Multi-Centroid Extraction Method for High-Dynamic Star Sensors Based on Projection Distribution of Star Trail
Abstract
:1. Introduction
2. Models
2.1. The Star Trail Model
2.2. Time Synchronization of Endpoint Centroid Groups
2.3. Projection Distribution Characteristics of the Star Trail
3. Methods
- Paramet er Fitting: The is used to fit the grayscale projections of the star trails along the X-axis, identifying 2 positional parameters and as the start or end positions of the star’s movement along the X-axis. The same process is repeated to the Y-axis to find and .
- Coordinate Generation: Based on the angle between the principal axis of grayscale distribution and the X-axis, the 4 positional parameters from step 1 are combined into endpoint coordinates and . Note that at this stage, it is still not determined which of and corresponds to or .
- Timestamp Determination: By combining the results from the previous frame, the temporal order of the two endpoint coordinates and is determined, thus obtaining the and for the star trail.
3.1. Fitting Centroid Position Parameters of Star Trails
3.2. Generating Centroid Coordinates
- If the principal axis direction is in the 1st and 3rd quadrants, meaning that the signs of and are the same, then and are taken as the end points of the star trail.
- If the principal axis direction is in the 2nd and 4th quadrants, meaning that the signs of and are opposite, then and are taken as the end points of the star trail, i.e.,
3.3. Determining Timestamps for Centroid Groups
4. Experiment and Results
4.1. Numerical Simulation Experiment
4.1.1. Impact of Three-Axis Angular Velocity on Accuracy
4.1.2. Impact of Noise on Accuracy
4.1.3. High-Frame-Rate Attitude Determination Experiment
4.2. Semi-Physical Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Z.; Lei, Y.; Tang, X.; Xu, T.; Tian, G.; Gao, S.; Du, J.; Yang, X. Oriented Clustering Reppoints for Resident Space Objects Detection in Time Delay Integration Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5650715. [Google Scholar] [CrossRef]
- Jiamin, D.; Xiubin, Y.; Meili, Z.; Xingyu, T. Fast Multispectral Fusion and High-Precision Interdetector Image Stitching of Agile Satellites Based on Velocity Vector Field. IEEE Sens. J. 2022, 22, 22134–22147. [Google Scholar] [CrossRef]
- Xu, T.; Yang, X.; Wang, S.; Han, J.; Chang, L.; Yue, W. Imaging Velocity Fields Analysis of Space Camera for Dynamic Circular Scanning. IEEE Access 2020, 8, 191574–191585. [Google Scholar] [CrossRef]
- Lu, Z.; Shen, X.; Li, D.; Chen, Y. Integrated Imaging Mission Planning Modeling Method for Multi-Type Targets for Super-Agile Earth Observation Satellite. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4156–4169. [Google Scholar] [CrossRef]
- Lu, Z.; Shen, X.; Li, D.; Chen, Y.; Li, D. A Mission Planning Modeling Method of Multipoint Target Imaging Within a Single Pass for Super-Agile Earth Observation Satellite. IEEE Syst. J. 2022, 16, 1921–1932. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Y.; Li, Q.; Xu, Z.; Feng, H.; Man, Y. Attitude Scheduling and Verification for Dynamic Imaging of Agile Satellites. Optik 2020, 206, 164365. [Google Scholar] [CrossRef]
- Hasan, M.N.; Haris, M.; Qin, S. Fault-Tolerant Spacecraft Attitude Control: A Critical Assessment. Prog. Aerosp. Sci. 2022, 130, 100806. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Yuan, X. Attitude Optimization for Onboard Localization in Array Based Satellite Systems. IEEE Signal Process. Lett. 2024, 31, 326–330. [Google Scholar] [CrossRef]
- Wang, X.; Wu, G.; Xing, L.; Pedrycz, W. Agile Earth Observation Satellite Scheduling Over 20 Years: Formulations, Methods, and Future Directions. IEEE Syst. J. 2021, 15, 3881–3892. [Google Scholar] [CrossRef]
- Wu, L.; Jin, Y.; Guo, H.; Wang, J.; Zhang, F.; Zhang, Q.; Li, M. On-Orbit Calibration Method for Star Sensors Based on Microvariation in Intrinsic Parameters. IEEE Sens. J. 2023, 23, 18916–18925. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Li, Z.; Zhu, J. An Optical System of Star Sensors with Accuracy Performance Varying with the Field of View. Sensors 2023, 23, 8663. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Ma, Y.; Long, H.; Lu, K.; Zhao, R. On-Orbit High-Precision Calibration for Deep-Coupled Parameters of Star Sensor and Gyroscope Systems. Opt. Express OE 2024, 32, 32187–32209. [Google Scholar] [CrossRef] [PubMed]
- Liebe, C.C. Accuracy Performance of Star Trackers—A Tutorial. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 587–599. [Google Scholar] [CrossRef]
- Han, J.; Yang, X.; Xu, T.; Fu, Z.; Chang, L.; Yang, C.; Jin, G. An End-to-End Identification Algorithm for Smearing Star Image. Remote Sens. 2021, 13, 4541. [Google Scholar] [CrossRef]
- Xiaolin, N.; Zonghe, D.; Pingping, C.; Wu, W.R.; Fang, J.C.; Liu, G. Spacecraft Angular Velocity Estimation Method Using Optical Flow of Stars. Sci. China Inf. Sci. 2018, 62, 112203. [Google Scholar]
- He, L.; Ma, Y.; Zhao, R.; Hou, Y.; Zhu, Z. High Update Rate Attitude Measurement Method of Star Sensors Based on Star Point Correction of Rolling Shutter Exposure. Sensors 2021, 21, 5724. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, J.; Zhang, G. Global Field-of-View Imaging Model and Parameter Optimization for High Dynamic Star Tracker. Opt. Express 2018, 26, 33314. [Google Scholar] [CrossRef]
- Weina, Z.; Wei, Q.; Lei, G. Blurred Star Image Processing for Star Sensors under Dynamic Conditions. Sensors 2012, 12, 6712–6726. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, X.; Shi, F.; Wang, J.; Cao, M.; Liu, Q.; Wang, C. Dynamic Simulation Analysis of Working Equipment of Small Backhoe Hydraulic Excavator. J. Phys. Conf. Ser. 2024, 2691, 012007. [Google Scholar] [CrossRef]
- Ares, J.; Arines, J. Influence of Thresholding on Centroid Statistics: Full Analytical Description. Appl. Opt. AO 2004, 43, 5796–5805. [Google Scholar] [CrossRef]
- Xu, W.; Li, Q.; Feng, H.; Xu, Z.; Chen, Y. A Novel Star Image Thresholding Method for Effective Segmentation and Centroid Statistics. Optik 2013, 124, 4673–4677. [Google Scholar] [CrossRef]
- Kim, K. A New Star Identification Using Patterns in the Form of Gaussian Mixture Models. Adv. Space Res. 2024, 74, 319–331. [Google Scholar] [CrossRef]
- Wang, H.Y.; Xu, E.S.; Li, Z.F.; Li, J.J.; Qin, T. Gaussian Analytic Centroiding Method of Star Image of Star Tracker. Adv. Space Res. 2015, 56, 2196–2205. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Kong, L.; Wang, J.; Pang, Y.; Li, H.; Wu, J.; Yang, Y.; Tian, L. Centroiding Error Compensation of Star Sensor Images for Hypersonic Navigation Based on Angular Distance. IEEE Trans. Instrum. Meas. 2024, 73, 8508211. [Google Scholar] [CrossRef]
- Tan, W.; Qin, S.; Myers, R.M.; Morris, T.J.; Jiang, G.; Zhao, Y.; Wang, X.; Ma, L.; Dai, D. Centroid Error Compensation Method for a Star Tracker under Complex Dynamic Conditions. Opt. Express 2017, 25, 33559. [Google Scholar] [CrossRef]
- Yan, J.; Jiang, J.; Zhang, G. Dynamic Imaging Model and Parameter Optimization for a Star Tracker. Opt. Express 2016, 24, 5961. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, M.; Xue, Y. Restoration of Motion-Blurred Star Images with Elliptical Star Streaks. Meas. Sci. Technol. 2023, 34, 065403. [Google Scholar] [CrossRef]
- Mu, Z.; Wang, J.; He, X.; Wei, Z.; He, J.; Zhang, L.; Lv, Y.; He, D. Restoration Method of a Blurred Star Image for a Star Sensor Under Dynamic Conditions. Sensors 2019, 19, 4127. [Google Scholar] [CrossRef]
- Wan, X.; Wang, Y.; Wang, G.; Wei, X.; Wang, W.; Li, J.; Zhang, G. A Spatial–Temporal Star Spots Extraction for High Dynamics Star Sensors. IEEE Sens. J. 2023, 23, 13060–13071. [Google Scholar] [CrossRef]
- Mu, S.; Wang, L.; Li, G. A Method of Star Spot Center-of-Mass Localization Algorithm for Star Sensor Under Highly Dynamic Conditions. IEEE Sens. J. 2023, 23, 14957–14966. [Google Scholar] [CrossRef]
- Yan, J.; Jiang, J.; Zhang, G. Modeling of Intensified High Dynamic Star Tracker. Opt. Express 2017, 25, 927. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, J.; Wang, G.; Li, J.; Wang, Z. Dynamic Star Positioning Accuracy Improving Method Using Coded Exposure for Star Sensor. IEEE Trans. Instrum. Meas. 2024, 73, 5015412. [Google Scholar] [CrossRef]
- Yu, W.; Qu, H.; Zhang, Y. A High-Accuracy Star Centroid Extraction Method Based on Kalman Filter for Multi-Exposure Imaging Star Sensors. Sensors 2023, 23, 7823. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Jin, Y.; Hu, Y.; Zhang, D.; Yu, Y.; Liu, J.; Li, J.; Jiang, X.; Yu, X. Image Degradation Model for Dynamic Star Maps in Multiple Scenarios. Photonics 2022, 9, 673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Cao, Q.; Fu, Z.; Xu, T.; Duan, R.; Yang, X. Multi-Centroid Extraction Method for High-Dynamic Star Sensors Based on Projection Distribution of Star Trail. Remote Sens. 2025, 17, 266. https://doi.org/10.3390/rs17020266
Tang X, Cao Q, Fu Z, Xu T, Duan R, Yang X. Multi-Centroid Extraction Method for High-Dynamic Star Sensors Based on Projection Distribution of Star Trail. Remote Sensing. 2025; 17(2):266. https://doi.org/10.3390/rs17020266
Chicago/Turabian StyleTang, Xingyu, Qipeng Cao, Zongqiang Fu, Tingting Xu, Rui Duan, and Xiubin Yang. 2025. "Multi-Centroid Extraction Method for High-Dynamic Star Sensors Based on Projection Distribution of Star Trail" Remote Sensing 17, no. 2: 266. https://doi.org/10.3390/rs17020266
APA StyleTang, X., Cao, Q., Fu, Z., Xu, T., Duan, R., & Yang, X. (2025). Multi-Centroid Extraction Method for High-Dynamic Star Sensors Based on Projection Distribution of Star Trail. Remote Sensing, 17(2), 266. https://doi.org/10.3390/rs17020266