Angle and Range Unambiguous Estimation with Nested Frequency Diverse Array MIMO Radars
Abstract
:1. Introduction
2. Signal Model
2.1. Transmitter Array Configuration
2.2. Received Signal
3. The Proposed Algorithm
- (1)
- The target signals are mutually independent and distinguishable.
- (2)
- The target signals are independent of the additive Gaussian white noise.
- (3)
- All snapshots are uncorrelated in time.
3.1. Differential Equivalence
3.2. Range Compensation
3.3. Range and Angle Estimation
4. Performance Analysis
4.1. CRLB Derivation
4.2. Algorithm Complexity
5. Simulation Results
5.1. Comparison of Power Spectrum
5.2. Comparison of Range Resolution
5.3. Performance of Range and Angle Estimation
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Li, L.; Qiu, T. Parameter estimation based on fractional lower order statistics and fractional correlation in wideband bistatic mimo radar system. J. Commun. 2014, 4, 269–278. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Huang, X.; Qin, H.; Xie, Y.; Chen, K.; Zhang, Z. Seismic Attenuation Parameter Estimation Based on Improved GLCT. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- McManamon, P.F.; Bos, P.J.; Escuti, M.J.; Heikenfeld, J.; Serati, S.; Xie, H.K.; Watson, E.A. A Review of Phased Array Steering for Narrow-Band Electrooptical Systems. Proc. IEEE 2009, 97, 1078–1096. [Google Scholar] [CrossRef]
- Gerlach, K.; Andrews, G.A. Cascaded detector for multiple high-PRF pulse Doppler radars. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 754–767. [Google Scholar] [CrossRef]
- Sun, J.; Tian, J.; Wang, G.; Mao, S. Doppler ambiguity resolution for multiple PRF radar using iterative adaptive approach. Electron. Lett. 2010, 46, 1562–1563. [Google Scholar] [CrossRef]
- Tien, V.V.; Hop, T.V.; Thanh, N.N.; Hoang, D.X.; Loi, N.V. A Staggered PRF Coherent Integration for Resolving Range-Doppler Ambiguity in Pulse-Doppler Radar. In Proceedings of the 2019 20th International Radar Symposium, Ulm, Germany, 26–28 June 2019; pp. 1–7. [Google Scholar]
- Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J. Range-dependent beamforming using element level waveform diversity. In Proceedings of the 2006 International Waveform Diversity & Design Conference, Lihue, HI, USA, 22–27 January 2006; pp. 1–6. [Google Scholar]
- Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J. Frequency diverse array radars. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006; pp. 215–217. [Google Scholar]
- Wang, W.Q. Range-Angle Dependent Transmit Beampattern Synthesis for Linear Frequency Diverse Arrays. IEEE Trans. Antennas Propag. 2013, 61, 4073–4081. [Google Scholar] [CrossRef]
- Lan, L.; Marino, A.; Aubry, A.; Maio, A.D.; Liao, G.; Xu, J.; Zhang, Y. GLRT-Based Adaptive Target Detection in FDA-MIMO Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 597–613. [Google Scholar] [CrossRef]
- Wang, W.Q.; Shao, H. Range-Angle Localization of Targets by A Double-Pulse Frequency Diverse Array Radar. IEEE J. Sel. Top. Signal Process. 2014, 8, 106–114. [Google Scholar] [CrossRef]
- Liu, Z.X.; Zhu, S.Q.; Xu, J.W.; Lan, L.; He, X.P.; Li, X.M. Cooperated Moving Target Detection Approach for PA-FDA Dual-Mode Radar in Range-Ambiguous Clutter. Remote Sens. 2023, 15, 692. [Google Scholar] [CrossRef]
- Lan, L.; Xu, J.; Liao, G.; Zhang, Y.; Fioranelli, F.; So, H.C. Suppression of Mainbeam Deceptive Jammer with FDA-MIMO Radar. IEEE Trans. Veh. Technol. 2020, 69, 11584–11598. [Google Scholar] [CrossRef]
- Huang, J.; Tong, K.F.; Baker, C. Frequency diverse array: Simulation and design. In Proceedings of the 2009 Loughborough Antennas & Propagation Conference, Pasadena, CA, USA, 16–17 November 2009; pp. 253–256. [Google Scholar]
- Khan, W.; Qureshi, I.M.; Saeed, S. Frequency Diverse Array Radar with Logarithmically Increasing Frequency Offset. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 499–502. [Google Scholar] [CrossRef]
- Liao, Y.; Tang, H.; Chen, X.; Wang, W.Q. Frequency Diverse Array Beampattern Synthesis with Taylor Windowed Frequency Offsets. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1901–1905. [Google Scholar] [CrossRef]
- Liu, Y.; Ruan, H.; Wang, L.; Nehorai, A. The Random Frequency Diverse Array: A New Antenna Structure for Uncoupled Direction-Range Indication in Active Sensing. IEEE J. Sel. Top. Signal Process. 2017, 11, 295–308. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, W.Q.; Shao, H.; Chen, H. Frequency Diverse Array Transmit Beampattern Optimization with Genetic Algorithm. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 469–472. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, S. Main-Beam Range Deceptive Jamming Suppression with Simulated Annealing FDA-MIMO Radar. IEEE Sens. J. 2020, 20, 9056–9070. [Google Scholar] [CrossRef]
- Lan, L.; Rosamilia, M.; Aubry, A.; Maio, A.D.; Liao, G. FDA-MIMO Transceiver Design Under the Uniform Frequency Increment Constraint. IEEE Trans. Radar Syst. 2024, 2, 446–459. [Google Scholar] [CrossRef]
- Lan, L.; Rosamilia, M.; Aubry, A.; Maio, A.D.; Liao, G. FDA-MIMO Transmitter and Receiver Optimization. IEEE Trans. Signal Process. 2024, 72, 1576–1589. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, S.; Xu, J.; Lan, L.; He, X.; Liao, G. Enhanced Parameters Estimation with STAP-Based PA-FDA Dual-Mode Radar. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 6925–6940. [Google Scholar] [CrossRef]
- Sammartino, P.F.; Baker, C.J.; Griffiths, H.D. Frequency Diverse MIMO Techniques for Radar. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 201–222. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhu, S.; Huang, L.; So, H.C. Joint Range and Angle Estimation Using MIMO Radar with Frequency Diverse Array. IEEE Trans. Signal Process. 2015, 63, 3396–3410. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, W.Q.; Gao, K. FDA-MIMO Radar Range–Angle Estimation: CRLB, MSE, and Resolution Analysis. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 284–294. [Google Scholar] [CrossRef]
- Moffet, A. Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 1968, 16, 172–175. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Coprime sampling and the music algorithm. In Proceedings of the 2011 Digital Signal Processing and Signal Processing Education Meeting, Sedona, AZ, USA, 4–7 January 2011; pp. 289–294. [Google Scholar]
- Zheng, H.; Shi, Z.; Zhou, C.; Almeida, A.L.F.d. Coarray Tensor Completion for DOA Estimation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 5472–5486. [Google Scholar] [CrossRef]
- Zheng, H.; Zhou, C.; Shi, Z.; Gu, Y.; Zhang, Y.D. Coarray Tensor Direction-of-Arrival Estimation. IEEE Trans. Signal Process. 2023, 71, 1128–1142. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; Shi, Z.; Haardt, M. Structured Nyquist Correlation Reconstruction for DOA Estimation with Sparse Arrays. IEEE Trans. Signal Process. 2023, 71, 1849–1862. [Google Scholar] [CrossRef]
- Gu, J.F.; Zhu, W.P.; Swamy, M.N.S. Minimum redundancy linear sparse subarrays for direction of arrival estimation without ambiguity. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems, Rio de Janeiro, Brazil, 15–18 May 2011; pp. 390–393. [Google Scholar]
- Han, K.; Nehorai, A. Nested Array Processing for Distributed Sources. IEEE Signal Process Lett. 2014, 21, 1111–1114. [Google Scholar]
- Yang, J.; Liao, G.; Li, J. An efficient off-grid DOA estimation approach for nested array signal processing by using sparse Bayesian learning strategies. Signal Process. 2016, 128, 110–122. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.D.; Amin, M.G.; Gini, F. Frequency Diverse Coprime Arrays with Coprime Frequency Offsets for Multitarget Localization. IEEE J. Sel. Top. Signal Process. 2017, 11, 321–335. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, S.; Li, X.; Wei, F.; Liu, C.; Lan, L. Joint Angle and Range Estimation with Two-Level Nested FDA-MIMO Radar. In Proceedings of the 2023 6th International Conference on Information Communication and Signal Processing, Xi’an, China, 23–25 September 2023; pp. 1023–1027. [Google Scholar]
- Stoica, P.; Nehorai, A. Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1783–1795. [Google Scholar] [CrossRef]
- Wang, M.; Nehorai, A. Coarrays, MUSIC, and the Cramér–Rao Bound. IEEE Trans. Signal Process. 2017, 65, 933–946. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P.P. Remarks on the Spatial Smoothing Step in Coarray MUSIC. IEEE Signal Process Lett. 2015, 22, 1438–1442. [Google Scholar] [CrossRef]
- Bekkerman, I.; Tabrikian, J. Target Detection and Localization Using MIMO Radars and Sonars. IEEE Trans. Signal Process. 2006, 54, 3873–3883. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhu, S.; So, H.C. Deceptive jamming suppression with frequency diverse MIMO radar. Signal Process. 2015, 113, 9–17. [Google Scholar] [CrossRef]
Step 1: Vectorize the output data covariance matrix to obtain the differential signal in (12). |
Step 2: Convert the differential signal to a virtual ULA signal with extended DOF through redundant and rearrangement operations in (13). |
Step 3: Construct the compensating vector with to compensate the principal range in transmit spatial frequency domain using (19) and (21). |
Step 4: Obtain the covariance matrix after spatial smoothing in (24). |
Step 5: Estimate the angle and range ambiguity number of targets by two-dimensional spectral peak search in (26). |
Step 6: Estimate the principal range difference and calculate range of targets using (27) and (28). |
Methods | Computational Complexity |
---|---|
for NFDA-MIMO | |
for FDA-MIMO |
Parameter | Value | Parameter | Value |
---|---|---|---|
Reference frequency | 10 GHz | Frequency offset | 1,001,250 Hz |
Transmit element number | 4 | Receive element number | 4 |
Transmit element position coefficient | [1 2 3 6] | Receive element position coefficient | [1 2 3 6] |
Maximum unambiguous range | 30 km | Element spacing | 0.015 m |
Number of pulses | 200 | Waveform bandwidth | 10 MHz |
Target principal range | 10 km | Range resolution | 15 m |
Ambiguous number | 5 | Target number | 2, 3, 4, 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, X.; Zhu, S.; Wei, F.; Liu, C. Angle and Range Unambiguous Estimation with Nested Frequency Diverse Array MIMO Radars. Remote Sens. 2025, 17, 446. https://doi.org/10.3390/rs17030446
Wang Z, Li X, Zhu S, Wei F, Liu C. Angle and Range Unambiguous Estimation with Nested Frequency Diverse Array MIMO Radars. Remote Sensing. 2025; 17(3):446. https://doi.org/10.3390/rs17030446
Chicago/Turabian StyleWang, Zhengxi, Ximin Li, Shengqi Zhu, Fa Wei, and Congfeng Liu. 2025. "Angle and Range Unambiguous Estimation with Nested Frequency Diverse Array MIMO Radars" Remote Sensing 17, no. 3: 446. https://doi.org/10.3390/rs17030446
APA StyleWang, Z., Li, X., Zhu, S., Wei, F., & Liu, C. (2025). Angle and Range Unambiguous Estimation with Nested Frequency Diverse Array MIMO Radars. Remote Sensing, 17(3), 446. https://doi.org/10.3390/rs17030446