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Abstract: The presence of sufficient natural regeneration in mature forests is regarded as a
pivotal criterion for their future stability, ensuring seamless reforestation following final
harvesting operations or forest calamities. Consequently, forest regeneration is typically
quantified as part of forest inventories to monitor its occurrence and development over
time. Light detection and ranging (LiDAR) technology, particularly ground-based LiDAR,
has emerged as a powerful tool for assessing typical forest inventory parameters, providing
high-resolution, three-dimensional data on the forest structure. Therefore, it is logical to
attempt a LiDAR-based quantification of forest regeneration, which could greatly enhance
area-wide monitoring, further supporting sustainable forest management through data-
driven decision making. However, examples in the literature are relatively sparse, with
most relevant studies focusing on an indirect quantification of understory density from
airborne LiDAR data (ALS). The objective of this study is to develop an accurate and
reliable method for estimating regeneration coverage from data obtained through personal
laser scanning (PLS). To this end, 19 forest inventory plots were scanned with both a
personal and a high-resolution terrestrial laser scanner (TLS) for reference purposes. The
voxelated point clouds obtained from the personal laser scanner were converted into raster
images, providing either the canopy height, the total number of filled voxels (containing
at least one LiDAR point), or the ratio of filled voxels to the total number of voxels. Local
maxima in these raster images, assumed to be likely to contain tree saplings, were then
used as seed points for a raster-based tree segmentation, which was employed to derive the
final regeneration coverage estimate. The results showed that the estimates differed from
the reference in a range of approximately −10 to +10 percentage points, with an average
deviation of around 0 percentage points. In contrast, visually estimated regeneration
coverages on the same forest plots deviated from the reference by between −20 and
+30 percentage points, approximately −2 percentage points on average. These findings
highlight the potential of PLS data for automated forest regeneration quantification, which
could be further expanded to include a broader range of data collected during LiDAR-based
forest inventory campaigns.

Keywords: forest regeneration; personal laser scanning; LiDAR data; regeneration coverage
estimation; forest inventory
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1. Introduction
The presence of adequate natural regeneration is essential for maintaining forest

structure, ensuring stability, and reducing vulnerability to disturbances. Monitoring and
quantifying forest regeneration, particularly in uneven-aged forests, thus plays a crucial
role in sustainable forest management and planning [1]. This is especially important for
protective forests, which mitigate the effects of natural hazards such as avalanches, rockfalls,
and landslides, thereby safeguarding human life, infrastructure, and agricultural land. In
regions like Austria, where approximately 30% of the forested area is classified as protective
forest, the growing infrastructural density and overaging stands underscore the need for
efficient, large-scale monitoring approaches for assessing forest regeneration [2,3].

Nevertheless, the number of studies on the quantification of regeneration using re-
mote sensing technologies is still limited. To date, the majority of studies addressing the
aforementioned topic are based on airborne laser scanning (ALS) data [4–8]. Although
this form of active remote sensing provides a detailed view of the canopy at a high spatial
resolution [9] and enables, to some extent, the depiction of understory structures, the
exact quantification of sub-canopy forest regeneration is still challenging [8,10]. Amiri
et al. [4], for example, estimated the regeneration coverage from full-waveform ALS point
clouds. Their approach resulted in an underestimation of the regeneration coverage by
approximately 30% in comparison to the reference [4].

Naturally, ground-based LiDAR exhibits higher precision regarding the near-ground
layer, since the scanning system is itself situated below the canopy cover. An example
of terrestrial laser scanning (TLS) applied to the quantification of forest regeneration was
given by Heinzel and Ginzler [10]. The authors initially identified tree stems from TLS point
clouds, calculated their diameters, and then segmented individual trees. By classifying
stems into mature trees, unestablished regeneration, and established regeneration (the
latter being defined as trees taller than 130 cm and with a DBH ≤ 12 cm), they estimated
regeneration coverage within their study plots. The authors encountered the greatest
challenge in the form of occlusion effects caused by clusters of densely growing coniferous
tree regeneration, which are often covered with branches that reach to the ground and
become impenetrable to the laser beams [10]. In another study, Brolly et al. [11] developed
and tested an algorithm for the mapping of juvenile trees between heights of 3 and 6 m.
Although they achieved accuracies comparable to detecting mature trees, stem density
played a major role in their outcomes. Both studies highlight a central issue with TLS: while
the data quality near the ground is excellent, occlusions remain problematic, and capturing
comprehensive coverage often requires multiple scans from different positions, increasing
labor and costs.

Personal laser scanning (PLS) systems offer a promising advancement. With PLS, data
are collected on the move, potentially reducing occlusions and providing a more complete
point cloud of the understory. Although PLS typically has a lower point density than TLS,
it still delivers highly detailed measurements of understory structures and can be more
cost-effective, since scanning occurs continuously and does not require setting up multiple
fixed stations [12]. To the best of our knowledge, however, there is no study addressing
the quantification of forest regeneration from PLS data, which is why the results of the
following study were compared to those of studies that were based on other data sources.

Upon closer examination of the limited number of studies addressing the topic of
regeneration quantification from LiDAR point clouds, the inherent difficulties of this task
become apparent. Most of these studies either define regeneration as consisting of relatively
high trees, taller than 1 m, or they remove LiDAR points below a certain height, which
might originate from grass or herbs. By doing so, some major difficulties associated with
the detection and quantification of small regeneration trees from PLS data are avoided.
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As mentioned by Balenović et al. [13], a small size of targeted trees together with the
comparably low-ranging accuracies of PLS systems generally involve higher noise levels in
the data, resulting in reduced tree detection accuracy. Since this obstacle was reported for
trees with a DBH of up to 10 cm, it is even more relevant for tree saplings, which is one
major reason for the above-mentioned removal of LiDAR points below certain heights and
the limited number of studies addressing this topic.

In our study, and in contrast to other existing approaches, regeneration is defined
through the presence of woody plants in their juvenile stage, with heights of at least 0.1 m;
when taller than 1.3 m, their DBH must not exceed 5 cm. We developed and tested a novel
algorithm for estimating the coverage of these regeneration trees from PLS point clouds
on 19 forest inventory plots. To achieve this goal, different fundamental algorithms for
the detection of treetops and the segmentation of crowns were combined. In more detail,
a variable window filter followed by a watershed segmentation was applied to different
sets of raster images, each derived from the voxelated point cloud of the regeneration. By
combining height models, voxel numbers, and voxel densities, the regeneration coverage
of each plot was calculated in five different variants of the core algorithms. To assess the
possibilities and limitations of the new algorithm, the resulting regeneration coverages
were compared to reference coverages, which were manually derived from high-resolution
LiDAR data obtained with a RIEGL VZ-600i stationary TLS system. Furthermore, a com-
parison with visually estimated regeneration coverages was performed to demonstrate the
differences between the method that was traditionally used in forest inventory and our
LiDAR-based approach.

The primary goals of this study were as follows: (i) to develop an algorithm to estimate
the forest regeneration coverage from PLS point clouds; (ii) to compare the results with
reliable and objective reference data; and (iii) to evaluate our results against traditional
expert estimates of regeneration coverage.

2. Materials and Methods
2.1. Study Area, Data Collection, and Data Preparation

This study was conducted in the BOKU University training forest near the village of
Forchtenstein (Lower Austria), which is part of the Austrian Federal Forest Service. Forest
vegetation was scanned on 19 forest inventory plots using two different laser scanners
(Figure 1), a handheld personal laser scanning (PLS) system GeoSLAM Zeb Horizon
(GeoSLAM Ltd., Nottingham, UK), and an RIEGL VZ-600i TLS system (RIEGL Laser
Measurement Systems GmbH, Horn, Austria). The PLS system provides a point detection
rate of 300,000 points per second at a maximum range of 100 m. The PLS system is
highly mobile due to its low weight, its high battery capacity, and the implemented SLAM
(simultaneous localization and mapping) technology. When scanning with the PLS system,
instructions on the walking path that were given by Gollob et al. [14] were followed. The
scanning operator started at the plot center and headed north, surrounded the plot center
within 20 m, crossed the center twice, and ended the scan process at the starting point. This
procedure ensured a high coverage of the entire sample plot area and a complete 3D scan
of the vegetation from the ground to the treetops [14].

The RIEGL VZ-600i TLS has a pulse repetition rate of up to 2.2 MHz, given a resolution
of 6 mm in 10 m distance. The vertical and horizontal resolutions can be scaled by the
user and were both set to 0.034◦. Due to its stationary operating principle, the RIEGL
VZ-600i TLS has limitations when used in forest inventory practice. However, the RIEGL
TLS provides higher precision, a higher point density, and enables an accurate colorization
of the resulting point clouds; therefore, it was used in multi-scan mode to collect accurate
reference data (see Section 2.2). Depending on the height and density of the ground
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vegetation, between 4 and 6 scanning positions were distributed symmetrically around the
plot center at distances of approximately 4 m. This scan alignment was chosen to maximize
the completeness of the point clouds by minimizing shadowing effects.
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Figure 1. GeoSLAM Zeb Horizon (left) and RIEGL VZ-600i (right) during fieldwork.

2.2. Reference Data

The reference data of the regeneration coverage were assessed via two methods. First,
the coverage rates were visually estimated by experienced experts; this is still common
practice in vegetation science and forest management planning. To mitigate a potential
observer bias, the visual assessments were permanently calibrated against the schematic
illustrations of vegetation coverage classes defined by Braun-Blanquet [15], and observa-
tions were made by three operators independently from one another. Second, the colorized
high-resolution point clouds obtained by the RIEGL VZ-600i TLS were manually cropped
to derive the exact area covered by the forest regeneration plants. The cropping of the point
clouds was performed using the clipping tool in the CloudCompare software [16].

To ensure that only trees with the predefined size (height taller than 0.1 m and DBH
less than 5 cm) were included in this process, the precise positions of these trees were
mapped in the field using Version 23.7 of the ITS GeoAce Survey software (Figure 2)
running on an Apple iPad Pro (Apple Inc., Cupertino, CA, USA), which implements visual
SLAM-positioning and augmented reality technologies (ITS Geo Solutions GmbH, Jena,
Germany). The thereby-acquired tree positions, visualized as points in CloudCompare,
were used as visual markers to facilitate and improve the identification and clipping of the
regenerating trees from the RIEGL point clouds.

The resulting 2D hulls were imported as shapefiles into the workspace of the R
software [17] to calculate the reference regeneration coverage with polygon operation
functionalities provided by the sf package [18]. This approach provided the most ac-
curate reference data; accordingly, both the visually estimated and the LiDAR-derived
regeneration coverages could eventually be evaluated.
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Figure 2. Screenshot from the GeoAce App (ITS Geo Solutions GmbH, Jena, Germany) during
fieldwork. The green crosses mark the positions of marked trees, while the red dot marks the plot
center. The positions of the surveyed trees were visualized in CloudCompare to avoid the clipping of
trees smaller or larger than the predefined threshold.

2.3. Calculation of Regeneration Coverage from LiDAR Data
2.3.1. General Approach

Although different methods were tested in the subsequent steps, the core method
for identifying treetops and delineating crown areas remained consistent. The differences
among the tested methods lay mainly in their choice of input data and the sequence
in which certain functions were applied. Our fundamental approach was inspired by
established methodologies that detect mature trees from ALS-derived digital surface models
(DSMs) [19]. Similarly, after converting the PLS point clouds of dense regeneration clusters
into DSMs, algorithms for the detection of treetops as local maxima in the surface model can
be applied to localize the areas that likely contain regeneration trees. We are well aware that,
in heterogenous natural forests, peaks in such a small-scale DSM might also originate from
other objects or plants. Therefore, the described methodology was tested with different
models, abandoning the strict reliance on height information alone. Figure 3 schematically
illustrates the workflow of the general approach, which is described in the following.

Prior to all further steps, the raw PLS data were pre-processed with the GeoSLAM
Hub (GeoSLAM Ltd., Nottingham, UK), and the resulting point cloud data were then
exported in a LAS file format [20]. The methodology presented by Tockner et al. [21] was
applied to the vegetation points to achieve segmentation of the individual overstory trees
(DBH > 5 cm) via a voxel-based region growing algorithm. The segmented overstorey trees
were removed from the point cloud, and only the remaining ground and ground vegetation
points were further analyzed. However, prior to the automatic analysis of the smaller
tree regeneration, noise was filtered using statistical outlier removal (SOR) [22]. Points
originating from the laser hits on the pole, which marked the center of each inventory plot,
were cut out manually using CloudCompare software [16].

The resulting point clouds served as input data for the quantification of regeneration.
In the first step, a classification of ground and non-ground points was performed. This was
accomplished through the use of a cloth simulation filter (CSF) from the lidR package [22].

In the second step, the ground points were used to generate a digital terrain model
(DTM) that was required for the subsequent normalization of the vegetation point cloud
using the normalize_height function [22].
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To achieve a more uniform distribution of the measurement points and reduce bias in
the point density [23], the normalized point cloud was voxelized in the third step, using the
voxelize_points function. Each voxel containing at least one LiDAR point was considered
“filled”, and its 3D coordinates were used to create a new voxel cloud. Without voxelization,
the point density would vary depending on the PLS sensor’s position during scanning and
the density of the scanned vegetation, possibly falsifying the results [23]. A grid search
optimization identified the optimal parameter settings for the edge length of the cubic
voxels (voxres) as well as the parameters of the CSF function, class threshold (classthr), and
cloth resolution (clothres) (see Section 2.4).

In the fourth step, these vegetation voxels were projected onto the XY-plane with
the rasterize function from the terra package [24], where the pixel size was set to the size
of the voxels (voxres). Accordingly, three different raster images were created for each
plot: the Surface Raster (representing the height of the highest filled voxel), the Voxel Count
Raster (representing the number of filled voxels), and the Voxel Density Raster (representing
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the ratio of filled voxels to the total possible voxel stack above each cell). To smooth the
resulting raster images and facilitate their interpretation, a mean filter [24] with a kernel size
of 7 pixels was eventually applied to the latter, meaning that each pixel was assigned the
average of the values of a 7 × 7 pixel area around it. This particular kernel size was chosen
after visual inspection of the raster images resulting from filtering with different kernel
sizes. However, since the kernel size did not seem to have such a great influence and the
mean filter was only used for an optical smoothing of the raster images, the optimization
of this parameter was disregarded.

In the fifth step, the areas likely to contain a regeneration tree were identified using
either the Surface, Voxel Count, or Voxel Density Raster, depending on the chosen method
(see Section 2.3.2). For this purpose, the vwf function from the ForestTools [25] package was
used to find local maxima within a variable search radius. Depending on which raster
was filtered, the variable search radius was defined by one of three window functions.
Equations (1)–(3) show the basic setup of these functions as chosen in the course of this
study, with rsw being the radius of the search window and xsur f ace, xvoxel , and xdensity being
the pixel values of the Surface, Voxel Count, and Voxel Density Raster, respectively. In cases
where this pixel value represented a local maximum within the search window, it was
marked as a treetop, and its XY coordinates were saved for the next steps.

rsw =
xsur f ace

ws f ac
+ 0.1 (1)

rsw =
xvoxel × voxres

ws f ac
+ 0.1 (2)

rsw =
xdensity

ws f ac
+ 0.1 (3)

The parameter ws f ac defines the search window radius relative to the tree height [26]
(or other pixel values). Together with the above-mentioned parameters voxres, classthr, and
clothres, ws f ac was also optimized via a grid search optimization (see Section 2.4).

To enable a comparison with the reference data, which were acquired via an inventory
of saplings higher than 0.1 m, only treetops higher than 0.1 m were included in the following
workflow. Trees exceeding the upper DBH threshold of 5 cm were already removed during
the tree segmentation of overstory trees (see Section 2.1).

In step 6, the mcws (marker-controlled watershed segmentation) function [25] was
used to delineate crown areas, starting from the detected treetops. Naturally, the function
requires the positions of the treetops together with a CHM—or another raster image—from
which to segment the tree crowns. A threshold, above which a tree crown is delineated,
had to be chosen. For all methods working on the Surface or Voxel Count Raster, the height
threshold was set to 0.1 m or 0.1/voxres , respectively, assuming that smaller detected trees
do not yet have crowns of noteworthy size. The corresponding threshold for the Voxel
Density Raster (segmin), not giving any height information, was optimized in the grid search
optimization (see Section 2.4). The final output of the sixth step is polygons, representing
the crown areas of the delineated trees, from which the regeneration coverage could finally
be calculated.

Where the established methods usually employ the same canopy height model for both
treetop detection and crown segmentation [19], this study explored various combinations
of input data and parameters. Subsequent sections discuss these evaluations and identify
the most effective approaches for quantifying regeneration coverage from PLS data.
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2.3.2. Methods for Estimating Regeneration Coverage

Figure A20 in Appendix B schematically illustrates the workflow of the different
methods tested in the course of this study, which is described in the following. Additionally,
Table 1 gives a step-by-step overview of the workflow for each method together with the
corresponding parameter settings, which is described further in Section 2.4.

In method M1, both the treetop detection (step 5) and crown segmentation (step
6) processes rely entirely on the Surface Raster. This method closely resembles standard
procedures used for ALS data, where a canopy height model (CHM) is typically employed.
Here, the Surface Raster serves as a small-scale CHM for regeneration layers, with treetops
identified as local height maxima and crowns delineated directly from these peaks.

Method M2 uses only the Voxel Count Raster for both treetop detection and crown
segmentation. The idea is that higher voxel counts indicate vertical structures, such as
stems, more reliably than the Surface Raster, which can be easily influenced by grass and
other ground vegetation. While this approach does not reflect actual crown shapes as
directly as the one using the Surface Raster, it can highlight likely tree positions more
accurately.

Method M3 combines the strengths of M1 and M2. First, treetops are identified from
the Voxel Count Raster, which is better at pinpointing where stems are likely to be. Next,
crown segmentation is performed using the Surface Raster. This two-step combination seeks
to leverage both the reliable stem detection from voxel counts and the more realistic crown
shapes derived from the surface information.

Method M4 refines this approach by adding an intermediate step. After initially
detecting peaks and segmenting areas with higher voxel counts in the Voxel Count Raster,
these areas are used as masks on the Surface Raster. Within these masked areas, the highest
point on the Surface Raster is selected as a new treetop position (step 7 in Table 1), supposedly
enhancing the final crown segmentation applied on the Surface Raster (step 8 in Table 1).
This step aims to fine-tune crown segmentation, improving the fit between identified
treetops and the actual surface structure.

The fifth and last tested method (M5) performs tree top detection and crown delin-
eation on the Voxel Density Raster. This method originated from the same idea as M2,
namely that, in areas of the point cloud containing a sapling stem, the number of voxels
should be higher than in the surrounding areas. However, when taking the absolute voxel
count as segmentation criterion, high grass could easily be mistaken for a tree. Additionally,
the crowns are segmented starting from the treetop until the pixel values fall below a preset
height threshold when applying M1 to M4. Applying a static threshold based only on
height information falls short of differentiating between the initially segmented tree and
adjacent grass patches, which can lead to major misclassifications and negatively impact
the final result. Therefore, M5 is an attempt to incorporate the ratio of filled to total number
of voxels as new segmentation criterion (see Section 2.3.1). For the treetop detection with
the vwf function (step 5), the minimum value ( topmin)—for which a pixel representing a
local maximum must be exhibited for it to be considered as a treetop—was set to 0.4 after
the grid search optimization (see Section 2.4). This approach is based on the assumption
that peaks in the Voxel Density Raster which exhibit a high proportion of filled voxels are
likely to represent sapling stems. The crown delineation, starting from these detected peaks,
was then conducted until the threshold (segmin) of 0.1. Thus, instead of assigning every
pixel above a certain height or a certain number of voxels to a tree crown, the algorithm
incorporates the proportion of filled voxels as segmentation criterion, supposedly enabling
a more distinct delineation of trees and other vegetation elements.
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Table 1. Step-by-step workflow of method M1–M5 with parameter settings. The column ‘Setting of relevant parameters‘ provides the values of the parameters
specified in the previous column, as chosen after their optimization (see Section 2.4). The hyphen signifies that no relevant information on input data or parameters
can be given for the corresponding step.

Step
No. Step Step Description Method Input Data/

Input Raster
Relevant

Parameters
Setting of Relevant

Parameters
Package/
Function

1 Ground
classification

The point cloud, with grown trees already
cropped out, is classified into ground and

non-ground points.

M1

- Class threshold/
cloth resolution

0.2 m/0.3 m

lidR/
classify_ground()

M2 0.2 m/0.1 m

M3 0.15 m/0.5 m

M4 0.15 m/0.5 m

M5 0.2 m/0.1 m

2 Point cloud
normalization

Based on the DTM, derived from the
classified ground points, the point cloud

is normalized.
M1–M5 - - - lidR/

normalize_height()

3 Voxelization

The normalized vegetation point cloud
(without ground points) is converted into
cubic voxels. Depending on the applied

method, different voxel resolutions
are applied.

M1

- Voxel resolution

0.01 m

lidR/voxelize_points()

M2 0.03 m

M3 0.01 m

M4 0.01 m

M5 0.02 m

4 Rasterization

The resulting vegetation voxel cloud is
then rasterized, to obtain a 2D raster

image. Depending on the applied
method, different properties of the voxel

cloud (surface height, voxel count, or
voxel density) are used as input for the

pixel values of these raster images.

M1 Surface

- - terra/rasterize()

M2 Voxel count

M3
Surface and
voxel count

M4
Surface and
voxel count

M5 Voxel density

5 Maxima
detection

From the resulting raster images, local
maxima, assumed to represent likely
positions of treetops, are detected. A

minimum value (height, voxel number, or
voxel density—depending on raster

image) for the maxima has to be chosen.

M1 Surface Raster

Minimum value
(topmin )

0.1

ForestTools/vwf()

M2 Voxel Count Raster 3 + 1/3

M3 Voxel Count Raster 10

M4 Voxel Count Raster 10

M5 Voxel Density Raster 0.4
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Table 1. Cont.

Step
No. Step Step Description Method Input Data/

Input Raster
Relevant

Parameters
Setting of Relevant

Parameters
Package/
Function

6
Crown

segmentation

Based on one of the raster images
computed in step 4, tree crowns are

segmented, starting from the treetops
detected in step 5. A threshold (height,

voxel number, or voxel
density—depending on raster image),

above which crown areas are segmented,
has to be chosen.

M1 Surface Raster

Segmentation
threshold (segmin )

0.1

ForestTools/mcws()

M2 Voxel Count Raster 3 + 1/3

M3 Surface Raster 0.1

M4 Voxel Count Raster 10

M5
Voxel Density

Raster 0.1

7 Maxima
detection

For method M4, the treetop detection is
repeated, but this time on the surface

raster and only within the polygons of the
crown areas segmented in step 6.

M4 Surface Raster Minimum value
(topmin ) 0.1 ForestTools/vwf()

8 Crown
segmentation

Afterward, a final crown segmentation is
applied using the treetops detected in
step 7, this time on the Surface Raster.

M4 Surface Raster Segmentation
threshold (segmin ) 0.1 ForestTools/mcws()
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2.4. Comparison of Parameter Settings

We examined the parameters influencing ground classification, point cloud voxeliza-
tion, and tree detection and their impact on the final results for all methods (M1–M5).
Therefore, a grid search optimization (brute force algorithm) was performed across differ-
ent parameter combinations.

One of the optimized parameters was the size of the cubic voxels (voxres), into which
the LiDAR points were converted in step 3. During the optimization, this size varied
between 1 and 5 cm in a 1 cm step width. The variable ws f ac of the window size function
also varied between 1 and 5, but in a step width of 0.5. However, since the latter did not
influence the results in any of the applied methods, ws f ac was simply set to 1.5 after an
initial grid search.

Accurate ground classification is critical, especially at such a small scale, since it
strongly influences the quality of tree identification and delineation. For this reason, the
parameters of the cloth simulation filter (CSF) algorithm used for ground classification
were given special attention. The CSF algorithm, described by Zhang et al. [27], simulates a
rigid cloth draped over the inverted point cloud. By analyzing how the cloth interacts with
the surface, it determines which points represent the ground. The cloth resolution (clothres)
controls the resolution of the initial cloth grid. Three values for clothres (0.1, 0.3, and 0.5)
were tested. The class threshold (classthr) defines how close a point must be to the cloth to
be considered ground. Three values for classthr (0.10, 0.15, and 0.20) were tested as well.
The other CSF parameters (rigidness, time step, and the number of iterations) were left at
their default settings.

For M5, the thresholds for tree detection and segmentation, topmin and segmin, needed
to be optimized. The topmin threshold (ranging from 0.4 to 0.9 in increments of 0.1) defines
how large a local maximum in voxel density must be to count as a treetop. The segmin
threshold (ranging from 0 to 0.7 in increments of 0.1) defines where crown segmentation
ends. Naturally, only parameter combinations with topmin being larger than segmin were
taken into account.

Consequently, 45 possible parameter combinations were tested for M1 to M4 and 1710
for M5. The optimal parameter sets were identified by minimizing the mean absolute error
(MAE) between the calculated regeneration coverage and the reference coverage from the
RIEGL point clouds. The MAE was calculated as outlined in Equation (4):

MAE =
1
n

n

∑
i=1

|y i − ŷi| (4)

where yi is the reference regeneration coverage, ŷi is the estimated regeneration coverage,
and n is the number of plots.

2.5. Comparison of Methods

After identifying the optimal parameter combinations for each of the five tested
methods (M1–M5) using the approach described above, a more detailed evaluation of
their performance became possible. By calculating the regeneration coverage under these
optimal settings, the best achievable results for each method were determined, allowing for
a fair and direct comparison.
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To account for the bias and detect any systematic errors that may have occurred, the
mean deviation (MD) was used for the final comparison of the optimized methods. It was
calculated as outlined in Equation (5):

MD =
1
n

n

∑
i=1

(yi − ŷi) (5)

where yi is the reference regeneration coverage at sample plot i, ŷi is the estimated regener-
ation coverage at the same plot, and n is the total number of sample plots.

3. Results
3.1. Optimization of Parameters

As described in Section 2.4, the MAE of the calculated regeneration coverages was
analyzed in terms of different parameter combinations (voxel resolution—voxres; class
threshold—classthr; cloth resolution—clothres; thresholds for the local maxima and seg-
mented crowns of M5—topmin and segmin). The thereby-identified best match for M1, i.e.,
the lowest MAE, was obtained with a voxel resolution of 0.01 m, a class threshold of 0.2 m,
and a cloth resolution of 0.3 m. While the optimal voxel resolution was the same, the M3

and M4 methods performed best with a class threshold of 0.15 m and a cloth resolution
of 0.5 m. Method M2 reached its lowest MAE of 2.59 percentage points (pp) with a voxel
resolution of 0.03 m, a class threshold of 0.2 m and a cloth resolution of 0.1 m. However, it
should be noted that all parameter combinations with a voxel resolution of 0.03 m led to
low MAE values when applied with method M2 (Figure 4). Applying M5, the lowest MAE
of 3.87 pp was reached with a voxel resolution of 0.02 m, a class threshold of 0.2 m, and a
cloth resolution of 0.1 m. The minimum value for the detection of local maxima (topmin)
from the Voxel Density Raster was optimal at 0.4, with an optimal segmentation threshold
segmin of 0.1. Generally, voxel resolution and class threshold had a larger impact on the
final results, whereas the cloth resolution had only marginal influence and a change in the
window size parameter ws f ac had almost no impact at all. The latter fact became apparent
after an initial grid search, which is why the influence of the window size parameter was
not investigated further.

Apart from M1, all the methods reached average deviations around 0 pp when apply-
ing certain parameter combinations (Figure 4). Note, that in Figure 4, only the optimized
values of the parameters topmin and segmin (topmin = 0.4, segmin = 0.1) are included in the
illustrated results of M5, in order to enable a balanced comparison with the other methods.

The mean absolute error (MAE) and the mean deviation from the reference coverage
(MD) are affected by the parameters topmin and segmin when applying the otherwise-
optimized parameters (voxres = 0.02m, classthr = 0.2m, clothres = 0.1m) on method M5

(Figure 5). The lowest MAE was achieved with topmin = 0.4 and segmin = 0.1. Notably,
increasing the treetop detection threshold topmin above 0.5 led to underestimations in regen-
eration coverage, as more treetops are overlooked. Similarly, higher segmentation threshold
(segmin ) values reduced the segmented crown area, further increasing the likelihood of
underestimation.
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Figure 4. Illustration of quality measures for regeneration quantification as functions of the voxel resolution, class threshold, and cloth resolution. The different class
thresholds and cloth resolutions are represented by different colors and line types, respectively.
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Figure 5. Illustration of quality measures for regeneration quantification as functions of thresholds
for tree detection and segmentation. The different detection thresholds are represented by different
colors, as described in the legend.

3.2. Comparison of Methods
3.2.1. Comparison Between Modeling Methods

Comparing the deviations of the modeled from the reference regeneration coverages
of the different models, M2–M5 reached deviations of around 0 pp. Across all possible
parameter combinations, the mean deviation (MD) for M2 ranged between −28.8 and
34.4 pp, on average reaching 4.7 pp. The deviations achieved with M5 ranged between
−28.9 and 58.3 pp, thus also revealing an average deviation of approximately 0 pp for
certain parameter combinations (Figure 6).
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Figure 6. Comparison of deviations achieved with M1–M5 across all parameter combinations.

Of course, these deviations above, when the wrong parameter settings are applied, can
reach quite high levels, which would not be assumed to be satisfactory results for practical
applications. However, the deviations are reduced drastically when applying the parameter
settings optimized as described in the previous section (see Figures 4 and 5). After doing
so, the final deviations achieved with M2 are distributed more equally around 0 and ranged
between −7.4 and 6.5 pp, with an average deviation of −0.3 pp across all plots (Figure 7).
M5, which exhibited a slightly larger bias but still yielded good results, ranging from −9.1 to
12.3 pp with an average overestimation of 2.4 pp when applying the optimized parameter
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settings. The methods based on the Surface Raster (M1, M3, and M4) yielded adequate results
as well, which are more biased compared to those achieved with M2 or M5.
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Figure 7. Comparison of deviations achieved with M1–M5 with optimized parameter combinations
in gray and deviations of visual estimations in green (Op 1 to Op 3 represent the deviations achieved
by the three different operators).

3.2.2. Comparison with Visual Estimation

As described in Section 2.2, a visual estimation of the regeneration coverage in compliance
with the Braun-Blanquet method was also performed. Depending on the operator, the resulting
deviations ranged from −18.5 to 29.9 pp, with an average deviation of −0.1 pp for Operator 1,
−2.7 pp for Operator 2, and −2 pp for Operator 3 (Figure 7). The outcomes of the visual
estimations for each individual operator are illustrated in Figure 8, alongside those from M2

and M5, in order to illustrate the impact of subjectivity on the reproducibility of results.
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Figure 8. Comparison of regeneration coverages. The results from the visual estimates are depicted
in grey and those from the best LiDAR-based methods (M2 and M5) in blue and green, respectively.

To enable a plot-wise comparison between the different approaches, Figure 9 shows
the regeneration coverages of the best methods (M2 and M5), together with the visually
estimated and averaged regeneration coverages, as well as the reference. All estimations
exhibited a strong correlation with the latter, as evidenced by their coefficients of deter-
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mination, amounting to 0.94 for M2, 0.85 for M5, and 0.66 for the visual estimates. In
Appendix A, the raster images of all individual plots together with the modeled and
referenced regeneration cover for all tested methods can be investigated in more detail.
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Figure 9. Plot-wise depiction of estimated and reference regeneration coverages. Since the visual
estimates, represented by the grey bars, are averaged across the estimates of all 3 operators, the error
bars plotted with the latter represent the highest and lowest estimates, respectively. The reference
coverages are depicted in black, whereas the coverages derived from M2 to M5 are depicted in blue
and green, respectively.

4. Discussion
4.1. Definition of Forest Regeneration and Target Variables

The majority of remote sensing methods for quantifying understory vegetation rely
on ALS data. Their effectiveness depends largely on the proportion of laser beams pass-
ing through the canopy [5,28]. As a result, many studies focus on indirect indicators
of regeneration—such as last-return reflections [29], intensity values [30,31], or height
distribution metrics [6,31]—rather than attempting a direct quantification.

A selection of studies that attempt a direct quantification of regeneration is listed in
Table 2, containing studies based on TLS [10,11], ALS [4,7,32] and photogrammetry [33].
To the best of our knowledge, the two studies based on TLS [10,11] data are the only ones
achieving this objective with ground-based LiDAR.

A key challenge in comparing such research lies in differing definitions of forest
regeneration. Without a standardized definition, comparing results becomes difficult. In
our work, we chose to focus on trees higher than 0.1 m and with a DBH below 5 cm
based on other criteria. The DBH threshold was predetermined by the tree segmentation
algorithm [21] used for delineating and removing the overstory trees. Trees above this
threshold are reliably detected and removed anyway [21], thus leaving only trees with a
DBH below 5 cm undetected. The lower height threshold of 0.1 m, compliant with that
of the Austrian national forest inventory [34], was necessary to exclude seedlings, which
would not be depicted well enough in the point cloud to even detect them visually, much
less automatically. Moreover, seedlings, not having passed their most vulnerable phase of
development, are commonly not the focus of regeneration inventories [35].
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Table 2. Comparison of studies with similar objectives based on direct object detection.

Reference Platform Target Variable Method Size of Detected Trees Reference Data MAE [pp] Tree Detection
Accuracy

This study PLS Regeneration
coverage

Tree top detection and crown delineation on Voxel
Density Raster 0.1 m (height)–0.05 m (DBH) Delineation of crowns

from TLS point cloud
2.59 (M2)
3.87 (M5)

[11] TLS Number of trees Reconstruction of stems from voxelized point cloud
by aggregation of stem fragments (deciduous trees) 3–6 m (height) Manual cropping of trees

from point cloud
87.9–90.2%

∅ 85.8%

[10] TLS
Regeneration

coverage

Detection of tree stems, individual tree segmentation
and classification into established and unestablished

regeneration based on DBH and height

0.5 m–1.3 m (height)

Visual estimation

2.23

1.3 m (height)–
0.12 m (DBH) 8.08

[4] ALS Regeneration
coverage Mean shift clustering and normalized cut algorithm 1–5 m (height) Visual estimation

[33] UAV imagery Number of trees
Treetop detection and crown delineation on DSM

with incorporation of spectral features to
avoid misclassifications

>0.2 m (height) Trees counted manually in
the field 24.1%

[7] ALS Number of trees Segmentation of canopy layers with iterative
vertical stratification min. 4 m (height)

Matching of crown apex
with field observed

stem location
86%

[32] ALS Number of trees Watershed-based delineation of canopy height model min. 2 m (height)

Matching of delineated
crowns with

field-observed
stem location

21%
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Another source of inconsistency in regeneration studies is the target variable. Some aim
to determine regeneration coverage, while others count the number of saplings. We focused
on coverage, a key criterion in forest management and planning that requires less time and
effort than counting individual stems [36]. Furthermore, the influence of obstructed tree
stems on the accuracy of single tree detection is less critical when measuring coverage [10].
Even if some treetops are missed due to dense clustering or an inappropriately large search
window, the overall coverage will still be represented correctly, as crown segmentation
merges overlooked trees into larger contiguous areas. This also explains why the window
size function for treetop detection, and consequently also the parameter ws f ac, did not
influence the final results too much.

Taking into account the above-mentioned considerations, it becomes obvious why
studies that are geared towards quantifying the number of saplings usually focus on rather
large regeneration trees with heights above 1 m (see Table 2). Since an accurate quantifica-
tion of the number of saplings requires a high point density and minimal obstruction of the
stems during scanning [10,11], this objective appears unfeasible for very small trees.

4.2. Differentiation from Other Vegetational and Non-Vegetational Elements

Another reason for considering larger saplings as regeneration in ALS studies is that
they are easier to distinguish from other ground vegetation and non-vegetational elements.
By simply cropping the vegetation point cloud at a certain height threshold—beneath
which, grass, herbs, and shrubs are believed to dominate—the exclusion of the latter is
ensured [4,7,10], simultaneously rendering the detection of small saplings impossible.

By applying the lower threshold of 0.1 m, we could not entirely exclude the influence of
grass and shrubs which reach heights well above this threshold on many plots. Accordingly,
one of the biggest disadvantages of our approach is its inability to reliably distinguish
between regeneration trees, shrubs, dense grass, or large clumps of grass. To the best of
our knowledge, no method of LiDAR-based regeneration quantification has yet succeeded
in solving this problem. Although the distinction of grass, shrubs, and trees from aerial
images through their texture, spectral features, or color information is common practice,
these methods are mainly applied for large-scale land cover classifications [37,38]. Some
studies, using high-resolution images acquired with unmanned aerial vehicles (UAVs), also
present techniques for precise detection of individual tree saplings [39–41]. However, these
approaches were developed and tested on images of tree nurseries or artificial regeneration,
with homogeneously distributed saplings standing out against a distinct, contrasting
background. Moreover, these image-based approaches require freestanding regeneration
without overstory trees that would obstruct the view of the latter from above.

Although our approach likewise cannot be completely relied upon for differentiation
between tree saplings, non-vegetational, and herbaceous vegetation elements, the applica-
tion of the voxel-based approaches (M2 and M5) was able to minimize negative influences
on the tree detection caused by grass. While the latter can easily lead to peaks in the Surface
Raster, it is less likely to do so in the Voxel Count or Voxel Density Raster. These advantages
become especially apparent from a closer inspection of Plot 7 (Figure 10). While the eastern
part of the plot was covered by a dense cluster of regenerating spruce, the southern and
western parts of the plot are vegetated with high tufts of reed grass (Figure 10a). Methods
based on the Surface Raster, represented by M1 in Figure 10b, segmented these areas as tree
crowns due to the detected peaks and high pixel values resulting from point hits on the
inflorescences of the grass. The application of M5, however, enabled a complete prevention
of the aforementioned misclassification (Figure 10c), with the areas of the Voxel Density
Raster containing reed grass exhibiting voxel densities far below the preset segmentation
threshold of 0.1.
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Figure 10. Depiction of Plot 7. (a) shows the point cloud of this plot. The red lines in (b,c) represent
the outlines of the manually cropped reference tree crowns. The blue lines represent the outlines of
the tree crowns as segmented with M2 (b) and M5 (c), respectively. The colors of the pixels and color
scales in (b,c) represent height (in meters) and voxel density, respectively.

It should be noted that the reliability of this strategy is limited by the somewhat-
restricted diversity of the data used. A certain amount of inaccuracy cannot be avoided
when relying solely on 3D voxels for the detection of saplings and their differentiation
from other plants and non-vegetational elements. A more reliable distinction might be
reached by incorporating additional data, as was performed in previous studies, using, for
example, intensity values [31] or spectral signatures [33]. Despite the incorporation of such
additional data, these studies still could not solve the problem of differentiating between
tree saplings and other elements, especially coarse woody debris [31,33].

Considering these findings, it is also important to highlight that the simplicity achieved
by restricting the data to the 3D coordinates of the LiDAR points also presents certain
advantages. By avoiding the incorporation of, for example, color information or reflectance
values, the presented approach is universally applicable, regardless of the tree species or
the light conditions during scanning.

4.3. Choice of Modeling Method

From the comparison of deviations presented in Section 3.2.1 (Figure 8), it becomes
obvious that the methods that use surface-based crown segmentation are less suited for
the estimation of regeneration coverage. Method M2 on the other hand, which performs
tree detection as well as crown segmentation solely on the Voxel Count Raster, yields more
accurate results, with deviations ranging between −7.4 and 6.5 pp. Similarly, method M5,
based solely on the Voxel Density Raster, overestimates the regeneration cover by only 2.4 pp
on average.

These findings align with those of Hershey et al. [42], who also encountered difficulties
with canopy height models and watershed methods. They observed that subtle canopy
contours and multiple height peaks per crown caused overestimations of tree numbers.
They switched to a voxel-based approach, identifying vertical structures by counting the
number of voxels and points within a specific height bin. Although our primary goal is not
counting individual trees but rather identifying likely tree positions for crown delineation,
our voxel-based methods (M2 and M5) follow a similar logic. Instead of relying on surface
peaks that can be influenced by grass and other vegetation, these methods focus on voxel
counts or densities, which more reliably indicate tree locations.

Surface-based methods not only struggle with tree detection but also with the subse-
quent crown segmentation. Starting from detected peaks, a surface-based segmentation
spreads across all connected non-ground points above 0.1 m, assigning them to a tree
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crown. When dense grass taller than 0.1 m is present near saplings, this leads to a signif-
icant overestimation of regeneration coverage. In contrast, voxel-based methods handle
such scenarios better, as the thin blades of grass produce fewer voxels (M2) or lower voxel
densities (M5), making it easier to distinguish them from tree saplings.

However, it is important to note that voxel density and counts depend on the quality
and resolution of the point cloud data. The parameter settings optimized for our scanning
setup may not directly apply to different scanners or scanning patterns. Future applications
of these voxel-based approaches may need parameter adjustments to accommodate varying
data acquisition conditions.

4.4. Comparison with Visual Estimation of Regeneration Coverage

Visual estimates of regeneration coverage can be practical and efficient, especially
when quick evaluations are needed. In our study, experienced observers achieved results
that aligned closely with the reference data. However, the accuracy and consistency of the
visual estimates depend heavily on the observer’s experience and objectivity. Past research
has shown that different operators can produce highly inconsistent results, particularly
in areas with higher regeneration cover [43]. These findings correspond with the results
presented in Figure 10, which similarly revealed inconsistent results between operators,
especially for plots with higher regeneration coverages.

In practical forest inventories, regeneration coverage and ground vegetation are often
recorded in broad classes or categories [44]. Although less precise, this categorization is
generally deemed acceptable since it maintains data integrity at larger scales. Comparing
the class sizes obtained from such approaches, like the Braun-Blanquet scale [44], with
the comparably smaller deviations found in our LiDAR-based estimates, highlights the
reliability of the latter.

Nevertheless, automated LiDAR-based methods cannot replace thorough field inven-
tories if the goal is to determine the absolute number of saplings [33]. Most national forest
inventories require sapling counts [45], but they use small plots [46], often with counting
limits [34,45], to manage the exhaustive workload. These methods, though seemingly
accurate, lose precision when aggregated over larger areas due to high local variability. In
contrast, management-oriented inventories generally rely on coverage classes rather than
exact sapling counts, since coverage information is sufficient for planning activities such as
regeneration harvests and thinning [36]. These coverage classes are easier to obtain, less
time-consuming, and still useful for operational decisions.

In this regard, LiDAR-based estimations of regeneration coverage provide objective,
consistent results, which are also repeatable for comparisons between measurement periods.
Similarly, Heinzel and Ginzler [10] also highlighted that visual estimation of regeneration
coverage is prone to failure, even if conducted by experienced operators. However, for new
methodologies to be accepted and their practical usability evaluated, their comparison to
acknowledged, long-term practices is indispensable [10]; this is why the results of our study
were also compared to visual estimates in addition to the high-precision reference data.

From an economic perspective, the total time requirement for conducting the whole
workflow, including PLS data acquisition (approx. 10 min [14]), overstory tree segmentation
(20–60 min [21]), and regeneration quantification (1.6 s) amounts to roughly 50 min per
plot—around 16 h in total for all 19 plots. While this might sound time-consuming, it is
important to remember that the described workflow is not limited to estimating regeneration
coverage alone. This full digital forest inventory process also provides detailed information
on tree heights, diameters, standing volume, and more, without requiring any additional data
acquisition. For a fair comparison, the LiDAR-based workflow should be weighed against
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a similarly comprehensive traditional inventory approach, in which every individual tree’s
DBH and height would also need to be measured.

5. Conclusions
Given the inevitable discrepancies in experience levels and the unavoidable impact

of subjectivity, it is not uncommon for visual estimates of regeneration cover to diverge
significantly between operators and measurement periods. These shortcomings highlight
the advantages of objective remote sensing techniques, which provide a reliable and
reproducible means of data acquisition.

This study explores the challenges and methodologies involved in quantifying forest
regeneration using LiDAR data. Voxel-based approaches (M2 and M5) proved superior
to surface-based crown segmentation methods, demonstrating reduced bias in estimating
regeneration coverage, especially in heterogeneous forest plots with dense grass or other
obstructions. These methods minimize the influence of non-vegetation elements by focusing
on vertical structures with higher voxel counts or densities. Despite these advantages, the
voxel-based approaches still encounter difficulties in distinguishing between tree saplings
and other vegetation such as shrubs and grass. Incorporating additional data, such as
color information or intensity values, could improve the reliability of these distinctions.
However, our method retains simplicity and universal applicability by relying solely on 3D
LiDAR point coordinates.

Despite these simplifications, the proposed approach yielded promising results that
were in good agreement with the reference data. While the quality of the visual estimates
depends on the experience and subjective judgement of the operators, our method pro-
vides an objective and reproducible assessment of forest regeneration. Moreover, no data
acquisition additional to that of a LiDAR-based forest inventory is required, since all nec-
essary information is derived from the forest point clouds and the methodology can be
integrated into existing software routines. Consequently, the presented approach could
enhance digital, laser-based forest inventories by incorporating forest regeneration as an
additional metric.
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Figure A1. Illustration of the calculated crown areas of Plot 1 for each method. The raster image in the background is the one on which the final crown segmentation 
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) 
are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A1. Illustration of the calculated crown areas of Plot 1 for each method. The raster image in the background is the one on which the final crown segmentation
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) are
also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel density
(M5), respectively.
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Figure A2. Illustration of the calculated crown areas of Plot 2 for each method. The raster image in the background is the one on which the final crown segmentation 
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) 
are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A2. Illustration of the calculated crown areas of Plot 2 for each method. The raster image in the background is the one on which the final crown segmentation
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) are
also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel density
(M5), respectively.
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Figure A3. Illustration of the calculated crown areas of Plot 3 for each method. The raster image in the background is the one on which the final crown segmentation 
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) 
are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A3. Illustration of the calculated crown areas of Plot 3 for each method. The raster image in the background is the one on which the final crown segmentation
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) are
also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel density
(M5), respectively.
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Figure A4. Illustration of the calculated crown areas of Plot 4 for each method. The raster image in the background is the one on which the final crown segmentation 
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) 
are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A4. Illustration of the calculated crown areas of Plot 4 for each method. The raster image in the background is the one on which the final crown segmentation
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) are
also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel density
(M5), respectively.
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Figure A5. Illustration of the calculated crown areas of Plot 6 for each method. The raster image in the background is the one on which the final crown segmentation 
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) 
are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A5. Illustration of the calculated crown areas of Plot 6 for each method. The raster image in the background is the one on which the final crown segmentation
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) are
also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel density
(M5), respectively.
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Figure A6. Illustration of the calculated crown areas of Plot 7 for each method. The raster image in the background is the one on which the final crown segmentation 
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) 
are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A6. Illustration of the calculated crown areas of Plot 7 for each method. The raster image in the background is the one on which the final crown segmentation
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) are
also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel density
(M5), respectively.
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Figure A7. Illustration of the calculated crown areas of Plot 8 for each method. The raster image in the background is the one on which the final crown segmentation 
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) 
are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A7. Illustration of the calculated crown areas of Plot 8 for each method. The raster image in the background is the one on which the final crown segmentation
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) are
also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel density
(M5), respectively.
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Figure A8. Illustration of the calculated crown areas of Plot 9 for each method. The raster image in the background is the one on which the final crown segmentation 
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) 
are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A8. Illustration of the calculated crown areas of Plot 9 for each method. The raster image in the background is the one on which the final crown segmentation
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) are
also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel density
(M5), respectively.
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Figure A9. Illustration of the calculated crown areas of Plot 10 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A9. Illustration of the calculated crown areas of Plot 10 for each method. The raster image in the background is the one on which the final crown segmentation
was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages (RCs) are
also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel density
(M5), respectively.
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Figure A10. Illustration of the calculated crown areas of Plot 11 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A10. Illustration of the calculated crown areas of Plot 11 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A11. Illustration of the calculated crown areas of Plot 12 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A11. Illustration of the calculated crown areas of Plot 12 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A12. Illustration of the calculated crown areas of Plot 13 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A12. Illustration of the calculated crown areas of Plot 13 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A13. Illustration of the calculated crown areas of Plot 14 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A13. Illustration of the calculated crown areas of Plot 14 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A14. Illustration of the calculated crown areas of Plot 15 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A14. Illustration of the calculated crown areas of Plot 15 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A15. Illustration of the calculated crown areas of Plot 16 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A15. Illustration of the calculated crown areas of Plot 16 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A16. Illustration of the calculated crown areas of Plot 17 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A16. Illustration of the calculated crown areas of Plot 17 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A17. Illustration of the calculated crown areas of Plot 18 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A17. Illustration of the calculated crown areas of Plot 18 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A18. Illustration of the calculated crown areas of Plot 19 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively. 

Figure A18. Illustration of the calculated crown areas of Plot 19 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A19. Illustration of the calculated crown areas of Plot 20 for each method. The raster image in the background is the one on which the final crown segmen-
tation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration coverages 
(RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2) or voxel 
density (M5), respectively.  

Figure A19. Illustration of the calculated crown areas of Plot 20 for each method. The raster image in the background is the one on which the final crown
segmentation was performed. The red lines represent the reference crown areas; the blue lines represent the calculated ones. The corresponding regeneration
coverages (RCs) are also given to enable their comparison. The colors of the pixels and color scales represent height in meters (for M1, M3 and M4), voxel count (M2)
or voxel density (M5), respectively.
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Figure A20. Schematical illustration of methods M1, M2, M3, and M5, starting from the step of treetop detection. Figure A20. Schematical illustration of methods M1, M2, M3, and M5, starting from the step of treetop detection.



Remote Sens. 2025, 17, 269 42 of 43

References
1. Miina, J.; Eerikäinen, K.; Hasenauer, H. Modeling Forest Regeneration. In Sustainable Forest Management: Growth Models for Europe;

Springer: Berlin/Heidelberg, Germany, 2006; pp. 93–109, ISBN 3540260986.
2. Makino, Y.; Rudolf-Miklau, F. The Protective Functions of Forests in a Changing Climate—European Experience; Forestry, W., Ed.; FAO

and Austrian Federal Ministry for Agriculture, Regions and Tourism: Rome, Italy, 2021; ISBN 9789251343173.
3. Motta, R.; Haudemand, J.C. Protective Forests and Silvicultural Stability. Mt. Res. Dev. 2000, 20, 180–187. [CrossRef]
4. Amiri, N.; Yao, W.; Heurich, M.; Krzystek, P.; Skidmore, A.K. Estimation of Regeneration Coverage in a Temperate Forest by 3D

Segmentation Using Airborne Laser Scanning Data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 252–262. [CrossRef]
5. Du, L.; Pang, Y. Identifying Regenerated Saplings by Stratifying Forest Overstory Using Airborne LiDAR Data. Plant Phenomics

2024, 6, 0145. [CrossRef] [PubMed]
6. Korpela, I.; Hovi, A.; Morsdorf, F. Understory Trees in Airborne LiDAR Data—Selective Mapping Due to Transmission Losses

and Echo-Triggering Mechanisms. Remote Sens. Environ. 2012, 119, 92–104. [CrossRef]
7. Hamraz, H.; Contreras, M.A.; Zhang, J. Vertical Stratification of Forest Canopy for Segmentation of Understory Trees within

Small-Footprint Airborne LiDAR Point Clouds. ISPRS J. Photogramm. Remote Sens. 2017, 130, 385–392. [CrossRef]
8. Jarron, L.R.; Coops, N.C.; MacKenzie, W.H.; Tompalski, P.; Dykstra, P. Detection of Sub-Canopy Forest Structure Using Airborne

LiDAR. Remote Sens. Environ. 2020, 244, 111770. [CrossRef]
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