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Abstract: Airborne LiDAR (ALS) data have been extensively utilized for aboveground
biomass (AGB) estimation; however, the high acquisition costs make it challenging to
attain wall-to-wall estimation across large regions. Some studies have leveraged ALS data
as intermediate variables to amplify sample sizes, thereby reducing costs and enhancing
sample representativeness and model accuracy, but the cost issue remains in larger-scale
estimations. Satellite LiDAR data, offering a broader dataset that can be acquired quickly
with lower costs, can serve as an alternative intermediate variable for sample expansion.
In this study, we employed a three-stage up-scaling approach to estimate forest AGB and
introduced a method for quantifying estimation uncertainty. Based on the established three-
stage general-hierarchical-model-based estimation inference (3sGHMB), an RK-3sGHMB
inference method is proposed to make use of the regression-kriging (RK) method, and
then it is compared with conventional model-based inference (CMB), general hierarchical
model-based inference (GHMB), and improved general hierarchical model-based inference
(RK-GHMB) to estimate forest AGB and uncertainty at both the pixel and forest farm
levels. This study was carried out by integrating plot data, sampled ALS data, wall-to-wall
Sentinel-2A data, and airborne P-SAR data. The results show that the accuracy of CMB
(R2

adj = 0.37, RMSE = 33.95 t/ha, EA = 63.28%) is lower than that of GHMB (R2
adj = 0.38,

RMSE = 33.72 t/ha, EA = 63.53%), while it is higher than that of 3sGHMB (R2
adj = 0.27,

RMSE = 36.58 t/ha, EA = 60.43%). Notably, RK-GHMB (R2
adj = 0.60, RMSE= 27.07 t/ha,

EA = 70.72%) and RK-3sGHMB (R2
adj = 0.55, RMSE = 28.55 t/ha, EA = 69.13%) demonstrate

significant accuracy enhancements compared to GHMB and 3sGHMB. For population
AGB estimation, the precision of the proposed RK-3sGHMB (p = 94.44%) is the highest,
providing that there are sufficient sample sizes in the third stage, followed by RK-GHMB
(p = 93.32%) with sufficient sample sizes in the second stage, GHMB (p = 90.88%), 3sGHMB
(p = 88.91%), and CMB (p = 87.96%). Further analysis reveals that the three-stage model,
considering spatial correlation at the third stage, can improve estimation accuracy, but the
prerequisite is that the sample size in the third stage must be sufficient. For large-scale
estimation, the RK-3sGHMB model proposed herein offers certain advantages.

Keywords: forest AGB; multi-source data; uncertainty; three-stage up-scaling; spatial
correlation
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1. Introduction
Forests are a pivotal component of the Earth’s ecosystems, playing an essential role in

ecological conservation, water source protection, air purification, and carbon cycling [1–3].
Aboveground biomass (AGB) is a critical metric in assessing forest health, and its rapid and
precise estimation is imperative in the refined management of forest resources and research
on carbon sequestration [4]. Traditionally, the acquisition of forest AGB has relied on
design-based inference (DB), which uses plot-based data to estimate AGB at a regional level.
However, this approach necessitates that the plot data adhere strictly to the principles of
random or systematic sampling to ensure unbiased estimation. Therefore, this method faces
significant challenges in terms of high labor and time costs when conducting large-scale
surveys [5]. The advancement of remote sensing technology, particularly the utilization
of multi-source remote sensing data, has opened up new possibilities in the large-scale
inversion of forest AGB. Model-based inference has emerged as a widely adopted method of
quantitative estimation in remote sensing, not only providing comprehensive and spatially
continuous results but also significantly improving the population estimation precision
under the same sample conditions [5,6]. Nonetheless, these methods are still contingent
on sample size, and ensuring model accuracy requires a substantial number of samples,
which perpetuates the issue of high labor and time costs. Multi-stage approaches have
emerged as a research focus within multi-source remote sensing estimation technology,
utilizing features strongly correlated with target variables to model and obtain a large
number of relative true values, thereby expanding the original sample set, enhancing
sample representativeness, and reducing the costs associated with obtaining measured
samples [7–9].

In multi-stage modeling, intermediate variables play a crucial role in ensuring the
precision of results. Light detection and ranging (LiDAR) data can accurately depict forest
vertical structure information and have a strong correlation with forest resource parameters,
such as average height, diameter at breast height (DBH), volume, and AGB, thus offering
a distinct advantage in the estimation of forest resource parameters. Airborne LiDAR
data (ALS), in particular, have been extensively applied in the quantitative inversion of
forest resource parameters [10–12]. Due to the high cost of data acquisition, it is often
challenging to achieve the quantitative estimation of forest resources across large areas
using ALS data alone [13]. Therefore, ALS data are commonly employed as an intermediate
variable in multi-stage modeling to expand the sample size [14–18]. Satellite LiDAR data,
such as those from Global Ecosystem Dynamics Investigation (GEDI); Ice, Cloud, and
Land Elevation Satellite-2 (ICESat-2); and Terrestrial Ecosystem Carbon Inventory Satellite
(TECIS), are widely applied in multi-stage modeling, and they are also easier to obtain and
involve relatively lower costs for end-users compared with ALS data [19–21]. Given the
challenges involved in obtaining measured data for footprint locations due to positioning
biases and inaccessibility, ALS data can be used as an intermediate variable to construct
models that predict the relative true values of forest AGB at footprint locations [19,22–26].
This approach mitigates the impact of positioning errors and the difficulties associated with
tracking footprints, meaning that the combination of sampled airborne LiDAR data and
spatially discrete satellite waveform LiDAR data represents a common technical approach
to large-area forest parameter estimation.

Currently, the data framework for one-stage inference, such as conventional model-
based inference (CMB) [17], typically consists of a limited number of sample data and
wall-to-wall data. The data framework for multi-stage inference includes the following
three configurations: (1) a limited number of plot data combined with sampling ALS data
and wall-to-wall data; (2) a limited number of plot data combined with satellite waveform
LiDAR data and wall-to-wall data; (3) utilizing a limited number of plot data, sampling ALS
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data, satellite waveform LiDAR data, and wall-to-wall data. In the multi-stage approach,
except for the first stage, the dependent variables in subsequent stages are derived from the
estimated values of the previous stage, which serve as relative true values. Consequently,
error propagation can significantly influence the final result. Therefore, quantifying its
uncertainty is crucial in practical applications. Scholars have conducted studies on this
issue, employing models such as two-stage generalized hierarchical model-based inference
(GHMB) [9] and three-stage generalized hierarchical model-based inference (3sGHMB) [8],
but neither method accounts for the impact of spatial correlation. Geostatistical methods
represent a widely recognized approach to mitigating the effects of spatial correlation
and have been extensively employed in the estimation of forest resource parameters [27].
Several studies have integrated interpolation techniques into regression or machine learn-
ing algorithms, utilizing the spatial interpolation of residuals and then re-adding them to
the original results to minimize the influence of spatial correlation on model outcomes.
This integration has led to significant improvements in the accuracy of parameter estima-
tions [28–31]. However, these methods are less commonly applied to multi-stage modeling,
especially for uncertainty estimation. Zhao et al. [32] improved the GHMB model by incor-
porating spatial autocorrelation and introduced the RK-GHMB estimation method, which
applies regression-kriging (RK) at the second stage of the modeling process. Their results
demonstrate that integrating geostatistical methods can enhance the estimation accuracy of
the model and make the uncertainty estimation more scientific and reasonable. To date,
no studies have reported on the effectiveness of integrating geostatistical methods into
three-stage inference. Additionally, there is a dearth of research comparing the advantages
and disadvantages of three-stage inference relative to one- and two-stage inference [33].

Based on the aforementioned analysis, in this study, we introduce an RK model into the
three-stage inference method 3sGHMB for forest AGB estimation, denoted as RK-3sGHMB,
addressing the challenges arising from the fact that the current 3sGHMB does not account
for spatial autocorrelation in the third stage. We then evaluate this method and compare
it with CMB, GHMB, RK-GHMB, and 3sGHMB, analyzing their respective strengths and
weaknesses, and assessing the effectiveness of the developed model. We also discuss the
applicable scenarios of the developed model, with the goal of providing an efficient and
high-precision multi-source remote sensing collaborative estimation technology for forest
parameters, to support national forest resource annual monitoring services.

2. Materials and Methods
2.1. Study Area

The study area comprised the whole coverage area of two forest farms named Upper
Yangge Forest Farm and Tidal Slag Forest Farm (Figure 1). The study area is located in
Genhe City, Hulunbuir City, Inner Mongolia, where the terrain is undulating, with a relative
elevation difference of between 100 m and 300 m. The average altitude is above 1000 m,
characterizing it as a high-latitude, cold region. It has a cold temperate humid forest climate,
with characteristics of a continental monsoon climate, featuring moist and cold air, long
winters, short summers, and a rainy season from July to August each year. The vegetation
is dominated by forest and grassland, with a forest coverage rate as high as 75%. Typical
tree species include Larix gmelinii, Betula platyphylla, Pinus sylvestris var. mongolica Litv, and
Populus davidiana [34].
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measured using a FindCM GPS-RTK produced by China Qianxun Sl company with a 
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Figure 1. Location and coverage of the study area.

2.2. Data
2.2.1. Plot Data

The forest growth in the study area is relatively slow. To increase the sample size, data
from two years, 2021 and 2022, were used for subsequent analysis. A total of 103 plots
(25 m × 25 m) were obtained over the two years (Figure 2). Trees with a DBH greater than
5 cm within the plots were measured, and parameters such as DBH, tree height, east–west
crown width, north–south crown width, and height to the base of the live crown were
measured. The positions of the four corners and the center of each plot were precisely
measured using a FindCM GPS-RTK produced by China Qianxun Sl company with a
measurement accuracy better than 0.15 m. Subsequently, the tree species-specific allometric
growth equations proposed by Zhou et al. [35] were used to calculate the AGB of each tree
within the plots. The total biomass and AGB density for each plot were calculated from the
AGB of individual tree within the respective plots. The unit of total biomass is ton (t), and
the unit of biomass density is tons per hectare (t/ha).

2.2.2. ALS Strip Data Scenario Simulation

Wall-to-wall ALS data were collected in August 2022 (Figure 2) using the CAF-LiCHy
data acquisition system, with the LiDAR sensor model being Riegl LMS-Q680i produced by
RIEGL that in Horn, Austria [36]. The LiDAR point cloud data underwent preprocessing,
including attitude correction, noise point removal, coordinate transformation, flight line
stitching, and system error correction. Subsequently, LASTOOLS software [37] was utilized
for point cloud classification, denoising, and normalization to obtain normalized vegetation
point cloud data. Fusion software [38] was employed to extract features such as the mean
height, canopy density, height variance and standard deviation, coefficient of variation,
interquartile distance, skewness, maximum height, and height percentiles for subsequent
analysis [39,40]. Detailed information is presented in Table 1. The study area was divided
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into 1,539,092 grids (25 m × 25 m) denoted as N, and the mean of each LiDAR data
feature within each grid was calculated for further analysis. In order to simulate real-world
application scenarios, 13 strips were extracted to serve as a link to GEDI data (Figure 2b),
with both the strip width and spacing set at 1.5 km. There were 80 plots located within
the strips and 23 plots outside the strips. Plot data within the strips were used for model
training, while plot data outside the strips were used for model validation.
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Figure 2. (a) Spatial distribution of sample plots, data from Sentinel-2A, P-SAR, and GEDI in the
study area; and (b) the spatial distribution of ALS strips and GEDI data within the strips.

Table 1. Features of LiDAR.

Feature Name Feature Symbol Description

Mean height Hmean The mean height of the point cloud within a 25 m × 25 m
statistical unit

Forest canopy density CD The ratio of canopy backscatter points within a 25 m × 25 m
statistical unit to the total number of backscatter points

Variance and
standard deviation Hvar, Hstd The variance and standard deviation of the point cloud within a

25 m × 25 m statistical unit

Coefficient of variation Hcv Coefficient of variation in the point cloud within a 25 m × 25 m
statistical unit

Interquartile distance Hint Height interquartile distance within a 25 m × 25 m statistical unit
for point cloud data

Skewness Hskw The skewness of the points cloud within a 25 m × 25 m
statistical unit

Maximum and minimum Hmax, Hmin The maximum and minimum values of the point cloud within a
25 m × 25 m statistical unit

Percentiles H10, H20, H30, H40,
H50, H60, . . ., H95

Percentiles of the point cloud at different heights within a
25 m × 25 m statistical unit
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2.2.3. Airborne P-SAR

In this study, we obtained wall-to-wall Airborne P-SAR data for the study area, em-
ploying processing methodologies in accordance with those detailed by Fan et al. [41].
The primary steps encompass (1) multi-looking and refined Lee polarization filtering to
generate multi-look complex (MLC) PolSAR data, followed by the application of a 5 × 5
moving window filter to the MLC results to further attenuate the impact of speckle noise;
(2) the integration of SAR imaging orbit information into digital elevation model (DEM)
data and the geocoding of the PolSAR data based on the radar–Doppler geolocation model
to establish the correspondence between the SAR image slant range space and the geo-
graphic coordinate space while also obtaining relevant angular parameters that describe
the local imaging geometry, such as projection angles and local incidence angles; (3) the
implementation of a three-stage topographic–radiometric correction method [42] to address
the polarization azimuth angle, effective scattering area, and angle effects, in order to com-
pensate for the effects of terrain undulations on polarization characteristics; (4) conducting
Yamaguchi decomposition [43] on the topographic–radiometric corrected polarization
coherence matrix to extract various polarization decomposition components that, along
with backscatter intensity, form the polarization feature set for each band (Table 2). The
final processed multi-band polarimetric SAR data and features have a pixel resolution of
25 m × 25 m, ensuring spatial congruence with the sample plots.

Table 2. Polarimetric features extracted from P-SAR data in this study.

Feature Class Feature Name Feature Symbol

Backscatter intensity HH polarization PHH
HV polarization PHV

Yamaguchi decomposition

Surface scattering Odd
Dihedral scattering Dbl
Volume scattering Vol

Helix scattering Hlx

2.2.4. GEDI Data

The GEDI LiDAR system, launched aboard the International Space Station (ISS) in
December 2018, comprises three lasers, with one laser divided into two coverage beams
and the other two operating at full power. The coverage beams and full-power beams are
able to detect the ground through 95% and 98% forest canopy cover, respectively [44]. GEDI
creates spot trajectories on the Earth’s surface through beam jitter, with each trajectory
consisting of circular footprints that are 60 m along-track and 25 m in diameter, and the
distance between adjacent trajectories is approximately 600 m, with a scanning swath
width of about 4.2 km [45,46]. These data have been widely applied to the estimation of
AGB in forests [47,48]. The data used in this study are cover, canopy height, and height
quantiles, i.e., rh10, rh20, rh30, rh40, rh50, rh60, rh70, rh75, rh80, rh85, rh90, rh95, and
rh100 from the GEDI Level 2A and Level 2B data products. The data acquisition period
was from 1 July 2022 to 30 September 2022, and some invalid spots were filtered based on
the parameters inherent in the data [49]. The data were downloaded and preprocessed
using the rGEDI package in R [50], with outliers removed, resulting in data features from
13,010 location spots, as shown in Figure 2a, of which 5715 GEDI spots are located within
the strips (Figure 2b).

2.2.5. Sentinel-2A Data

Two scenes of sentinel-2A multispectral data were downloaded from the Copernicus
Open Access Hub website (https://dataspace.copernicus.eu/ (accessed on 10 May 2023)).

https://dataspace.copernicus.eu/
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Due to the influence of cloudy and wet weather, it was not possible to obtain imagery
that is perfectly synchronized with the ground plot data acquisition time; therefore, only
available imagery from the growing season with a close time match was acquired, dated 8
July 2022. The European Space Agency’s open-source SNAP software (https://step.esa.int/
main/download/snap-download/ (Version 8.0.0.0, accessed on 20 May 2023)) was utilized
to perform radiometric calibration, atmospheric correction, and orthorectification on each
scene. After these preprocessing steps had been performed, the pixel size of the Sentinel-2A
data were set to 25 m × 25 m, consistent with the size of the sample plots; then, the two
preprocessed scenes were mosaicked to obtain multispectral remote sensing data covering
the entire study area. Common vegetation indices were selected as candidate features
(Table 3), and an additional novel vegetation index, the kernel-normalized difference
vegetation index (KNDVI), was included. This index is derived from the concept of kernel
functions, and previous studies have shown that it can significantly improve the estimation
accuracy of forest carbon stocks [51]. The corresponding kernel function vegetation indices,
KNDVIre1, KNDVIre2, and KNDVIre3, were calculated with the methods shown in [51].

Table 3. Features of Sentinel-2A.

Feature Symbol Formula Reference

Spectral reflectance B2, B3, B4, B5, B6, B7, B8a,
B11, B12 / /

Normalized difference vegetation index NDVI (B8 − B4)/(B8 + B4) [52]

Red-edge vegetation index
NDVIre1 (B8 − B5)/(B8 + B5)

[53]NDVIre2 (B8 − B6)/(B8 + B6)
NDVIre3 (B8 − B7)/(B8 + B7)

Kernel-normalized difference vegetation index KNDVI tanh
((

B8−B4
2σ1

)2
)

[51]
Kernel red-edge vegetation index

KNDVIre1 tanh
((

B8−B5
2σ2

)2
)

KNDVIre2 tanh
((

B8−B6
2σ3

)2
)

KNDVIre3 tanh
((

B8−B7
2σ4

)2
)

Difference vegetation index DVI B8 − B4 [54]

Red-edge difference vegetation index
DVIre1 B5 − B4

[55]DVIre2 B6 − B4
DVIre3 B7 − B4

Enhanced vegetation index EVI 2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1) [56]

Red-edge enhanced vegetation index
EVIre1 2.5 × (B5 − B4)/(B5 + 6 × B4 − 7.5 × B2 + 1)

[55]EVIre2 2.5 × (B6 − B4)/(B6 + 6 × B4 − 7.5 × B2 + 1)
EVIre3 2.5 × (B7 − B4)/(B7 + 6 × B4 − 7.5 × B2 + 1)

Simple ratio RVI B8/B4 [57]
Soil-adjusted vegetation index SAVI 1.5 × (B8 − B4)/(B8 + B4 + 0.5) [58]

Green normalized difference vegetation index GNDVI (B8 − B3)/(B8 + B3) [59]
Narrow enhanced vegetation index EVInirn 2.5 × (B8A − B4)/(B8A + 6 × B4 − 7.5 × B2 + 1) [55]

B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12 represent the bands corresponding to sentinel-2A; the value of σ1, σ2,
σ3 and σ4 is (B8 + B4)/2, (B8 + B5)/2, (B8 + B6)/2, and (B8 + B7)/2, respectively.

2.3. Methods
2.3.1. Overview

We propose the application of RK at the third stage of a three-stage model, and in
this study, we aim to confirm whether it can promote accuracy and reduce uncertainty in
estimation results. We compare it with CMB, GHMB, RK-GHMB, and 3sGHMB to analyze
their strengths and weaknesses in practical application scenarios. The flowchart for this
study is depicted in Figure 3, and the data frameworks for the five methods are as follows:

https://step.esa.int/main/download/snap-download/
https://step.esa.int/main/download/snap-download/
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Case A: CMB using plot data and wall-to-wall airborne P-SAR and Sentinel-2A data.
Case B: GHMB using plot data, sampled ALS strip data, and wall-to-wall airborne

P-SAR and Sentinel-2A data.
Case C: RK-GHMB using the same data as in Case B.
Case D: 3sGHMB using plot data, sampled ALS strip data, GEDI data, and wall-to-wall

airborne P-SAR and Sentinel-2A data.
Case E: RK-3sGHMB using the same data as in Case D.
In this study, the N grid of the study area is denoted as population U. The grids for

Tidal Slag Forest Farm constitute the subpopulation U1, with a total number of 821,909,
denoted as N1. The grids for Upper Yangge Forest Farm constitute the subpopulation
U2, with a total number of 717,183, denoted as N2. For the sake of clarity in subsequent
discussions, the model within the CMB is designated as Fms; the first-stage models for
the GHMB, RK-GHMB, 3sGHMB, and RK-3sGHMBs are represented by Fml ; the second-
stage models for GHMB and RK-GHMB are denoted by Gls and GR (in Figure 3, GR is
denoted as “model Gls + RK”), respectively; the second-stage models for 3sGHMB and
RK-3sGHMB are denoted by Qlg; and their third-stage models are labeled as Qgs and QR

(in Figure 3, QR is denoted as “model Qgs + RK”). The dataset constituted by the sample
plots is represented by SI , which is located in the airborne LiDAR strips and includes the
measured forest AGB, ALS features, and wall-to-wall features. The sample size n for SI

is 80. The sample plots outside the ALS strips are used for validation, with a count of 23.
From the GEDI spots within the ALS strips, a random selection is made to construct the SI I

dataset, which includes ALS features, GEDI features, and wall-to-wall features, and the
sample size k is 5000. Since there are no measured data at the GEDI spot locations, data
for an additional GEDI spot for which LiDAR-based biomass is available are randomly
selected to form a validation dataset to verify the Glg model; the sample size of the dataset
is 1000. From all GEDI spots, random selection is performed to create the SI I I dataset for
model training, which includes GEDI features and wall-to-wall features. The sample size
of SI I I is h = 10,000.
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2.3.2. Feature Selection

We employed a genetic algorithm for feature selection, which is a heuristic method
that simulates natural selection to solve optimization problems and has a wide range
of uses in the field of remote sensing [60]. The R2 and RMSE of internal and external
validation samples were used as evaluation metrics. We implemented genetic algorithm
feature selection for each model, utilizing the gafs function within the caret package in
R [61].

2.3.3. Case A: The CMB

This case follows the well-established model-based inference [9,17]. The general form
of the model is as follows:

Fms : y = f (XSI , αSI ) + ε, ε ∼ N(0, Ω) (1)

where y is the vector of measured forest AGB data, XSI is an n × q dimension matrix of
wall-to-wall features with respect to SI , αSI is the corresponding parameter vector, and ε is
the random error following N(0, Ω). f represents the model form for fitting. In this study,
we used logistic regression for model fitting and estimation due to its ability to ensure
non-negative values and provide a certain physical significance [15]. The same model form
was also used in Case B, Case C, Case D, and Case E. The pixel uncertainty is calculated
based on the methods proposed by Saarela et al. [9] and McRoberts et al. [62], using the
following formula:

RMSE(ŷFmsi
) =

√
X̃

T
i Cov(α̂SI )X̃i + V(εi) (2)

X̃i =
∂Fms(α̂SI , Xi)

∂α̂SI

(3)

where RMSE(ŷFmsi
) represents the uncertainty of the model Fms at map unit i; ŷFmsi

is the

predicted AGB using model Fms for map unit i; X̃i is a (q + 1)-length vector composed of the
partial derivatives of the model Fms at unit i with respect to α̂SI , where q is the number of

parameters. Cov(αSI ) = (X̃
T
SI

ΩX̃SI )
−1

, and X̃SI is an n × q matrix of partial derivatives of
the model Fms based on the dataset SI with respect to α̂SI , and Ω is the variance–covariance
matrix of the residuals. Without considering spatial autocorrelation, the diagonal elements
are constituted by V(εi), which is the variance of εi. It can be calculated by the method
proposed by McRoberts [62], with the formula V(εi) = aŷSI

b
i
+ δ, where a and b are the

model parameters, δ is the residuals term, ŷSI
and is the mean of the predicted forest AGB

for each group after stratification.
The population mean is as follows:

µFms =
1
N ∑N

i = 1 yFmsi
(4)

with the variance of µFms being

Var(µFms) = lT
UX̃UCov(α̂SI )X̃

T
UlU (5)

where lU is an N-length vector with each element being 1/N, and X̃U is a partial derivative
matrix of Fms with respect to the population U. When estimating the population mean and
variance for the two sub-regions, U and N are replaced by U1, N1 and U1, N2.
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2.3.4. Case B: The GHMB

In the case of GHMB, the forest AGB values estimated by sampling ALS data serve
as extended samples for the estimation of the full-coverage forest AGB [9]. Similarly to
Equation (1), the general form of the model for the first stage is as follows:

Fml : y = f (PSI , βSI ) + o, o ∼ N(0, Ω∗) (6)

where PSI is an n × p dimensional matrix of ALS features with respect to SI ; βSI is the
corresponding model parameter vector; and o is the random error following N(0, Ω).

The second model general form is as follows:

Gls : yFml
= f (X∗

SI I
, αSI I ) + v, v ∼ N(0, C) (7)

where yFml
is the predicted AGB estimated by the model Fml , X∗

SI I
is a k × g matrix of

wall-to-wall data features with respect to SI I ; αSI I is a vector of the corresponding model
parameters; and v is a vector of random error following N(0, C).

The uncertainty is calculated using the same method as Equation (2):

RMSE
(

ŷGlsi

)
=

√
X̃
∗T
i Cov(α̂SI I )X̃

∗
i + V(vi) (8)

X̃
∗
i =

∂Gls
(
α̂SI I , X∗

i
)

∂α̂SI I

(9)

where ŷGlsi
is the predicted AGB using Gls at the unit i; X̃

∗
i is a (g + 1)-length vector of partial

derivatives of the Gls model with respect to α̂SI I ; Cov(α̂SI I ) is the estimated covariance ma-
trix for α̂SI I ; V(vi) is the variance of random error vi at unit i, with the calculation approach

being identical to that of V(εi) and the model form being V(vi) = aŷ2
SI Ii

+ bŷSI Ii
+ c + δ2

with a, b, and c as corresponding parameters; and δ2 is the random error. According to
Saarela et al. [9], Cov(α̂SI I ) in the two-stage method can be expressed as follows:

Cov(α̂SI I ) = (X̃
∗T
SI I

C−1X̃
∗
SI I

)
−1

+ X̃
∗T
SI I

C−1Cov(yFmlSI I
)C−1X̃

∗
SI I

(X̃
∗T
SI I

C−1X̃
∗
SI I

)
−1

(10)

where X̃
∗
SI I

is the k × g matrix of partial derivatives of the model Fms based on dataset SI I

with respect to α̂SI I . Cov(yFmlSI I
) = P̃SI I Cov(β̂SI )P̃

T
SI I

, yFmlSI I
is the predicted AGB using

the Fml model with respect to SI I ; P̃SI I is the k × p matrix of partial derivatives of the model

Fml based on dataset SI I with respect to β̂SI ; Cov(β̂SI ) = (P̃
T
SI

Ω∗P̃SI )
−1

, with P̃SI being
the n × p matrix of partial derivatives of the model Fml based on dataset SI with respect
to β̂SI .

The population mean estimated by GHMB can be written as follows:

µGls =
1
N ∑N

i = 1 ŷGlsi
(11)

The corresponding variance of µGls is

Var(µGls) = lT
UX̃

∗
U [(X̃

∗T
SI I

C−1X̃
∗
SI I

)
−1

+ X̃
∗T
SI I

C−1Cov(yFmlSI I
)C−1X̃

∗
SI I

(X̃
∗T
SI I

C−1X̃
∗
SI I

)
−1

]X̃
∗T
U lU (12)

where X̃
∗
U is a partial derivative matrix of Gls with respect to the population U. When

estimating the population mean and variance for the two sub-regions, U and N are replaced
with U1, N1 and U2, N2.
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2.3.5. Case C: The RK-GHMB

Zhao et al. [27] proposed an improved GHMB model named RK-GHMB, which uses
an RK model in the second stage of GHMB, considering the spatial correlation of residual
errors. The general form of the first stage is identical to Equation (6). Assuming that
the residual, which cannot be predicted using the trend model of (1), is second-order
stationarity, the model for the second stage is as follows:

GR : ŷGls−RKi = ŷGlsi
+ Vkriging (13)

where ŷGls−RKi is the predicted AGB of the model GR, and Vkriging is the residual result
interpolated by ordinary kriging, which can be calculated as follows:

Vkriging =
k

∑
j = 1

djvj,
k

∑
j = 1

dj = 1 (14)

where dj is the kriging weight of the residual vj at the jth index; the total weights must add
up to one. The dj can be calculated as follows:

d = C∗−1 · cGlsi
(15)

cGlsi
=


Cov(vi, v1)

Cov(vi, v2)
...

Cov(vi, vk)

 (16)

where d is an m-length vector of dj kriging weights; C∗ is a k × k covariance ma-
trix of residuals for SI I , with its diagonal elements constituted by V(vi) and the off-
diagonal elements calculated using V(vi), V(vj), and the spatial correlation ρij; i.e.,

Cov(vi, vj) =
√

V(vi) · V(vj) · ρij. ρij is expressed as ρij = 1 − γ(dij)
C0+C1

, where γ(dij)

is a semi-variogram, and its form is either exponential, gaussian, spherical, or linear. C0

and C1 are the nugget and partial sill, respectively. cGlsi
is a k-length vector of covariance

for the unit map i.
Thus, the uncertainty of RK-GHMB can be written as follows:

RMSE(yGls−RKi ) =

√√√√√√√√√
(X̃

∗
i − X̃

∗T
SI I

C∗−1CGlsi
)

T{
(X̃

∗T
SI I

C∗−1X̃
∗
SI I

)
−1

+ X̃
∗T
SI I

C∗−1Cov(yFmlSI I
)C∗−1X̃

∗
SI I

(X̃
∗T
SI I

C∗−1X̃
∗
SI I

)
−1

}
(X̃

∗
i − X̃

∗T
SI I

C∗−1CGlsi
) + V(vi)− cT

Glsi
C∗−1cGlsi

(17)

The population mean estimated by RK-GHMB is

µGls−RKi =
1
N ∑N

i = 1 ŷGls−RKi
(18)

with the variance estimator as

Var(µGls−RKi ) =

lT
U

{
(X̃

∗
U − X̃

∗T
SI I

C∗−1cGlsU
){

(X̃
∗T
SI I

C∗−1X̃
∗
SI I

)
−1

+ X̃
∗T
SI I

C∗−1Cov(yFmlSI I
)C∗−1X̃

∗
SI I

(X̃
∗T
SI I

C∗−1X̃
∗
SI I

)
−1

}
(X̃

∗
U − X̃

∗T
SI I

C∗−1cGlsU
)

T
}

lU

(19)

where the parameters are the same as in Equation (12).
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2.3.6. Case D: The 3sGHMB

The 3sGHMB model includes three stages [8]. The general form of the first stage is
identical to the GHMB, and the form of the second stage is as follows:

Qlg : yFml
= f (ZSI I , ηSI I ) + e, e ∼ N(0, Σ) (20)

where ZSI I is a k × l dimension matrix of GEDI features with respect to SI I ; ηSI I is the
corresponding model parameter vector; and e is the random error following N(0, Σ). The
general form of the third stage can be written as follows:

Qgs : yGls
= f (X∗∗

SI I I
, αSI I I ) + θ, θ ∼ N(0, Λ) (21)

where X∗∗
SI I I

is an h × r dimension matrix of wall-to-wall features with respect to SI I I ; α̂SI I I

is the corresponding model parameter vector; and θ is the random error following N(0, Λ).
The estimation of uncertainty is analogous to Equation (8):

RMSE
(

yQgsi

)
=

√
X̃
∗∗T
i Cov

(
α̂SI I I

)
X̃
∗∗
i + V(θi) (22)

X̃
∗∗
i =

∂Q
(
α̂SI I I , X∗∗

i
)

∂α̂SI I I

(23)

where yQgsi
is the predicted AGB using Qgs at the map unit i; X̃

∗∗
i is a (r + 1)-length vector

of partial derivatives of the Qgs model with respect to α̂SI I I ; Cov(α̂SI I I ) is the estimated
covariance matrix for α̂SI I I ; V(θi) is the variance of random error θi at the map unit i, with

a calculation approach identical to that of V(εi) and the model form V(θi) = aŷSI I I

b
i
+ δ4

with a and b as corresponding parameters; and δ4 is the random error. Analogous to
Cov(α̂SI I ), Cov(α̂SI I I ) can be expressed as follows:

Cov(α̂SI I I ) = (X̃
∗∗T
SI I I

Λ−1X̃
∗∗
SI I I

)
−1

+ X̃
∗∗T
SI I I

Λ−1Cov(yQlgSI I I
)Λ−1X̃

∗∗
SI I I

(X̃
∗∗T
SI I I

Λ−1X̃
∗∗
SI I I

)
−1

(24)

where X̃
∗∗
SI I I

is an h × r matrix of partial derivatives of the model Qgs based on dataset SI I I

with respect to α̂SI I I . Λ is a diagonal matrix; each element is estimated using the model
form presented as V(θi). The covariance of yQlgSI I I

can be expressed using Z̃SI I I and η̂SI I ;

i.e., Cov(yQlgSI I I
) = Z̃SI I I Cov(η̂SI I )Z̃

T
SI I I

. Z̃SI I I is an h × r matrix of partial derivatives of

the model Qlg based on dataset SI I I with respect to η̂SI I . The covariance matrix of η̂SI I was
estimated as follows:

Cov(η̂SI I ) = (Z̃
T
SI I

Σ−1Z̃SI I )
−1

+ Z̃
T
SI I

Σ−1Cov(yFmlSI I
)Σ−1Z̃SI I (Z̃

T
SI I

Σ−1Z̃SI I )
−1

(25)

where Z̃SI I is a k × r matrix of partial derivatives of the model Qlg based on dataset SI I

with respect to η̂SI I ; the calculation method employed in Cov(yFmlSI I
) is consistent with

the approach utilized in Equation (10). By replacing Cov(yFmlSI I
) and Cov(η̂SI I ) with its

estimators, the covariance matrix estimator of α̂SI I I can be expressed as

Cov(α̂SI I I ) =

(X̃
∗∗T
SI I I

Λ−1X̃
∗∗
SI I I

)
−1

+

X̃
∗∗T
SI I I

Λ−1Z̃SI I I (Z̃
T
SI I

Σ−1Z̃SI I )
−1

Z̃
T
SI I I

Λ−1X̃SI I I (X̃
∗∗T
SI I I

Λ−1X̃
∗∗
SI I I

)
−1

+

X̃
∗∗T
SI I I

Λ−1Z̃SI I I Z̃
T
SI I

Σ−1ẐSI I (P̃
T
SI

ΩP̃SI )
−1

ẐT
SI I

Σ−1Z̃SI I

(Z̃
T
SI I

Σ−1Z̃SI I )
−1

Z̃
T
SI I I

Λ−1X̃
∗∗
SI I I

(X̃
∗∗T
SI I I

Λ−1X̃
∗∗
SI I I

)
−1

. (26)
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The population mean estimated by 3sGHMB is

µQgs =
1
N ∑N

i = 1 ŷQgs
(27)

with the variance estimator being

Var(µQgs) =

lT
UX̃

∗∗
U

{
(X̃

∗∗T
SI I I

Λ−1X̃
∗∗
SI I I

)
−1

+

X̃
∗∗T
SI I I

Λ−1Z̃SI I I (Z̃
T
SI I

Σ−1Z̃SI I )
−1

Z̃
T
SI I I

Λ−1X̃
∗∗
SI I I

(X̃
∗∗T
SI I I

Λ−1X̃
∗∗
SI I I

)
−1

+

X̃
∗∗T
SI I I

Λ−1Z̃SI I I Z̃
T
SI I

Σ−1ẐSI I (P̃
T
SI

ΩP̃SI )
−1

ẐT
SI I

Σ−1Z̃SI I

(Z̃
T
SI I

Σ−1Z̃SI I )
−1

Z̃
T
SI I I

Λ−1X̃
∗∗
SI I I

(X̃
∗∗T
SI I I

Λ−1X̃
∗∗
SI I I

)
−1

}
X̃
∗∗T
U lU

(28)

where X̃
∗∗
U is a partial derivative matrix of Qgs with respect for the population U.

2.3.7. Case E: The Proposed RK-3sGHMB

Similarly to Equation (13), we replaced the third general form Qgs as follows:

QR : yQgs−RKi = yQgsi
+ V∗

kriging (29)

where yQgsi
is the predicted AGB of the model Qgs, and V∗

kriging is the residual result
interpolated by ordinary kriging, which can be calculated as follows:

V∗
kriging =

h

∑
j = 1

wjθj,
h

∑
j = 1

wj = 1 (30)

where wj is the kriging weight of the residual θj at the jth index; the total weights must add
up to one. The wj can be calculated as follows:

w = Λ∗−1 · cQgsi
(31)

cQgsi
=


Cov(θi, θ1)

Cov(θi, θ2)
...

Cov(θi, θh)

 (32)

where w is an h-length vector of the wj kriging weights; Λ∗ is an h × h covariance
matrix of residuals for SI I I , with its diagonal elements constituted by V(θi), its off-
diagonal elements calculated using V(θi), V(θj), and the spatial correlation ρ∗ij; i.e.,

Cov(θi, θj) =
√

V(θi) · V(θj) · ρ∗ij. ρ∗ij is expressed as ρ∗ij = 1 − γ(wij)

C∗
0+C∗

1
, where γ(wij)

is a semi-variogram in which the form is determined in the same manner as in γ(dij). C∗
0

and C∗
1 are the nugget and partial sill, respectively. cQgsi

is an h-length vector of covariance
for the unit map i.

Thus, the uncertainty of RK-3sGHMB for the map unit i can be written as follows:
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RMSE(yQgs−RKi ) =

√√√√√√√√√√√√√√√√√

(X̃
∗∗
i − X̃

∗∗T
SI I I

Λ∗−1cQgsi
)

T

(X̃
∗∗T
SI I I

Λ∗−1X̃
∗∗
SI I I

)
−1

+

X̃
∗∗T
SI I I

Λ∗−1Z̃SI I I (Z̃
T
SI I

Σ−1Z̃SI I )
−1

Z̃
T
SI I I

Λ∗−1X̃SI I I (X̃
∗∗T
SI I I

Λ∗−1X̃
∗∗
SI I I

)
−1

+

X̃
∗∗T
SI I I

Λ∗−1Z̃SI I I Z̃
T
SI I

Σ−1ẐSI I (P̃
T
SI

ΩP̃SI )
−1

ẐT
SI I

Σ−1Z̃SI I

(Z̃
T
SI I

Σ−1Z̃SI I )
−1

Z̃
T
SI I I

Λ∗−1X̃
∗∗
SI I I

(X̃
∗∗T
SI I I

Λ∗−1X̃
∗∗
SI I I

)
−1


(X̃

∗∗
i − X̃

∗∗T
SI I I

Λ∗−1cQgsi
) + V(θi)− cT

Qgsi
Λ∗−1cQgsi

(33)

The population mean estimated by RK-3sGHMB can be expressed as

µQgs−RK =
1
N ∑N

i = 1 ŷQgs−RKi
(34)

with the variance estimator being

Var(µQgs−RKi ) =

lT
U

{
(X̃

∗∗
U − X̃

∗∗T
SI I I

Λ∗−1cQgsU
)

(X̃
∗∗T
SI I I

Λ∗−1X̃
∗∗
SI I I

)
−1

+

X̃
∗∗T
SI I I

Λ∗−1Z̃SI I I (Z̃
T
SI I

Σ−1Z̃SI I )
−1

Z̃
T
SI I I

Λ∗−1X̃SI I I (X̃
∗∗T
SI I I

Λ∗−1X̃
∗∗
SI I I

)
−1

+

X̃
∗∗T
SI I I

Λ∗−1Z̃SI I I Z̃
T
SI I

Σ−1ẐSI I (P̃
T
SI

ΩP̃SI )
−1

ẐT
SI I

Σ−1Z̃SI I

(Z̃
T
SI I

Σ−1Z̃SI I )
−1

Z̃
T
SI I I

Λ∗−1X̃
∗∗
SI I I

(X̃
∗∗T
SI I I

Λ∗−1X̃
∗∗
SI I I

)
−1


(X̃

∗∗
U − X̃

∗∗T
SI I I

Λ∗−1cQgsU
)

T
}

lU

(35)

where the parameters are the same as in Equation (28). If there is no spatial correlation in
the dataset SI I I , then cQgsi

and cQgsU
are approximately equal to the zero vector, and then

Equations (34) and (35) are approximately equal to Equations (22), (27) and (28).

2.3.8. Evaluation Criteria for Modeling and Up-Scaling

We selected the adjusted coefficient of determination (R2
adj), root mean square error

(RMSE), and estimation accuracy (EA) as the evaluation indicators for the model fitting.
The calculation formulas are given as (36), (37), (38), and (39).

R2 = 1 − ∑n
i = 1(yi − ŷi)

2

∑n
i = 1(yi − y)2 (36)

R2
adj = 1 −

(
1 − R2

) n − 1
n − 1 − P

(37)

RMSE =

√
∑n

i = 1(yi − ŷi)
2

n − 1
(38)

EA =

(
1 − RMSE

y

)
× 100% (39)

where yi represents the reference data; ŷi represents the predicted data; y refers to the mean
value of the reference data; and n is the number of reference data.

The precision of the population prediction for the five methods was evaluated using
standard error (SE) and estimation precision (P) indicators, as shown in
Formulas (40) and (41) [63].

SE =
√

V(µmodel) (40)
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P = (1 − t · SE
y

)× 100% (41)

where V(µmodel) is the variance estimation of mean value by model; t is a reliability indicator,
with a 95% confidence interval being t = 1.96.

3. Results
3.1. Feature Selection Results

Genetic algorithms were employed to perform feature selection for each model. To
prevent overfitting, each model’s feature selection was subjected to 5-fold and 10-fold
cross-validation, conducted 50 times. The optimal number of iterations and features for
the final genetic algorithm was determined by calculating the RMSE and R2 of the external
samples. For the model Fml , the optimal number of iterations was 46, with the optimal
features being Hvar, H98, and HCD (Figure 4a). For the model Fms, the optimal number of
iterations was 49, with the optimal features being PHV, DVIre1, EVI, and EVIre1 (Figure 4b).
For the model Qlg, the optimal number of iterations was 39, with the optimal features being
rh90, rh10, rh50, and cover (Figure 4c). For the model Gls, the optimal number of iterations
was 11, with the optimal features being KNDVIre1, PHV, EVI, EVIre1, and Vol (Figure 4d).
For the model Qgs, the optimal number of iterations was 20, with the optimal features being
PHV, Hlx, EVIre1, Vol, EVIre3, KNDVIre1, and PHH (Figure 4e).
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3.2. Model Fitting Results and Accuracy Evaluation

Independent samples were employed to validate each model. The results indicate that
models Fml and Qlg exhibit higher accuracy; both R2

adj values exceed 0.80, with estimation
accuracies close to 80%. This suggests that using ALS-based AGB and GEDI-based AGB
for multi-stage methods is feasible (Figure 5a,b). For the single-stage model using the CMB
method, the model R2

adj is 0.37, with an RMSE of 33.95 t/ha and an accuracy of 63.28%
(Figure 5c). In the case of multi-stage models, as the sample size increases, the precision
of the GHMB model is improved, with an R2

adj reaching 0.38, an RMSE of 33.72 t/ha, and
an accuracy reaching 63.53% (Figure 5d). However, the model accuracy of the 3sGHMB
method decreases, with an R2

adj dropping to 0.27, an RMSE of 36.58 t/ha, and an accuracy
of 60.43% (Figure 5f). The ratio of the nugget to the sill (C0/(C0 + C1)), which represents
the spatial dependence structure, is estimated for RK-GHMB and RK-3sGHMB. In general,
a ratio below 25% indicates a strong spatial dependence structure. A ratio between 25%
and 75% suggests a moderate spatial dependence structure, while a ratio exceeding 75%
implies a weak spatial dependence structure [32]. In this study, all the ratios are less than
75% (Table 4, Figure 6). The global Moran’s I of the two models is 0.20 and 0.40, with both
p-values being 2.2 e16, also indicating the presence of spatial autocorrelation effects. The
optimal residual variogram model forms for both models are exponential, with a range
of 2625.28 m and 16,069.84 m, respectively, which means that the RK model could have a
limited effect beyond these distances (Table 4). After considering spatial correlation, the
model accuracy improved. The R2

adj of the RK-GHMB method increased to 0.60, with an
RMSE reduction to 27.07 t/ha and an improvement in accuracy to 70.72% (Figure 5e). The
R2

adj of the RK-3sGHMB method increased to 0.55, with an RMSE reduction to 28.55 t/ha
and an accuracy improvement to 69.13% (Figure 5g). The fitting formulas for each model
are presented in Table 5.
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Table 4. Fitting accuracy of the semivariogram for RK-3sGHMB and RK-GHMB.

Residual
Source

Fitting
Method Nugget (C0/C*

0) Partial Sill (C1/C*
1) Range (m) Ratio (%) R2

adj RMSE (t/ha) EA (%)

RK-
3sGHMB

Exponential 328.35 525.55 16,069.84 38.45 0.55 28.55 69.13
Spherical 414.00 420.82 7109.70 49.59 0.49 30.67 66.83
Gaussian 516.99 302.11 10,615.19 63.12 0.48 30.70 66.79

Linear 747.71 747.71 / / 0.38 38.22 58.7

RK-GHMB

Exponential 120.02 539.06 2625.28 18.21 0.60 27.07 70.72
Spherical 338.20 533.07 2019.45 38.82 0.53 29.21 68.41
Gaussian 380.09 533.08 2288.70 41.62 0.41 32.84 64.48

Linear 610.96 610.96 / / 0.41 32.85 64.47
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fitting using RK-GHMB (a) and RK-3sGHMB (b).

Table 5. Fitted forms for models Fms, Fml , Gls, Qlg, and Qgs.

Model Model Formula R2
adj RMSE (t/ha) EA(%)

Fms 201.09464/(1 + exp(−0.70266 × EVI−0.09913 × PHV+
21.18109 × DVIre1−0.14215 × EVIre1−9.69895))

0.37 33.95 63.28

Fml
299.30254/(1 + exp(−0.074878 × Hvar + 0.026074 × H98
−0.006368 × CD + 1.947972))

0.80 19.20 79.24

Gls
189.4068/(1 + exp(−29.7195 × EVI − 0.1698 × PHV + 30.0420×
KNDVIre1 + 41.6752 × Vol + 18.6999 × EVIre1 + 17.9654))

0.38 33.72 63.53

Qlg
288.317726/(1 + exp(−0.094833 × rh90−0.046170 × rh50+
0.059449 × rh10 + 0.003274 × Cover + 3.446146))

0.81 15.84 83.78

Qgs
199.54404/(1 + exp(20.57206 × Hlx − 9.80876 × EVIre3+
7.25995 × KNDVIre1 + 4.68176 × EVIre1 − 0.18229 × PHV
−0.08263 × PHH + 0.02713 × Vol + 5.37781))

0.27 36.58 60.43

3.3. Model Estimation and Uncertainty Analysis

We estimated the uncertainty at the pixel level using the five inferences; the spatial
distribution is shown in Figure 7a–e. It can be seen that the uncertainty range of the CMB is
2–48.3 t/ha. The uncertainty of the forest AGB low-value area from CMB is lower than that
of other models, while the uncertainty in high-value areas is larger. The uncertainty range
of the GHMB is 10–32.22 t/ha, and that of the 3sGHMB model is 26.09–41.40 t/ha. The
uncertainty of the RK-GHMB and RK-3sGHM, which, when considering spatial correlation,
ranges from 0.61 to 32.69 t/ha and from 18.06 to 38.63 t/ha, respectively. Their uncertainty
is significantly lower than that of GHMB and 3sGHMB, especially in areas near the samples;
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the uncertainty of RK-3sGHMB is the smallest, but the uncertainty in the low-value area is
larger (Figure 7f).
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From the population mean estimation results and uncertainty, it can be seen that the
precision of the multi-stage method is superior to that of single-stage inference, considering
that the spatial correlation of the multi-stage method shows better accuracy than that of the
original models. Among the models, the precision of the population mean by RK-3sGHMB
is the highest, with the precision of the Upper Yangge and Tidal Slag Forest Farms reaching
93.48% and 95.39%, respectively, with the combined population accuracy of the two farms
being 94.44% (Table 6).
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Table 6. The population results and uncertainties for regions.

Region Methods Population
Mean (t/ha)

Variance in the
Population Mean (t/ha) SE (t/ha) p (%)

Upper Yangge
Qi Forest Farm

CMB 80.43 30.27 5.50 86.60
GHMB 83.63 19.43 4.41 89.67

RK-GHMB 81.50 9.99 3.16 92.40
3sGHMB 84.20 29.33 5.42 87.39

RK-3sGHMB 79.16 6.94 2.63 93.48

Tidal Slag
Forest Farm

CMB 98.66 28.98 5.38 89.31
GHMB 102.75 17.20 4.15 92.09

RK-GHMB 100.79 8.77 2.96 94.24
3sGHMB 101.07 24.35 4.93 90.43

RK-3sGHMB 103.72 5.96 2.44 95.39

Total

CMB 89.55 29.63 5.44 87.96
GHMB 93.19 18.32 4.28 90.88

RK-GHMB 91.15 9.38 3.06 93.32
3sGHMB 92.64 26.84 5.18 88.91

RK-3sGHMB 91.44 6.45 2.54 94.44

4. Discussion
The results of this study indicate that although multi-stage inferences are trained with

a larger number of samples in the second or third modeling stage, only the accuracy of
GHMB is improved, while the accuracy of 3sGHMB is lower than that of CMB (Figure 5).
The primary reason for this may be related to the propagation of errors. Although two-stage
inference also experiences error propagation, the features of ALS are strongly correlated
with plot AGB. By utilizing ALS features to build a model to plot AGB, to predict the
corresponding AGB at other locations in the sampled ALS strips, we thereby expanded
the sample size for the second stage of modeling, while keeping the expanded samples
more uniformly distributed in space and more representative of the population. The errors
introduced by error propagation can be compensated for by the increased number of units
in the expanded samples; hence, the model accuracy is still improved, which is consistent
with the conclusions of existing research [14]. In the case of three-stage inference that does
not consider spatial relationships, the final model is affected by the error propagation from
the first two models. Whether this is the cause of the reduced model accuracy requires
further investigation.

For population mean estimation, as the AGB sample size used in modeling increases,
the representativeness of the sample improves, leading to higher precision and more
stable estimation results for the population (Figure 8), which is consistent with existing
research [14,17,64,65]. It is important to highlight that all the samples are obtained through
random sampling, as shown in Figure 8. For two-stage and three-stage inferences, the
change in sample quantity pertains exclusively to the final stage [33]. Concurrently, when
estimating models in the other stages, all available samples are utilized to ensure optimal
model accuracy [14]. Models that account for spatial correlation exhibit higher accuracy
(Table 6, Figure 8), which is closely related to the sample size employed in modeling.
Specifically, when the sample size is less than approximately 489, methods that consider
spatial relationships demonstrate a comparable accuracy in population mean estimation
to those that do not account for spatial correlation. In contrast, when the sample size
exceeds approximately 489, the accuracy of models incorporating spatial relationships
gradually improves with the increasing sample size. This trend is attributed to the inherent
characteristics of geostatistical methods [66]. Under identical sample size conditions, the
CMB has a lower population estimation uncertainty than other inferences; this is due to
the error propagation in multi-stage models [17]. In this study, the sample size used for
the CMB model was only 103, and the curve for CMB model variation and sample size
only reached 103. However, Saarela et al. [67] also showed that under the same sample size
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conditions, the uncertainty of the CMB is less than that of multi-stage inferences. When the
sample size is less than approximately 2998, the precision of population estimation results
of two-stage inference (GHMB and RK-GHMB) is always better than that of three-stage
inferences (3sGHMB and RK-3sGHMB). When the sample size exceeds approximately 2998,
as the sample size increases, the estimation results for RK-3sGHMB begin to surpass those
of GHMB but remain lower than those of RK-GHMB. When the sample size exceeds a
certain value, the RK-3sGHMB model estimation results are optimal among all methods,
which is also the reason why the precision of RK-3sGHMB for population estimation is
the highest in this study, indicating that geostatistical methods can effectively improve
model estimation accuracy. Although the accuracy of the 3sGHMB model is lower than
that of CMB, when the sample size exceeds approximately 1000, the population estimation
precision is better than that of the CMB model with only 103 samples, but it can never
compare with GHMB, RK-GHMB, and RK-3sGHMB.
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Based on the aforementioned analysis, we can categorize the application scenarios
for inferences in this study as follows. (1) The integration of limited sample plots into
comprehensive wall-to-wall data, including, but not limited to, ALS data, optical imagery,
and SAR data, as exemplified in Case A, represents a widely adopted framework for AGB
estimation. This framework is particularly well suited to CMB. However, the costs asso-
ciated with field plot surveys are substantial, which can represent a significant barrier to
implementation. In an ideal scenario without budgetary constraints, wall-to-wall ALS
data would be the optimal choice due to their high accuracy and detailed information.
Nonetheless, obtaining full-coverage ALS data over extensive areas is often impractical
due to logistical and financial limitations. (2) For smaller study areas (counties, townships,
forest farms, etc.), the strategic sampling of ALS data (collected by flying over some strips
or blocks in the study area) can reduce the sample size of field plot data required. Utilizing
sampled ALS data to estimate target variables can expand the sample size, potentially re-
ducing the cost associated with field plot acquisition and enhancing the representativeness
of the samples, particularly for regions that are inaccessible to humans. This framework
is amenable to both GHMB and RK-GHMB. It is imperative to note that the RK-GHMB
method can only manifest its advantages when there is an adequate number of ALS data
to expand the modeling samples in the second stage. Furthermore, if actual AGB data at
the satellite waveform LiDAR footprint locations can be procured, then the ALS data used
for sample modeling could be substituted with more cost-effective satellite LiDAR data,



Remote Sens. 2025, 17, 671 21 of 24

such as GEDI, ICESat-2, TECIS, and GF-7. However, obtaining actual values for footprint
locations in practice remains challenging. (3) In the context of larger study areas (such
as at the national, provincial, or municipal level) and with budgetary constraints on ALS
data acquisition, employing a limited number of field plots in conjunction with partial
sampling ALS data linking the field plots to satellite footprints to augment sample size can
improve the uniformity and representativeness of sample distribution. In such scenarios,
the RK-3sGHMB exhibits certain advantages.

The results of this study demonstrate that RK-3sGHMB can improve the estimation
accuracy of model fitting and the precision of population prediction and can enhance the
rationality of the uncertainty estimation results; however, geostatistical methods were only
applied in the final stage. Given that the second-stage model also exhibits spatial correlation,
future research will explore a three-stage inference estimation approach that accounts for
spatial correlation in both the second and third stages. However, the derivation of the
uncertainty estimation formula for the second stage using the RK model is too complex and
challenging to implement. The spatial filtering estimation method for feature vectors could
serve as a primary direction for future research [68,69]. This method has the potential to
reduce the model formula complexity and improve the operational efficiency of the model.

5. Conclusions
In the present study, we successfully implemented a three-stage forest AGB estimation

method, RK-3sGHMB, by integrating RK into the third stage of 3sGHMB, and conducted a
comparative analysis with the CMB, GHMB, RK-GHMB, and 3sGHMB methods, leading
to the following conclusions. (1) When the sample data show no spatial correlation or
the model estimation does not take spatial correlation into account, multi-stage inference
does not demonstrate a distinct advantage, yielding a lower estimation accuracy under
equivalent sample size conditions compared with single-stage inference. (2) The integration
of geostatistical methods can significantly enhance the model accuracy, which is correlated
with the number of samples. As the sample size in the last stage increases, the precision of
the estimation results consistently improves. With an adequate number of GEDI samples,
the RK-3sGHMB model proposed in this study exhibits superior population estimation
precision compared to other models, offering certain advantages in the estimation of forest
resource parameters across broader areas.
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