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Abstract: Radio Frequency Interference (RFI) significantly degrades the quality of space-
borne Synthetic Aperture Radar (SAR) images, and RFI source localization is a crucial
component of SAR interference mitigation. Single-station, single-channel SAR, referred to
as single-channel SAR, is the most common operational mode of spaceborne SAR. However,
studies on RFI source localization for this system are limited, and the localization accuracy
remains low. This paper presents a method for locating the ground-based RFI source
using spaceborne single-channel SAR echo data. First, matched filtering is employed to
estimate the range and azimuth times of the RFI pulse-by-pulse in the SAR echo domain.
A non-convex localization model using Pulse Range Difference of Arrival (PRDOA) is
established based on the SAR observation geometry. Then, by applying Weighted Least
Squares and Semidefinite Relaxation, the localization model is transformed into a convex
optimization problem, allowing for the solution of its global optimal solution to achieve RFI
source localization. Furthermore, the error analysis on the PRDOA localization model is
conducted and the Cramér–Rao Lower Bound is derived. Based on the simulation platform
and the SAR level-0 raw data of Gaofen-3, we conduct several verification experiments,
with the Pulse Time of Arrival localization selected for comparison. The results demon-
strate that the proposed method achieves localization accuracy with a hundred-meter error
in azimuth and a kilometer-level total error, with the total localization errors reduced to
approximately 1/4 to 1/3 of those of the Pulse Time of Arrival method.

Keywords: interference source localization; single-channel localization; radio frequency
interference (RFI); synthetic aperture radar (SAR); parameter estimation; semidefinite
relaxation (SDR)

1. Introduction
Spaceborne Synthetic Aperture Radar (SAR) is an active microwave remote sensing

device that has gained popularity due to its all-weather high-resolution imaging capabili-
ties [1–3]. However, spectrum resources become scarce with technological advancements
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and the continuous emergence of various electronic devices, such as ground-based radar
stations, airport weather radar, and other terrestrial radiation sources. As a result, more and
more radiation sources operate within the same frequency band as SAR, making spaceborne
SAR susceptible to receiving Radio Frequency Interference (RFI), which seriously affects
the quality of SAR imaging and interpretation [4–6]. Figure 1 presents examples of three
spaceborne SAR images generated under RFI contamination.

Figure 1. Examples of SAR images affected by RFI.

SAR RFI mitigation methods are mainly classified into RFI suppression and active
interference mitigation. RFI suppression algorithms filter out RFI by analyzing the differ-
ences between the RFI signal and the SAR’s echo in both time and frequency domains [7].
However, RFI suppression cannot guarantee that spaceborne SAR will not be repeatedly
interfered by the same RFI sources, and each processing may result in the loss of some
echo. In contrast, active interference mitigation uses practical methods with the received
RFI signals, such as RFI source localization, to obtain the target characteristics of the RFI
sources, then utilizing the beamforming techniques for spatial filtering, thereby reducing
the RFI signals received by SAR [8,9]. Consequently, RFI source localization is critical for
active interference mitigation in SAR systems, and plays a vital role in spaceborne SAR
interference mitigation.

Using spaceborne SAR for RFI source localization falls under the passive localiza-
tion methods. Current passive localization methods are generally divided into two-step
localization and direct localization. To date, researchers have proposed various passive
two-step localization methods that utilize parameters for localization, such as Direction
of Arrival (DOA) [10], Time Difference of Arrival (TDOA) [11], and so on. For example,
Dogancay [12] proposed the Total Least Squares algorithm to solve the DOA localization
problem. Chan and Ho [13] introduced a two-step Weighted Least Squares algorithm for
TDOA localization. Direct localization methods construct a received signal model and
combine it with actual signals for localization, which can achieve higher precision than
two-step localization under specific conditions [14]. Wang et al. [15] applied the synthetic
aperture technique to signal source localization, addressing the dependence of traditional
direct localization on antenna arrays. However, these methods require sensors to contin-
uously receive signals, which contradicts the requirement for SAR platforms to possess
transmitting and receiving windows simultaneously.

Various algorithms to address the problem of RFI source localization based on space-
borne SAR are proposed. Dan [16] introduced the concept of the X-mark using observations
from ascending and descending passes to locate RFI sources. Leng et al. [17] demonstrated
that the X-mark method has spatial accuracy within a rhombic area of 89 square kilometers
and utilized this method to locate RFI sources in Sentinel-1 images. However, the assump-
tion of continuous RFI presence is required to be achieved when using the X-mark method.
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Yu et al. [18] proposed an RFI source localization method based on dual-channel SAR,
where phase shifts caused by the time differences of RFI signal arrival across channels
are used to locate the RFI source. However, this method requires the RFI signal to be
significantly more powerful than the spaceborne SAR echo. Lin et al. [19] and Yu et al. [20]
estimated the DOA of RFI sources at different azimuth moments in multi-channel SAR sys-
tems, achieving localization accuracy at the kilometer level. However, this method requires
the phase center distance between SAR channels to be greater than half the wavelength
of the RFI signal, which may cause angular ambiguity when applying the DOA method.
Thus, it is evident that the methods mentioned before have limited accuracy in locating
ground-based RFI sources. These methods also require the SAR system to be equipped with
multiple receiving antennas for DOA and other parameter estimations, thus not applying
to single-station, single-channel SAR RFI source localization (hereinafter referred to as
single-channel SAR), which remains the most common configuration in spaceborne SAR
systems. Therefore, the applicability of these methods is constrained.

Current research on RFI source localization for single-channel SAR is limited.
Yang et al. [21] introduced an RFI source localization method based on Pulse Time of
Arrival (PTOA) and achieved favorable simulation results. However, this method has
stringent accuracy requirements for estimating PTOA and its first- and second-order Taylor
series coefficients, which can lead to error iteration effects and significantly degrade local-
ization accuracy. Zhou et al. [22] built upon the PTOA concept to design a grid-search RFI
localization method based on TDOA, suitable for single-channel SAR with single or multi-
ple passes. The method was validated using two sets of single-channel observation data
from the GaoFen-3 (GF3) satellite in the same observation region. The results showed a lo-
calization error of only 3.708 km, although the error for a single measurement could exceed
100 km because of ignoring the pulse repetition interval (PRI) of the RFI signal. In summary,
existing methods for RFI localization using single-channel SAR exhibit limitations.

This paper proposes a spaceborne single-channel SAR RFI source localization method
based on the Pulse Range Difference of Arrival (PRDOA). First, matched filtering is em-
ployed to estimate the reception times of the RFI pulses in the SAR echo domain. By calcu-
lating the PRDOA, a non-convex likelihood function containing the RFI source location
is constructed. The Maximum Likelihood Estimation (MLE) is approximated as a convex
optimization problem using Weighted Least Squares (WLS) and Semidefinite Relaxation
(SDR) for solving. The bias, covariance, and Cramér–Rao Lower Bound (CRLB) of the
PRDOA localization model are derived. Simulations and experimental validations using
GF3 data with RFI are conducted to analyze the localization accuracy of the proposed
method under various conditions. Compared with the PTOA localization in reference [21],
the results show that the overall positioning accuracy of the proposed algorithm improves
by a factor of 3 to 4.

The main contributions of this paper are summarized as follows:

• A pulse-level estimation algorithm for the azimuth and range times of RFI signals in
the SAR echo domain is proposed, enabling accurate RFI signal timing information
estimation in the SAR echo domain.

• A mathematical model relating PRDOA to the RFI source location is established,
and semidefinite relaxation techniques are applied. By incorporating prior infor-
mation from SAR observations, the non-convex localization model is relaxed into a
convex optimization problem, simplifying the localization process and ensuring the
algorithm’s stability while achieving optimal solutions.

• Simulation experiments are designed for spaceborne single-channel SAR and ground-
based RFI source localization, complemented by empirical validation using GF3 SAR
Level-0 raw data. The results indicate that under single-channel SAR observation,
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the PRDOA localization model achieves kilometer-level total accuracy and meter-level
azimuth accuracy. Additionally, the model successfully locates the potential RFI source
from RFI-contaminated GF3 raw echo data, further validating the applicability of the
proposed method to spaceborne single-channel SAR.

The rest of this paper is organized as follows: Section 2 introduces the geometric
relationship between the single-channel SAR and the RFI source, along with the RFI signal
model. Section 3 presents the azimuth and range time estimation algorithms for RFI
pulse-level processing in the SAR echo domain and the single-channel SAR RFI source
localization method based on PRDOA and SDR, analyzing the performance of the proposed
method in detail. Subsequently, Section 4 conducts simulation experiments and validation
using real data. Section 5 discusses the experimental results, considering the algorithm’s
limitations and potential future works. Finally, Section 6 concludes the paper.

The following notations are adopted throughout this paper. Boldface lowercase and
boldface uppercase letters denote the vectors and matrices, respectively. ∗o denotes the
theoretical value of the parameter.

2. Geometric Relationship and Signal Model
For spaceborne SAR systems, most RFI sources are related to electronic devices on

the Earth’s surface [23]. Therefore, this paper focuses on establishing a spatial geometric
model of spaceborne SAR affected by the ground-based RFI source. It should be noted
that, unless otherwise specified, all geographical coordinates in this paper are based on
the Earth-Centered Earth-Fixed (ECEF) coordinate system. Figure 2 illustrates the spatial
relationships between the three-dimensional coordinates in the ECEF system, the Earth’s
equator, the Greenwich meridian, and the geometric model between the SAR system and
the RFI source when it simultaneously receives real echoes and RFI signals.

The derivation of the proposed algorithm is based on the following two fundamen-
tal assumptions:

A1 The satellite trajectory measurement errors are negligible.
A2 The RFI signals have been detected, and the parameter estimation of RFI is reason-

ably accurate.

The trajectory measurement error of a satellite is determined by orbit determina-
tion technology. Current orbit determination techniques indicate that, regardless of the
satellite’s orbital altitude, the ratio of satellite trajectory measurement error to satellite
coordinates is only 10−9 to 10−6 [24–26]. Consequently, the real-time coordinate errors
of spaceborne single-channel SAR satellites can be regarded as negligible, ensuring the
validity of Assumption A1.

During the data acquisition, the SAR satellite moves in an elliptical orbit, with the
antenna pointing towards the imaging area on the flight direction side. The variation in the
satellite coordinates over time can be expressed as follows:

s(t) = at2 + bt + c (1)

Here, s(t) = (xs, ys, zs)T represents the coordinates of the satellite as a function of
time t. a, b, and c are three-dimensional column vectors that denote the coefficients of a
second-order polynomial in time t, determined by the satellite’s six orbital elements.
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(a) (b)

Figure 2. Schematic diagram of the ECEF coordinate system and the geometric relationship between
SAR and RFI sources: (a) ECEF coordinate system; (b) Geometric relationship between SAR and the
RFI source.

A stationary ground-based RFI source is located within the SAR imaging area, with co-
ordinates u = (x, y, z)T. The emitted signal can be expressed as:

r f isend(tt) =
+∞

∑
n=0

rect(
tt − nTo

n
To

pn
)ejφ(tt−nTo

n)ejωc ·(tt−nTo
n) (2)

Here, rect() denotes the rectangular window of the RFI signal, tt represents the emis-
sion time of the RFI signal, n indicates the pulse sequence number emitted by the RFI
source, To

n is the PRI for the nth pulse from the RFI source and To
pn is the pulse width of

the nth RFI pulse, ejωc ·(tt) is the carrier frequency of the signal, and ejφ(tt) is the modulation
phase. The emission time of the nth pulse can be expressed as:

tto
n = tto

0 +
n

∑
i=0

To
i (3)

where tto
n and tto

0 represent the emission times of the nth and 0th RFI pulses, respectively.
When the spaceborne SAR passes over the RFI source, the signals received by the SAR exist
in the two-dimensional time domain, which can be expressed as follows:

x(τ, η) = r f ireceive(τ, η) + echo(τ, η) + noise(τ, η) (4)

where τ is the range time in the SAR echo domain, η is the azimuth time in the SAR echo
domain, r f ireceive represents the received RFI signal, echo denotes the scattered signal from
the SAR, and noise indicates the received noise signal. The model of the received RFI signal
can be expressed as follows:

r f ireceive(τ, η) =
N

∑
n=0

A(η)rect(
τ + η − nTo

n
To

pn
)ejφ(τ+η−nTo

n)ejωc ·(τ+η−nTo
n)

=
N

∑
n=0

A(η)rect(
tt − nTo

n − dn

To
pn

)ejφ(tt−nTo
n−dn)ejωc ·(tt−nTo

n−dn)
(5)

Here, A(η) is the antenna pattern of the RFI source, N is the number of RFI signal
pulses received by the SAR, and dn is the one-way slant range delay of the nth pulse, which
is related to the position u of the RFI source, expressed as follows:

dn =
∥u − sn∥

c
=

Rro
n
c

(6)
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where Rro
n is the slant range of the nth RFI pulse, sn is the position coordinates of the

platform when the SAR receives the nth RFI pulse. dn and tto
n influence the reception time

of the nth RFI pulse by the SAR, represented as follows:

τo
n + ηo

n = tto
n + dn(n = 0, 1, 2 · · · , N) (7)

where τo
n and ηo

n represent the range and azimuth times when the SAR receives the nth RFI
pulse. Therefore, the position of the RFI source can be inverted using Equation (7).

Due to the relatively small signal energy loss caused by the one-way slant range,
the power of the RFI signal is usually greater than that of the SAR scattered echo, making
the RFI characteristics very pronounced in the echo domain. Therefore, based on the
different characteristics of the RFI signal and the SAR scattered signal in the echo domain, it
is possible to detect the presence of RFI frame-by-frame and perform parameter estimation
and modulation type classification. The corresponding azimuth time η of each RFI pulse
can be calculated.

Existing RFI detection and parameter estimation techniques can leverage deep learning
networks and iterative adaptive methods to ensure a detection rate of 91% for interference
signals, with parameter estimation errors of the order of 10−2, achieving a high detection
rate and low estimation error [27–29]. This paper selects references [27,28] to achieve
relatively accurate RFI detection and parameter estimation, thereby ensuring the validity
of Assumption A2.

3. Single-Channel SAR RFI Source Localization Model Based on PRDOA
In this section, we first design an algorithm for estimating the azimuth and range time

of RFI pulses in the SAR echo domain based on the geometric and signal model proposed
in Section 2, which serves as the foundation for constructing the PRDOA model, with pa-
rameters including the RFI source position u. By inverting the PRDOA model, we achieve
RFI source localization and simplify the inversion complexity using SDR techniques.

3.1. Pulse-by-Pulse Time Estimation of RFI Signals in the SAR Echo Domain

Traditional algorithms for estimating signal-time information mainly rely on extracting
the signal envelope and estimating its rising and falling edges [30]. However, the scattered
echo and noise received by SAR can interfere with extracting the RFI signal envelope.
To address this, we use matched filtering combined with RFI detection and parameter
estimation to improve the accuracy of range and azimuth time estimation for each RFI pulse.

The frame containing the RFI signal, signal parameters, and modulation type can be
identified through RFI signal detection and parameter estimation. Additionally, the azimuth
time η for all RFI pulses within the current frame, as received by the SAR, can be estimated.
For estimating the range time τ, we construct the RFI single pulse reference signal using
the result of RFI’s parameter estimation:

r f ire f er(t) = rect(
−t
To

p
)e−jφ(−t)ejωc ·(t) (8)

where To
p is the pulse width of the reference signal. The matched filtering is achieved

by convolving Equation (5) with Equation (8). The result is shown in Equation (9). This
process concentrates the energy of each RFI pulse at the pulse center, forming multiple
sharp peak signals.

r f icompression(τ, η) =
I

∑
n=0

sinc(τ + η − nTo
n)e

jωc ·(τ+η−nTo
n) (9)
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The center time of each pulse is delayed by half of the pulse width in the range time
compared to when it is received. Thus, the range-time estimation of RFI pulses in the SAR
echo domain can be expressed as shown in Equation (10). By incorporating the results
of RFI detection, the azimuth and range time information of RFI pulses in the SAR echo
domain can be obtained.

τo
n = to

peakn −
To

pn

2
(10)

where to
peakn represents the peak time of the nth RFI pulse after matched filtering, which

corresponds to the center time of the nth pulse.
To validate the proposed method’s capability to accurately estimate the range times

of RFI signal pulses with different modulation types under the influence of other signals
received by SAR, simulations are conducted for two typical modulation types, linear fre-
quency modulation (LFM) and sinusoidal frequency modulation, and range time estimation
is performed. A low signal-to-noise ratio (SNR) is set to simulate the influence of non-RFI
signals, with the SNR set to −10 dB, and the range times of the simulated signals are
identical across different modulation types. Figure 3 presents the processing results in both
the time and time-frequency domains.

As shown in Figure 3a, the simulated signals are nearly indistinguishable from noise
under an SNR of −10 dB. Figure 3b,c indicate that the pulse energy of different modulation
types is concentrated at their respective central moments which can be accurately estimated
after matched filtering. The peak times of each frame’s signals are extracted, and τ is
calculated using Equation (10). The results show that the mean error between the estimated
and theoretical range times of the RFI pulses within two frames is 2 ns, and the range time
error between the two frames is 1 ns. This demonstrates that matched filtering enables
accurate estimation of the range time τ. Considering that LFM signals are among the most
common modulation types used in terrestrial radiators, subsequent analyses focus mainly
on the LFM signals.

(a) (b) (c)

Figure 3. Representations of signals with different modulation (linear and sinusoidal frequency
modulation) at an SNR of −10 dB, along with the corresponding results after matched filtering:
(a) Time-frequency domain image of the original signals; (b) Time-frequency domain image of the
signals after matched filtering; (c) Time-domain amplitude plot of the signals after matched filtering.

In practical scenarios, certain RFI sources can emit interference signals with dynamic
PRI and pulse width, resulting in incomplete reception of RFI pulses within the SAR
receiving window and affecting the range time estimation. The characteristics of PRI and
pulse width affecting the complete reception of RFI pulses can be summarized into the
following three cases:

1. The PRI of RFI is less than the length of the SAR receiving window.
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2. The PRI of RFI is greater than the length of the SAR receiving window while the pulse
width is shorter than the SAR receiving window.

3. The pulse width of the RFI is longer than the SAR receiving window.

Case 3 serves as the sufficient condition for RFI pulses not being fully received. As-
suming the nth RFI pulse satisfies case 3, the relationship between the pulse width To

pn and
the length of the SAR receiving window is shown as follows:

∆Tn = To
pn − TSAR_re (11)

Here, TSAR_re represents the length of the SAR receiving window, and ∆Tn denotes the
time by which the nth RFI pulse exceeds the receiving window length. An approximation
is made to estimate the range time of the nth pulse: the received portion of the nth pulse is
regarded as a new pulse n. After matched filtering, the relationship between the peak time
of the new pulse and the peak time of the original pulse can be expressed as follows:

tpeakn = to
peakn −

∆Tn

2
+ ∆tpeakn (12)

where tpeakn denotes the peak time of the nth RFI pulse after approximation, and ∆tpeakn

represents the offset noise caused by partial phase loss during matched filtering. Based on
Equation (10), the relationship between the range time of the approximated nth pulse and
the range time of the original pulse is given by:

τn = tpeakn −
To

pn − ∆Tn

2
= τo

n + ∆tpeakn (13)

It is evident that, after approximation, the error in the range time estimation for the
nth pulse is primarily caused by measurement noise introduced by phase loss. When the
pulse’s phase varies continuously and ∆Tn is small, a well-designed matched filter for
remain pulse can be made, making ∆tpeakn negligible.

To validate the feasibility of the proposed approximation algorithm, a single-frame
LFM signal with a pulse width of 476 µs is simulated, and a window function is designed to
simulate the retention of RFI signal pulses within the SAR receiving window. The lengths
of the window function are set to 500 µs and 430 µs to obtain one frame of fully received
and one frame of partially received signals, respectively. In this simulation, the arrival time
of the RFI pulse is set to 0.

Figure 4 presents the processing flow and results of matched filtering and range
time τ estimation for the two frames of signals. The signal’s time-frequency domain
variations indicate that the energy focusing is achieved for both fully received and partially
received pulses. Based on the signal peak time in the time-domain amplitude plot and
Equations (10) and (13), the range time τ is estimated for both frames. The results show
that the τ estimation for the partially received signal is close to that of the fully received
signal and the true value. This demonstrates that approximating the partially received RFI
pulses allows a relatively accurate estimation of their range time.
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Figure 4. Processing steps and results of matched filtering and range time τ estimation for fully and
partially received LFM signals.

3.2. RFI Source Localization Model Based on PRDOA

Combining Equations (6) and (7), the theoretical slant range corresponding to the nth
pulse can be expressed as follows:

Rro
n = c

(
τo

n + ηo
n − tto

n
)
(n = 0, 1, 2 · · · , N) (14)

Let the slant range of the 0th pulse be the reference. By combining Equation (3),
the difference between the slant ranges of the other pulses and that of the reference gives
the required PRDOA theoretical values, as follows:

Ro
n0 = Rro

n − Rro
0 = c

[
τo

n + ηo
n − (τo

0 + ηo
0)−

n−1

∑
i=0

To
i

]
(15)

In practical scenarios, due to errors in the estimation of the RFI signal parameters,
there is a deviation between the time estimation results in Section 3.1 and ∑n−1

i=0 Ti compared
to the theoretical values. Therefore, the PRDOA measurement corresponding to the nth
pulse can be expressed as follows:

Rn0 = Ro
n0 + ∆rn0 = c

[
τn + ηn − (τ0 + η0)−

n−1

∑
i=0

Ti

]
+ ∆rn0 (16)

Here, ∆rn0 is the measurement noise of PRDOA. Consequently, by utilizing Equation (16),
the PRDOA measurement results for pulses from the first to the Nth can be derived, allowing
the organization of these PRDOA measurements into a vector Equation as follows:

R = Ro + ∆r (17)

where R, Ro, and ∆r are expressed as follows:
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R =
[

R10, R20, · · · , RN0

]T

Ro =
[

Ro
10, Ro

20, · · · , Ro
N0

]T

∆r =
[
∆r10, ∆r20, · · · , ∆rN0

]T

(18)

3.2.1. Maximum Likelihood Estimation

For analytical convenience, we assume that the measurement error ∆r of PRDOA
follows a Gaussian distribution with a mean of 0 and a variance of σ2

PRDOA. Consequently,
the likelihood function based on PRDOA can be constructed for the MLE, which is equiva-
lent to minimizing the following cost function:

min
u

(
R − Ro

(
u
))T

Q−1
(

R − Ro
(

u
))

(19)

where Q = σ2
PRDOAVr represents the covariance matrix of PRDOA. Vr is a square matrix

with diagonal elements equal to 1 and other elements equal to 0.5. The curved trajectory of
the spaceborne SAR will result in multiple optimal solutions for Equation (19). To obtain
the desired RFI source localization results, it is necessary to introduce prior information
about the RFI source as constraints. Generally, the ground-based RFI source is located
within the swath of the SAR, allowing us to obtain the following prior information about
RFI source location u:

1. Each coordinate of u falls within the coordinate ranges of the corners of the swath;
2. The slant range value of the RFI source is within the maximum and minimum slant

range of the entire scene image;
3. The geocentric distance of the RFI source is within the Earth’s radius range of

the swath.

By organizing this prior information, we can establish the following constraints.

xmin ≤ u(1) ≤ xmax

ymin ≤ u(2) ≤ ymax

zmin ≤ u(3) ≤ zmax

Rnear ≤
∥∥u − sηc

∥∥ ≤ R f ar

rascene − ∆ra ≤ ∥u∥ ≤ rascene + ∆ra

(20)

Here, xmax, xmin, ymax, ymin, zmax, and zmin represent the maximum and minimum
values of the three-dimensional coordinates of the corners of the swath, sηc is the coordinate
of the spaceborne SAR at the Doppler center corresponding to the RFI source, which can be
determined by estimating the minimum PRDOA, rascene is the Earth’s radius in the swath
area, and ∆ra represents fluctuations in the geocentric distance.

Therefore, by consolidating Equations (19) and (20), we construct the spaceborne
single-channel SAR RFI source localization model based on PRDOA:

min
u

(
R − Ro

(
u
))T

Q−1
(

R − Ro
(

u
))

s.t.xmin ≤ u(1) ≤ xmax

ymin ≤ u(2) ≤ ymax

zmin ≤ u(3) ≤ zmax

Rnear ≤
∥∥u − sηc

∥∥ ≤ R f ar

rascene − ∆ra ≤ ∥u∥ ≤ rascene + ∆ra

(21)
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3.2.2. Weighted Least Squares Construction

The cost function in Equation (21) and the last two constraints are all non-convex, mak-
ing it difficult to obtain a global optimal solution for the localization results. To address this,
an SDR method is introduced to approximate the optimization problem in Equation (21).
First, referring to reference [13], the cost function in Equation (21) is approximated using the
WLS equation. Squaring both sides of the first equal sign in Equation (15) and incorporating
measurement noise while neglecting the second-order noise terms yields the following:

R2
n0 + 2Rn0Rro

0 − ∥sn∥2 + ∥s0∥2 + 2(sn − s0)
Tu = 2Rro

n ∆rn0 (22)

Letting Ro
n0 be an intermediate variable, a linear equation regarding the new variable

xR =[uT, Rro
0 ]T can be derived and expressed in matrix form as follows:

ARxR − BR = CR∆r (23)

where,

AR = 2


(s1 − s0)

T Ro
20

...
...

(sN − s0)
T Ro

N0

 (24)

BR = −


R10 − sT

1 s1 + sT
0 s0

...
RN0 − sT

NsN + sT
0 s0

 (25)

CR = 2diag
{

Rro
1 , · · · , Rro

N

}
(26)

Comparing Equations (17) and (23), we find the following:

CR
−1(ARxR − BR) ≈ ∆r = R − Ro(u) (27)

Therefore, the PRDOA localization model in Equation (21) can be transformed into
the following:

min
xR

(
C−1

R

(
ARxR − BR

))T
Q−1

(
C−1

R

(
ARxR − BR

))
= min

xR

(
ARxR − BR

)TQ−1
xR

(
ARxR − BR

)
s.t.xR(4) = ∥xR(1 : 3)− so

1∥
xmin ≤ xR(1) ≤ xmax

ymin ≤ xR(2) ≤ ymax

zmin ≤ xR(3) ≤ zmax

Rnear ≤
∥∥xR(1:3)− sηc

∥∥ ≤ R f ar

rascene − ∆ra ≤ ∥xR(1; 3)∥ ≤ rascene + ∆ra

(28)

Equation (28) transforms the MLE problem of PRDOA by neglecting the higher-order
terms of the measurement error. Based on the estimation methods in Section 3.1 and
Assumption A2, the time estimation error can be maintained at the ns level under lower
signal-to-noise ratios, and the PRI of each RFI pulse can be accurately estimated, ensuring a
high estimation accuracy of PRDOA. Therefore, Equation (28) can be considered equivalent
to the RPDOA localization model in Equation (21).

In Equation (26), CR also includes the unknown variable [Rro
1 , ..., Rro

N ]
T. According to

reference [13], the impact of CR on Equation (28) is minor. Additionally, the RFI source is
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located in the far field relative to the single-channel SAR, which means that the slant ranges
between the targets in the swath and SAR are of the same order of magnitude. Therefore,
to simplify the calculation, the slant range information at the center point of the swath is
set as the initial value to substitute into CR for calculation.

3.2.3. Semidefinite Relaxation

Although the cost function and the last two constraints in Equation (28) remain non-
convex, they involve norm or quadratic calculations, making it straightforward to apply
the SDR method while ensuring that the optimal solution obtained is consistent with that of
the PRDOA localization model in Equation (21). By introducing a new variable XR = xRxT

R,
the cost function and the first constraint condition of Equation (28) can be transformed into
the following:

min
XR ,xR

tr

{[
XR xR

xT
R 1

]
ER

}
s.t.XR(4, 4) = tr{XR(1 : 3, 1 : 3)} − 2sT

0 xR(1 : 3) + sT
0 s0[

XR xR

xT
R 1

]
≥ 0

rank(XR) = 1

(29)

where,

ER =

[
AT

RQ−1
xR

BR −AT
RQ−1

xR
BR

−BT
RQ−1

xR
AR BT

RQ−1
xR

BR

]
(30)

Except for the Rank-1 constraint, the cost function and the remaining constraints
in Equation (29) are convex. By eliminating the Rank-1 constraint, we can transform
Equation (29) into a convex Semidefinite Programming (SDP) model:

min
XR ,xR

tr

{[
XR XR

XT
R 1

]
ER

}
s.t.XR(4, 4) = tr{XR(1 : 3, 1 : 3)} − 2sT

0 xR(1 : 3) + sT
0 s0[

XR xR

xT
R 1

]
≥ 0

(31)

Moreover, we observe that, due to the introduction of the variable XR, the constraints
in Equation (20) are transformed into the following:

xmin ≤ xR(1) ≤ xmax

ymin ≤ xR(2) ≤ ymax

zmin ≤ xR(3) ≤ zmax

R2
near ≤ tr{XR(1 : 3, 1 : 3)} − 2sT

ηc xR(1 : 3) + sT
ηc sηc ≤ R2

f ar

(rascene − ∆ra)2 ≤ tr
{

XR
(
1 : 3, 1 : 3

)}
≤

(
rascene + ∆ra

)2

(32)

In Equation (32), all constraints in Equation (20) are fully converted into linear calcula-
tion on XR and xR. Therefore, the cost function and all constraints are convex. By substitut-
ing Equation (32) into Equation (31), we obtain the following SDP model:
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min
XR ,xR

tr

{[
XR xR

xT
R 1

]
ER

}
s.t.XR(4, 4) = tr{XR(1 : 3, 1 : 3)} − 2sT

0 XR(1 : 3) + sT
0 s0[

XR xR

xT
R 1

]
≥ 0

xmin ≤ xR(1) ≤ xmax

ymin ≤ xR(2) ≤ ymax

zmin ≤ xR(3) ≤ zmax

R2
near ≤ tr{XR(1 : 3, 1 : 3)} − 2sT

ηc xR(1 : 3) + sT
ηc sηc ≤ R2

f ar

(rascene − ∆ra)2 ≤ tr{XR(1 : 3, 1 : 3)} ≤ (rascene + ∆ra)2

(33)

According to reference [31], the solution to the above SDP problem is X̂R, x̂R, where
the rank of X̂R is m. When m satisfies the condition m(m + 1) ≤ 2 · equ, where equ is
the number of equality constraints in the SDP problem, the optimal solution of the SDP
problem coincides with the global optimal solution of the PRDOA localization model.
In Equation (33), the number of equality constraints is 1, making the rank of matrix X̂R

be 1, which verifies that the optimal solution x̂R(1:3) of Equation (33) corresponds to the
estimated position u of the RFI source.

For the SDP problem in Equation (33), there are established algorithms to solve for
the global optimal solution, such as Sedumi [32] and SDPT3 [33]. In this paper, the Sedumi
solver is used to solve this problem.

3.3. Estimation of the Pulse Interval Sum During the SAR Non-Reception Time

According to Equation (16), the PRDOA estimate for the nth RFI pulse uses the sum
of the PRIs ∑n−1

i=0 Ti as a known parameter. However, RFI signals cannot be received
during the SAR transmitting window and the idle time. This period is defined as the SAR
non-reception time. During this period, the sum of the PRIs of the RFI signal ∑n−1

i=0 Ti is
unknown, requiring the design of an estimation algorithm.

Assume that the SAR raw echo detects RFI signals from the Xth to the Yth frame.
In this scenario, the azimuth and range times of the last RFI pulse in frame x − 1 are
denoted as ηx−1

z and τx−1
z , respectively, while those of the first RFI pulse in frame x are

ηx
z+y and τx

z+y. Here, y represents the number of RFI pulses occurring during the SAR
non-reception time between the (x − 1)th and xth frames. The relationships between these
parameters are shown in Figure 5.

Figure 5. Reception of RFI signals during SAR operation.
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Using Equation (16), the total PRI Ty during the SAR non-reception time between the
(x − 1)th and xth frames can be derived as shown in Equation (34).

Ty =
(

τx
z+y + ηx

z+y

)
−

(
τx−1

z + ηx−1
z

)
−

(
Rr

z+y − Rr
z

)
/c =

y−1

∑
n=0

Tn (34)

Analysis of Equation (34) reveals that Ty is mainly influenced by the variation in slant
range at the same instant. The duration of the SAR non-reception time is always shorter
than the PRI of SAR. For spaceborne SAR, the minimum PRF is no less than 1000 Hz,
implying a maximum PRI of 1 ms. It means that the satellite moves approximately 7 m or
less during the SAR non-reception time, while the slant range of targets within the swath
typically ranges from 500 km to 1000 km. Thus, the slant range of the RFI source remains
almost constant during the SAR non-reception time. Therefore, the total PRI Ty during the
SAR non-reception time can be estimated as shown in Equation (35).

Ty ≈
(

τx
z+y + ηx

z+y

)
−

(
τx−1

z + ηx−1
z

)
(35)

From Equation (35), the estimation of Ty only depends on the azimuth and range times
of the last RFI pulse in the (x − 1)th frame and the first RFI pulse in the xth frame. Therefore,
the accuracy of Ty estimation is entirely determined by the algorithm error presented in
Section 3.1. Even if the PRI or pulse width exhibits jitter or the RFI pulse satisfies the case 3
mentioned in Section 3.1, as long as the algorithm in Section 3.1 provides high estimation
accuracy, the estimation of Ty will be right.

We design 41 frames of simulated LFM signals to validate the effectiveness of the
algorithm presented in this section. A window function truncates the signals, with the
portions outside the window considered RFI pulses arriving during the SAR non-reception
time. The Ty for 40 non-reception times needs to be estimated. All signal pulses have
identical bandwidths, while their pulse widths and PRIs vary randomly.

Figure 6 illustrates examples of the time-frequency diagrams for the simulated signals
and the errors between the estimated and actual Ty. From the time-frequency diagram in
Figure 6a, it can be observed that some pulses exhibit reduced bandwidths, indicating that
their pulse widths exceed the length of the receiving window or that the pulse onset times
are near the window edges. Figure 6b shows that the Ty estimation errors are all within
20 ns, demonstrating high accuracy in estimating the sum of PRIs during the non-reception
period for the simulated signals.

(a) (b)

Figure 6. Estimation of the total interval of RFI pulses Ty during the simulated SAR non-reception
time: (a) Example of the time-frequency diagram of the simulated signal; (b) Estimation error of
the Ty.
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3.4. Localization Error Analysis and CRLB

We complete the derivation of the PRDOA localization model by analyzing the bias and
covariance of the localization results. Taking the differential of both sides of Equation (16)
and rearranging, we obtain:[

(u − sn)
T

Rro
n

− (u − s0)
T

Rro
0

]
du = ∆rn0 − c

(
Tdn + ndT

)
+

(u − sn)
T

Rro
n

dsn −
(u − s0)

T

Rro
0

ds0 (36)

Here, T represents the mean PRI of the RFI signal. The expectation of Equation (36)
yields the bias of PRDOA localization estimate, which is related to the measurement
bias of PRDOA, the PRI measurement bias of RFI, and the satellite orbit bias. Based on
assumptions A1 and A2, and the results from Section 3.1, the biases of the three parameters’
measurements mentioned above all asymptotically approach zero; thus, the RFI locating
estimator based on PRDOA is asymptotically unbiased. The localization method proposed
is based on MLE approximation and does not depend on the probability distribution of the
measurement noise of PTOA.

Multiplying Equation (36) by its transpose and taking the expectation, we obtain the
covariance matrix of the PRDOA localization results:

cov(u) = G−1
[

E
(

α2
)
+ GnE

(
dsndsT

n

)
GT

n + G0E
(

ds0dsT
0

)
GT

0

]
G−T (37)

where,
α = ∆rn0 − c

(
Tdn + ndT

)
Gn =

(u − sn)
T

Rro
n

G0 =
(u − s0)

T

Rro
0

G =
[
(Gn − G0)

T(Gn − G0)
]−1

(Gn − G0)
T

(38)

By calculating the trace of the covariance matrix cov(u), we can obtain the mean
squared error (MSE) of the RFI localization results. Taking the square root of the MSE yields
the root mean squared error (RMSE). Based on Assumption A1, it can be determined that
the MSE is influenced by factors such as the RFI source position u, satellite orbit, PRDOA
measurement error, the PRI of RFI, and the number of RFI pulses received.

From the analysis in Section 3.3, we know that the number of RFI pulses received by
the SAR is related to the RFI signal reception duration, the SAR receiving window length,
and the pulse repetition frequency (PRF). In practical processing, only one RFI pulse from
each frame of SAR echo data is generally selected for localization calculation; thus, only
SAR’s PRF needs to be considered. Changes in the parameters mentioned above directly
affect the RFI source localization error.

The lower bounds of MSE and RMSE are determined by the Cramér–Rao lower bound
(CRLB), with the Jacobi matrix defined as follows:

∂R
∂u

=

[
∂R10

∂u
,

∂R20

∂u
, · · · ,

∂RN0

∂u

]T
(39)

where,
∂Rn0

∂u
=

∂Rn
rx

∂u
− ∂R0

rx
∂u

=
(u − sn)

T

∥u − sn∥
− (u − s0)

T

∥u − s0∥
(40)
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Using the Jacobi matrix, we can compute the Fisher information as follows:

FIMu =
∂RT

∂u
Q−1

R
∂R
∂u

(41)

Taking the inverse of the Fisher information yields the CRLB for RFI source localization.
To ensure the units are in meters, we take the square root of the CRLB, yielding the
following result:

CRLBu =
√

FIM−1
u (1, 1) + FIM−1

u (2, 2) + FIM−1
u (3, 3) (42)

4. Simulation and Experimental Results
This section validates the proposed method’s effectiveness using numerical simulation

data and the raw echo data from GF3.

4.1. Experimental Results Based on Simulation Data

As discussed in Section 3.4, the error in the PRDOA localization is closely related
to the following parameters: RFI source position, PRDOA measurement error, satellite
orbit, the PRI of RFI, length of the received RFI signal, and the PRF of SAR. As analyzed in
Section 3.1 and 3.3, the pulse width and PRI of RFI pulses jointly determine the complete-
ness of their reception. Considering the complexity of RFI variations in practical scenarios,
we simplify the analysis by setting the PRI of all RFI pulses equal to their pulse width and
controlling the reception status of RFI signals by adjusting the PRI. To analyze the influence
of these parameters on the proposed method and demonstrate its superiority, numerical
experiments are conducted by designing a spaceborne single-channel SAR simulation
platform and an RFI source. These experiments aim to analyze the proposed algorithm’s
position accuracy variation under different conditions. The PTOA localization proposed in
reference [21] is used as a benchmark, and its CRLB is calculated to verify the improvement
in localization accuracy achieved by the proposed method. Table 1 presents the operational
parameters of the simulated spaceborne SAR.

Table 1. SAR system parameters.

SAR System Parameters

Parameter Items Parameters

Carrier Frequency (GHz) 1.26
Average Height (km) 600
Average Speed (m/s) 7563
Viewing Angle (deg) −32.42

Range beam width (rad) 0.07
Azimuth beam width (rad) 0.0243

Sampling rate (MHz) 90
Receiving window duration (µs) 111.11

Specifically, we conduct 2000 Monte Carlo simulation experiments for each param-
eter setting, with RMSE as the performance metric. CRLB is used as a benchmark to
analyze the experimental results. For computational convenience, in the simulation experi-
ments, the first interference pulse in each frame of the detected RFI signal is selected for
localization calculation.
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4.1.1. Localization Error for Different Satellite Orbit

To analyze the influence of satellite orbit variation on the PRDOA localization model,
the following parameters are fixed: the PRF of SAR = 1700 Hz, the RFI signal reception
duration = 4 s, the noise standard deviation σPRDOA = 4.24 m, and the PRI of RFI = 10 µs.
Two sets of satellite orbit parameters are configured based on these parameters, as shown
in Table 2.

Table 2. Satellite orbit parameters.

Satellite A Satellite B

Parameter Items Parameters Parameter Items Parameters

Semi-major Axis (km) 6978.08 Semi-major Axis (km) 6890.75
Eccentricity 0.0012 Eccentricity 0.0011

Inclination (rad) 1.7071 Inclination (rad) 1.7008
RAAN (rad) 0.1936 RAAN (rad) 3.3079

Argument of Periapsis (rad) 1.5708 Argument of Periapsis (rad) 1.5708
True Anomaly (rad) 0.9731 True Anomaly (rad) 0.0000

The center of the SAR swath is used as the reference point, with 21 × 20 grid points set
to correspond to the RFI source locations, distributed within the azimuth ∈ [−8, 8] km and
the range ∈ [702, 752] km for satellite A, whereas the range is ∈ [611, 661] km for satellite B.
The grid point configuration is shown in Figure 7. We apply both the proposed algorithm
and the PTOA method to perform localization for two sets of RFI. The RMSE and CRLB for
the proposed method, as well as the CRLB for the PTOA method, are obtained. The results
are presented as a 2-D image in Figure 8.

Figure 7. Schematic diagram of RFI source grid point setting in the simulation experiment.

The results in Figure 8 show that the trends of RMSE and CRLB obtained by the
proposed algorithm are similar, but the CRLB is systematically smaller than the RMSE,
which is expected. Additionally, a comparison of Figure 8a,b,d,e reveals that different
satellite orbit parameters lead to variations in the distribution of CRLB and RMSE for the
proposed algorithm. However, in all cases, the CRLB and RMSE for the proposed algorithm
are smaller than the CRLB for PTOA localization.

We plot their range and azimuth distributions to intuitively illustrate the difference
between the RMSE and CRLB for the proposed method. Specifically, we calculated the vari-
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ations in RMSE and CRLB for the proposed algorithm and the CRLB for PTOA localization
at Azimuth = 0 km and Range = 727 km for Satellite A (636 km for satellite B), as shown in
Figure 8.

(a) (b) (c)

(d) (e) (f)

Figure 8. 2-D contour plots of the CRLB and RMSE for PRDOA localization, and CRLB for PTOA
localization under different satellite orbit parameters: (a–c) Distribution of the CRLB and RMSE for
the proposed algorithm and the CRLB for PTOA localization under the Satellite A orbit parameters;
(d–f) Distribution of the CRLB and RMSE for the proposed algorithm and the CRLB for PTOA
localization under the Satellite B orbit parameters.

The calculation results show that the RMSE of the proposed method is approximately
1.25 to 1.50 times the CRLB. As shown in Figure 9a,c, different satellite orbit parameters
lead to different trends in the variation of RMSE and CRLB with changes in the azimuth
position. In practical applications, the SAR orbit parameters are determined based on
specific observation requirements, so a detailed analysis should be conducted according to
the specific scenario. From Figure 9b,d, it can be observed that under both sets of satellite
orbit parameters, the CRLB and RMSE of the proposed algorithm increase with the slant
range, indicating that in different observation scenarios, the trend that localization error
increases as the RFI source moves farther from the satellite is consistent.

The calculations show that the RMSE of the proposed method is approximately 1
4 to 1

3
of the CRLB of the PTOA localization method, demonstrating a significant improvement in
localization accuracy. In the subsequent experiments, satellite A’s orbit parameters will be
fixed to minimize the influence of orbit parameters.
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(a) (b)

(c) (d)

Figure 9. Variation in RMSE and CRLB for PRDOA localization and CRLB for PTOA localization
with azimuth and range under different satellite orbit parameters: (a,b) Variation in CRLB and RMSE
for the proposed algorithm and CRLB for PTOA localization with azimuth and range under Satellite
A orbit parameters; (c,d) Variation in CRLB and RMSE for the proposed algorithm and CRLB for
PTOA localization with azimuth and range under Satellite B orbit parameters.

4.1.2. Variation in Azimuth and Range Localization Errors at Different Target Points

To analyze the localization errors produced by the proposed algorithm in the azimuth
and range directions at target points and their trends with changes in the target location,
the same fixed parameters as in Section 4.1.1 are used, and the projections of the results in
Figure 9 onto the azimuth and range directions are calculated. The results are shown in
Figure 10.

As shown in Figure 10a,b, near the center of the SAR observation region, the azimuth
CRLB of PTOA localization is lower than that of the proposed algorithm, indicating that
when the RFI source is near the center, PTOA achieves higher azimuth localization accu-
racy. However, as the RFI source shifts further from the center in the azimuth direction,
the azimuth localization error of PTOA increases significantly, while the azimuth CRLB and
RMSE of the proposed algorithm remain stable. This suggests that the proposed algorithm
provides stable performance for localizing RFI sources across different azimuth positions,
maintaining azimuth localization errors within the hundred-meter level.

Figure 10c,d indicate that as the RFI source moves in the range direction, the range
RMSE and CRLB of the proposed algorithm are approximately one-third to one-fourth of
the range CRLB of PTOA localization, highlighting the clear advantage of the proposed
algorithm in range localization performance.



Remote Sens. 2025, 17, 588 20 of 29

(a) (b)

(c) (d)

Figure 10. Projections of PRDOA and PTOA localization metrics in azimuth and range directions
as functions of azimuth and range: (a,b) The azimuth CRLB and RMSE of the proposed algorithm,
and the azimuth CRLB of PTOA localization as functions of azimuth and range; (c,d) The range
CRLB and RMSE of the proposed algorithm, and the range CRLB of PTOA localization as functions
of azimuth and range.

In subsequent experiments, the RFI source will be consistently positioned at the center
of the observation area to reduce the impact of position variation and clearly illustrate the
relationship between the proposed localization model and different parameters.

4.1.3. Localization Error for Different RFI Signal Reception Durations

To analyze the influence of different RFI signal reception durations on the PRDOA
localization model, the following parameters are fixed: the PRF of SAR = 1700 Hz, the noise
standard deviation σPRDOA = 4.24 m, and the PRI of RFI = 10 µs. With these fixed parame-
ters, the RFI signal reception duration is varied from 2 s to 8 s. We conduct experiments
to assess the localization error of the proposed method at different reception durations.
The calculated RMSE and CRLB of the proposed method, along with the CRLB of the PTOA
localization method, are shown in Figure 11a.

As seen in Figure 11a, both the RMSE and CRLB of the proposed method decrease as
the RFI signal reception duration increases. This suggests that longer RFI signal reception
durations improve localization accuracy, likely due to the following:

1. A reduction in measurement noise-induced error with longer reception durations.
2. A stabilization of the AR matrix in Equation (23) under longer RFI reception times,

ensuring improved localization accuracy [13].
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(a) (b)

(c) (d)

Figure 11. Variation in RMSE and CRLB for PRDOA localization and CRLB for PTOA localization
with parameter variations: (a) Localization error variations with different RFI signal reception
durations; (b) Localization error variations with different noise variances σPRDOA; (c) Localization
error variations with different PRIs of RFI; (d) Localization error variations with different PRFs
of SAR.

From Figure 11a, it can be observed that when the reception duration reaches 8 s or
more, the RMSE of the proposed method becomes comparable to the CRLB of the PTOA
localization method. When the RFI signal reception duration is less than 7 s, the RMSE of
the proposed method remains lower than the CRLB of PTOA localization, with a larger
disparity at shorter reception durations. Thus, the proposed method maintains high
localization accuracy even with shorter RFI signal reception times.

4.1.4. Localization Error for Different Noise Levels

To analyze the influence of different noise levels on the PRDOA localization model,
the following parameters are fixed: the PRF of SAR = 1700 Hz, the RFI signal reception
duration = 4 s, and the PRI of RFI = 10 µs. With these fixed parameters, we vary the noise
variance σPRDOA from 0.42 m to 42.40 m and conduct experiments to assess the localization
error of the proposed method at different measurement noises. The calculated RMSE and
CRLB of the proposed method, along with the CRLB of the PTOA localization method, are
shown in Figure 11b.

As observed in Figure 11b, both the RMSE and CRLB for the proposed method increase
with rising measurement noise. To further analyze this relationship, polynomial fitting
is applied, showing that the CRLB and RMSE for the proposed method exhibit a linear
relationship with σPRDOA. Comparing the RMSE of the proposed method with the CRLB of
the PTOA localization method reveals that the proposed method shows a less pronounced
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increase in localization error as noise increases unlike the PTOA method, indicating superior
localization accuracy and stability under high measurement noise.

4.1.5. Localization Error for Different PRIs of RFI

To analyze the influence of different PRIs of RFI on the PRDOA localization model,
the following parameters are fixed: the PRF of SAR = 1700 Hz, the RFI signal reception
duration = 4 s, and the σPRDOA = 4.24 m. With these fixed parameters, we vary the PRI of
RFI from 10 µs to 200 µs and conduct experiments to assess the localization error of the
proposed method. The calculated RMSE and CRLB of the proposed method, along with
the CRLB of the PTOA localization method, are shown in Figure 11c.

As seen in Figure 11c, when the RFI PRI is smaller than the SAR receiving window
length, neither the RMSE and CRLB of the proposed method nor the CRLB of PTOA
localization exhibits any significant increase or decrease with increasing PRI of RFI signal.
The reason for the result above is that the SAR does not receive continuous data; rather, it
samples in the azimuth direction to generate 2-D image data. Since the localization process
typically selects only one pulse containing RFI from each frame for localization calculations,
different PRI values have minimal impact on the azimuth and range timing of the RFI
pulse selected in each frame. Therefore, the PRI of the RFI signal has little effect on either
the proposed algorithm or PTOA localization, when the RFI PRI is smaller than the SAR
receiving window length.

When the RFI PRI exceeds the SAR receiving window length, the RMSE of the pro-
posed method increases with PRI. This is because the accuracy of the PRDOA model relies
on the algorithm proposed in Section 3.1. As PRI increases, more phase information of
RFI pulses is lost outside the single frame, leading to reduced algorithm accuracy and,
consequently, increased localization error in the PRDOA model.

Figure 11c also demonstrates that regardless of the completeness of RFI signal recep-
tion, the proposed algorithm continues to achieve higher localization accuracy than the
PTOA method.

4.1.6. Localization Error for Different PRFs of SAR

To analyze the influence of different PRFs of SAR on the PRDOA localization model,
the following parameters are fixed: the PRI of RFI = 10 µs, the RFI signal reception duration
= 4 s, and the σPRDOA = 4.24 m. With these fixed parameters, we vary the PRF of SAR
from 1100 Hz to 1700 Hz and conduct experiments to assess the localization error of the
proposed method. The calculated RMSE and CRLB of the proposed method, along with
the CRLB of the PTOA localization method, are shown in Figure 11d.

As seen in Figure 11d, the RMSE and CRLB of the proposed method increase with
higher SAR PRFs. Polynomial fitting of the data reveals that the RMSE and CRLB of the
proposed method exhibit a linear relationship with the PRF

3
2 . This phenomenon is due

to the correlation between the PRDOA of successive pulses caused by the presence of
reference. As the SAR PRF increases, the number of PRDOA elements increases; however,
the cumulative timing estimation error of the reference pulses also accumulates, which
overshadows the potential improvement in localization accuracy from the increased ele-
ments. As a result, the localization performance of the proposed method decreases with
higher PRF of SAR.

4.1.7. The Impact of CR Approximation on PRDOA Localization Accuracy

In Section 3.2.2, the slant range information at the center of the SAR observation area
is used as the initial value in the CR to simplify the computation. To analyze the impact
of CR approximation on the accuracy of the PRDOA localization model, the 21 × 20 grid
of points under the observation of Satellite A in Section 4.1.1 is selected. The slant range
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information between each grid point and Satellite A is calculated and substitutes into the
CR, and localization is performed using the PRDOA model. The differences between the
localization errors of each point based on the real CR and those using the approximated
CR are computed, as shown in Figure 12.

Figure 12. Differences between the PRDOA localization errors based on the real CR and those using
the approximated CR for a 21 × 20 grid under the observation of satellite A.

As shown in Figure 12, the maximum difference between the PRDOA localization
errors based on the approximated CR and the real CR does not exceed 15 m. This indicates
that the impact of CR approximation on the accuracy of the PRDOA localization is minimal,
verifying its feasibility.

4.2. Experimental Result Based on Measured Data

In the experiment, GaoFen-3, a high-resolution Earth observation satellite developed
by China, is used as the spaceborne SAR platform with an RFI source provided by a simu-
lated radar signal emitter created by Aerospace Information Research Institute, Chinese
Academy of Sciences, Beijing, China, as shown in Figure 13.

During the experiment, the RFI source continuously transmitted signals. The experi-
mental location was in Lingshui, Sanya, with the coordinates of the RFI source at (latitude,
longitude, height) = (18.413°N, 109.972°E, 15 m). The signal is a frequency-modulated
continuous wave (FMCW) with a bandwidth of 15 MHz and a pulse repetition interval of
19 µs. Table 3 presents the orbit and imaging parameters of the satellite platform.

Figure 13. Simulated radar RFI source and its deployment environment used in the experiment.
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Table 3. Orbit and radar parameters of the GF3 satellite.

SAR Parameters Satellite Orbit Parameters

Parameter Items Parameters Parameter Items Parameters

Carrier Frequency (GHz) 6978.08 Semi-major Axis (km) 7134.0500
Pulse Width (µs) 0.0012 Eccentricity 0.0016

Band Width (MHz) 1.7071 Inclination (rad) 98.4857
PRF (Hz) 1400 Viewing Angle (deg) 39.1700

Based on the RFI detection and parameter estimation results, we applied matched fil-
tering to the RFI signal for reception time estimation in the SAR echo domain. The matched
filtering result for a single RFI frame is shown in Figure 14, demonstrating that the matched
filtering effectively focuses the signal energy at the pulse center time, enabling precise
estimation of the RFI signal’s time information in the SAR echo domain.

(a) (b)

Figure 14. Time-frequency images of SAR raw echo with RFI signal and after matched filtering:
(a) Time-frequency image of single-frame raw echo with interference signal; (b) Time-frequency
image after matched filtering.

Using the estimated time information of the RFI in the SAR echo domain, we selected
the first pulse in each frame containing the detected RFI and computed the corresponding
PRDOA. The measurement of PRDOA is shown in Figure 15.

Figure 15. PRDOA estimation for each frame in the SAR echo domain with RFI signal.

Using the measured PRDOA, we constructed an optimization model from Equation (33)
to obtain the localization results. Additionally, we computed the CRLB value for the same
scene using the PTOA localization method. The results of both algorithms are shown in Table 4.
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It is evident that the proposed method significantly improves localization accuracy compared
to the PTOA method, achieving a total localization error of 7.9874 km and an azimuth error of
350.03 m, both lower than the CRLB of PTOA, closely matching the simulated performance of
the proposed method.

Table 4. The result of RFI source localization with PTOA and PRDOA method.

PRDOA Localization with SDR Method PTOA Localization

Parameter Items Parameters Parameter Items Parameters

Localization Error
(km) 7.9874 Localization CRLB

(km) 26.6006

Azimuth Error (m) 350.03 Azimuth CRLB (m) 378.54
Range Error (km) 7.9835 Range CRLB (km) 26.5979

In summary, the proposed method meets the high accuracy requirements for locating
the RFI source with the spaceborne single-channel SAR, achieving an estimation error of
less than 10 km.

5. Discussion
In Section 4, simulation experiments and empirical validation using GF3 data are

conducted, and based on the covariance analysis of the PRDOA localization model in
Section 3.4, we evaluate the impact of various factors on the positioning accuracy of the
proposed method while keeping other parameters fixed, with the PTOA model from
reference [21] used for comparison.

As shown in Figures 8–11, the RMSE of the proposed algorithm under various simula-
tion conditions is nearly 1.50 times the CRLB. From the analysis in Section 3.2.3, it is evident
that the convex optimization problem in Equation (33) aligns with the global optimal
solution of Equation (21). This ensures that the localization of the proposed algorithm can
closely approach the error lower bound of the PRDOA model.

Further observation of Figures 8–11 and Table 4 reveals that the proposed algorithm
improves the localization accuracy by 3 to 4 times compared to the PTOA model under
various simulation conditions and real-world scenarios. Moreover, Figures 8 and 9 illustrate
that the CRLBs for the PRDOA and PTOA models exhibit different trends as the RFI source
distribution varies across the azimuth and range grid points. This phenomenon arises due
to the differences in the algebraic relationships between the two models and the RFI source
location. In reference [21], the PTOA for the nth RFI pulse is determined by its emission
time tto

n , the time reference, the RFI source location u, and the satellite position s. However,
as seen in Equations (6) and (15), the PRDOA in the proposed method is only dependent
on u and s. The difference in these algebraic relationships causes the performance of the
two localization models to vary differently with changes in the RFI source position and the
localization accuracy magnitudes.

As shown in Figure 10, the CRLB of the PRDOA model exhibits a significant difference
in the projection magnitudes along the azimuth and range directions, with the former being
of the order of hundreds of meters and the latter of the order of kilometers. To investigate
the cause of this difference, we set three grid points in both the azimuth and range directions
as RFI sources using the simulated single-channel SAR with Satellite A orbit and parameters
the same as in Section 4.1.1 for illustrative analysis, as shown in Figure 16.
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Figure 16. Schematic of the RFI source at three grid points in the azimuth or range direction.

The PRDOA of points A to E is calculated, and the results are shown in Figure 17.

(a) (b)

Figure 17. PRDOA of three points in the same azimuth or range direction: (a) PRDOA of three points
in the same range direction; (b) PRDOA of three points in the same azimuth direction.

By comparing Figure 17a,b, it can be observed that the PRDOA differences among
points D, B, and E in the same range direction are much larger than those among points A,
B, and C in the same azimuth direction, which indicates that the PRDOA is more sensitive
to positional changes of the RFI source in the azimuth direction. As a result, the positioning
error projection in the azimuth direction is smaller than in the range direction.

From the simulation or experimental results presented in Section 4, we can conclude
that the PRDOA model and SDR-solving method proposed in this paper can achieve
high localization accuracy. However, it is important to note that the PRDOA processing
assumes that the SAR can continuously receive RFI signals. In practice, RFI signals may
exhibit scanning characteristics, leading to cases where some RFI signals are not received
or detected while the SAR receiving window is active. If several RFI pulses are lost within
a single SAR frame, as discussed in Section 3.3, the onboard SAR moves less than 10 m,
and the slant range can be approximated as unchanged. Therefore, the method outlined
in Section 3.3 can be used to estimate the range time τ for undetected RFI pulses. If a
series of consecutive frames in the SAR echo are lost without receiving any RFI signals,
the corresponding data cannot be processed by the PRDOA model.

Additionally, due to the complex modulation phase changes in signals transmitted by
communication sources, such as Orthogonal Frequency Division Multiplexing, applying
this algorithm to locate such RFI sources is more challenging. Therefore, we assume the RFI
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source is a radar source in this study. Future work will further analyze these limitations
and extend the applicability of the proposed algorithm.

6. Conclusions
This paper proposes a spaceborne single-channel SAR RFI source localization model

based on PRDOA. First, a geometric model for spaceborne single-channel SAR and the
ground-based RFI source is established, along with an RFI signal model. The reception
times of RFI pulses in the SAR echo domain are estimated using a matched filtering method.
These are then used to construct a PRDOA localization model, which includes the RFI
source position information. Given the non-convexity of the model, the WLS equation is
used to approximate the localization model, and an SDR method is introduced to transform
the model into a convex optimization problem. Theoretical analysis shows that the optimal
solution of the approximated convex optimization model is consistent with the results of
the PRDOA localization model.

Next, the bias, covariance, and CRLB of RFI source localization based on the PRDOA
model are studied, and the method is compared with the PTOA-based localization. Nu-
merical experiments and real data validation are conducted. The results demonstrate that
the proposed method can achieve localization accuracy at the kilometer level and azimuth
accuracy at the hundred-meter level, with the overall localization accuracy significantly
surpassing that of the PTOA method.

It is worth noting that when the RFI signal cannot be fully received by the SAR receiv-
ing window, the localization error increases. Additionally, the algorithm has limitations
when dealing with RFI sources as communication sources and when there are losses of RFI
signals over multiple SAR frames. Future work will focus on addressing these three issues.
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