; Schwartz, J.; Silibello, C.; Michelozzi, P.; Gariazzo, C.; Viegi, G.; Forastiere, F.; Karnieli, A.; Just, A.C.; et al. Estimating daily PM2.5 and PM10 over Italy using an ensemble model. Environ. Sci. Technol. 2019, 54, 120–128. [Google Scholar] [CrossRef]
- Sarafian, R.; Kloog, I.; Just, A.C.; Rosenblatt, J.D. Gaussian markov random fields versus linear mixed models for satellite-based PM2.5 assessment: Evidence from the northeastern USA. Atmos. Environ. 2019, 205, 30–35. [Google Scholar] [CrossRef]
- Hough, I.; Sarafian, R.; Shtein, A.; Zhou, B.; Lepeule, J.; Kloog, I. Gaussian Markov random fields improve ensemble predictions of daily 1 km PM2.5 and PM10 across France. Atmos. Environ. 2021, 264, 118693. [Google Scholar] [CrossRef]
- Sarafian, R.; Kloog, I.; Sarafian, E.; Hough, I.; Rosenblatt, J.D. A domain adaptation approach for performance estimation of spatial predictions. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5197–5205. [Google Scholar] [CrossRef]
- Riccio, A.; Chianese, E. Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method. Atmos. Chem. Phys. 2024, 24, 1673–1689. [Google Scholar] [CrossRef]
- Bertrand, J.M.; Meleux, F.; Ung, A.; Descombes, G.; Colette, A. Improving the European air quality forecast of the Copernicus Atmosphere Monitoring Service using machine learning techniques. Atmos. Chem. Phys. 2023, 23, 5317–5333. [Google Scholar] [CrossRef]
- Hernanz, A.; García-Valero, J.A.; Domínguez, M.; Rodríguez-Camino, E. A critical view on the suitability of machine learning techniques to downscale climate change projections: Illustration for temperature with a toy experiment. Atmos. Sci. Lett. 2022, 23, e1087. [Google Scholar] [CrossRef]
- Hernanz, A.; Correa, C.; Sánchez-Perrino, J.C.; Prieto-Rico, I.; Rodríguez-Guisado, E.; Domínguez, M.; Rodríguez-Camino, E. On the limitations of deep learning for statistical downscaling of climate change projections: The transferability and the extrapolation issues. Atmos. Sci. Lett. 2023, 25, e1195. [Google Scholar] [CrossRef]
- Schär, C.; Fuhrer, O.; Arteaga, A.; Ban, N.; Charpilloz, C.; Di Girolamo, S.; Hentgen, L.; Hoefler, T.; Lapillonne, X.; Leutwyler, D.; et al. Kilometer-scale climate models: Prospects and challenges. Bull. Am. Meteorol. Soc. 2020, 101, E567–E587. [Google Scholar] [CrossRef]
- Karger, D.N.; Lange, S.; Hari, C.; Reyer, C.P.; Conrad, O.; Zimmermann, N.E.; Frieler, K. CHELSA-W5E5: Daily 1 km meteorological forcing data for climate impact studies. Earth Syst. Sci. Data Discuss. 2022, 15, 2445–2464. [Google Scholar] [CrossRef]
- Asadollah, S.B.H.S.; Sharafati, A.; Motta, D.; Jodar-Abellan, A.; Pardo, M.Á. Satellite-based prediction of surface dust mass concentration in southeastern Iran using an intelligent approach. Stoch. Environ. Res. Risk Assess. 2023, 37, 3731–3745. [Google Scholar] [CrossRef]
- Alshammari, R.K.; Alrwais, O.; Aksoy, M.S. Machine Learning Forecast of Dust Storm Frequency in Saudi Arabia Using Multiple Features. Atmosphere 2024, 15, 520. [Google Scholar] [CrossRef]
- Aryal, Y. Application of Artificial Intelligence Models for Aeolian Dust Prediction at Different Temporal Scales: A Case with Limited Climatic Data. AI 2022, 3, 707–718. [Google Scholar] [CrossRef]
- Schultz, M.G.; Schröder, S.; Lyapina, O.; Cooper, O.R.; Galbally, I.; Petropavlovskikh, I.; Von Schneidemesser, E.; Tanimoto, H.; Elshorbany, Y.; Naja, M.; et al. Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. Elem. Sci. Anthr. 2017, 5, 58. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- WHO. Ambient (outdoor) air pollution. In Air Quality Guidelines% 22 Estimate, Related Deaths by Around; WHO: Geneva, Switzerland, 2018; pp. 15–25. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Guryanov, A. Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees. In Proceedings of the Analysis of Images, Social Networks and Texts: 8th International Conference, AIST 2019, Kazan, Russia, 17–19 July 2019; Revised Selected Papers 8; Springer: Cham, Switzerland, 2019; pp. 39–50. [Google Scholar]
- Goodfellow, I. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Mao, A.; Mohri, M.; Zhong, Y. Cross-entropy loss functions: Theoretical analysis and applications. In Proceedings of the International Conference on Machine Learning, PMLR, Honolulu, HI, USA, 23–29 July 2023; pp. 23803–23828. [Google Scholar]
- Kingma, D.P. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Arola, A.; Basart, S.; Benedictow, A.; Bennouna, Y.; Blechschmidt, A.M.; Cuevas, E.; Errera, Q.; Eskes, H.; Kapsomenakis, J.; Langerock, B.; et al. Validation Report of the CAMS Near-Real-Time Global Atmospheric Composition Service: Period September–November 2021; ECMWF: Reading, UK, 2022. [Google Scholar] [CrossRef]
- Meleux, F. Annual Report on the Evaluation of Validated Reanalyses VRA 2020; INERIS: Verneuil-en-Halatte, France, 2023. [Google Scholar]
- Csiszár, I. I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 1975, 3, 146–158. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Buonaccorsi, J.P. Measurement Error: Models, Methods, and Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2010; pp. 76–78. [Google Scholar]
- Part VIII: Atmospheric Composition; DOCUMENTATION-Cy48r1, I; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2023.
- Errera, Q.; Bennouna, Y.; Schulz, M.; Eskes, H.; Basart, S.; Benedictow, A.M.; Blechschmidt, A.M.; Chabrillat, S.; Clark, H.; Cuevas, E.; et al. Validation Report for the CAMS Global Reanalyses of Aerosols and Reactive Trace Gases, Years 2003–2020; ECMWF: Reading, UK, 2021. [Google Scholar]
- Chen, G.; Iwasaki, T.; Qin, H.; Sha, W. Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Clim. 2014, 27, 5517–5537. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res. Atmos. 2016, 121, 11–442. [Google Scholar] [CrossRef]
- Alghamdi, A.S. Evaluation of four reanalysis datasets against radiosonde over Southwest Asia. Atmosphere 2020, 11, 402. [Google Scholar] [CrossRef]
- Peshev, Z.; Deleva, A.; Vulkova, L.; Dreischuh, T. Large-Scale Saharan Dust Episode in April 2019: Study of Desert Aerosol Loads over Sofia, Bulgaria, Using Remote Sensing, in-situ, and Modeling Resources. Atmosphere 2022, 13, 981. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarafian, R.; Nathan, S.; Nissenbaum, D.; Khan, S.; Rudich, Y. Correction of CAMS PM10 Reanalysis Improves AI-Based Dust Event Forecast. Remote Sens. 2025, 17, 222. https://doi.org/10.3390/rs17020222
Sarafian R, Nathan S, Nissenbaum D, Khan S, Rudich Y. Correction of CAMS PM10 Reanalysis Improves AI-Based Dust Event Forecast. Remote Sensing. 2025; 17(2):222. https://doi.org/10.3390/rs17020222
Chicago/Turabian StyleSarafian, Ron, Sagi Nathan, Dori Nissenbaum, Salman Khan, and Yinon Rudich. 2025. "Correction of CAMS PM10 Reanalysis Improves AI-Based Dust Event Forecast" Remote Sensing 17, no. 2: 222. https://doi.org/10.3390/rs17020222
APA StyleSarafian, R., Nathan, S., Nissenbaum, D., Khan, S., & Rudich, Y. (2025). Correction of CAMS PM10 Reanalysis Improves AI-Based Dust Event Forecast. Remote Sensing, 17(2), 222. https://doi.org/10.3390/rs17020222