Deformation Mechanisms and Rainfall Lag Effects of Deep-Seated Ancient Landslides in High-Mountain Regions: A Case Study of the Zhongxinrong Landslide, Upper Jinsha River
Abstract
:1. Introduction
2. Study Area
2.1. Geological Background
2.2. Development Characteristics of Zhongxinrong Landslide
3. Research Methods and Data
3.1. Remote Sensing Interpretation and Field Survey
3.2. UAV LiDAR Surveying
3.3. Landslide Surface Deformation Monitoring Based on SBAS-InSAR
3.3.1. SAR Data and Sources
3.3.2. SBAS-InSAR Surface Deformation Monitoring Method
4. Results Analysis
4.1. Development Characteristics of the Zhongxinrong Landslide
4.1.1. Planar Morphological Characteristics
- (1)
- Initiation zone (I)
- (2)
- Accumulation zone (II)
4.1.2. Spatial Development Characteristics
4.2. Surface Deformation Characteristics of Zhongxinrong Landslide
4.2.1. Overall Deformation Characteristics
- (1)
- Deformation Characteristics of Accumulation Body II-1:
- (2)
- Deformation Characteristics of Accumulation body II-2:
4.2.2. Time-Series Deformation Characteristics
5. Discussion
5.1. Discussion on the Mechanism of Rainfall Lag in Large Deep-Seated Slow-Moving Landslides
5.2. Partitioned Deformation Mechanisms of Large Ancient Landslides Under Multi-Factor Influences
- (1)
- Complex regional tectonic activities provide substantial internal driving forces for landslide formation.
- (2)
- Instability in the landslide source area occurs due to the combined effects of internal and external forces.
- (3)
- Earthquakes, rainfall, surface weathering, and river erosion lead to slope sliding, blockage, and river diversion in the source area.
- (4)
- Human engineering activities, such as road construction and settlement development, combined with rainfall infiltration, exacerbate deformation in high-elevation areas, increasing the risk of instability and sliding.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dramis, F.; Sorriso-Valvo, M. Deep-seated gravitational slope deformations, related landslides and tectonics. Eng. Geol. 1994, 38, 231–243. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.; Zanchi, A. Structural constraints on deep-seated slope deformation kinematics. Eng. Geol. 2001, 59, 83–102. [Google Scholar] [CrossRef]
- Eker, R.; Aydın, A. Long-term retrospective investigation of a large, deep-seated, and slow-moving landslide using InSAR time series, historical aerial photographs, and UAV data: The case of Devrek landslide (NW Turkey). Catena 2021, 196, 104895. [Google Scholar] [CrossRef]
- Cui, Y.L.; Bao, P.P.; Xu, C.; Fu, G.; Jiao, Q.S.; Luo, Y.; Shen, L.L.; Xu, F.L.; Lyu, Y.J.; Hu, X.H.; et al. A big landslide on the Jinsha River, Tibet, China: Geometric characteristics, causes, and future stability. Nat. Hazards 2020, 104, 2051–2070. [Google Scholar] [CrossRef]
- Fan, X.M.; Yang, F.; Siva Subramanian, S.; Xu, Q.; Feng, Z.T.; Mavrouli, O.; Peng, M.; Ouyang, C.J.; Jansen, J.D.; Huang, R.Q. Prediction of a multi-hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China. Landslides 2020, 17, 147–164. [Google Scholar] [CrossRef]
- Wang, X.M.; Diao, M.P.; Guo, H.N.; Wang, L.Z.; Guo, H.X.; Li, D.D. Landslide deformation prediction and automatic warning by coupling machine learning and physical models. Earth Space Sci. 2024, 11, e2023EA003238. [Google Scholar] [CrossRef]
- Guo, C.B.; Zhang, Y.S.; Li, X.; Ren, S.S.; Yang, Z.H.; Wu, R.A.; Jin, J.J. Reactivation of giant Jiangdingya ancient landslide in Zhouqu county, Gansu province, China. Landslides 2020, 17, 179–190. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, Z.; Zhao, C.Y.; Xu, Y.K.; Kim, J.W. Inferring slip-surface geometry and volume of creeping landslides based on InSAR: A case study in Jinsha River basin. Remote Sens. Environ. 2023, 294, 113620. [Google Scholar] [CrossRef]
- Vařilová, Z.; Kropáček, J.; Zvelebil, J.; Šťastný, M.; Vilímek, V. Reactivation of mass movements in Dessie graben, the example of an active landslide area in the Ethiopian Highlands. Landslides 2015, 12, 985–996. [Google Scholar] [CrossRef]
- Gao, Z.L.; Xie, M.L.; Ju, N.P.; Huang, X.C.; Peng, T.; He, C.Y. Multi-source Remote Sensing Dynamic Deformation Monitoring of Accumulation Landslide. Geomat. Inf. Sci. Wuhan Univ. 2024, 49, 1482–1491. [Google Scholar] [CrossRef]
- Achache, J.; Fruneau, B.; Delacourt, C. Applicability of SAR interferometry for monitoring of landslides. Ers Appl. 1996, 383, 165. [Google Scholar]
- Jin, B.J.; Zeng, T.R.; Yin, K.L.; Gui, L.; Guo, Z.Z.; Wang, T.F. Dynamic landslide susceptibility mapping based on the PS-InSAR deformation intensity. Environ. Sci. Pollut. Res. 2024, 31, 7872–7888. [Google Scholar] [CrossRef]
- Zhang, L.L.; Dai, K.R.; Deng, J.; Ge, D.Q.; Liang, R.B.; Li, W.L.; Xu, Q. Identifying potential landslides by stacking-InSAR in southwestern China and its performance comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Chen, J.; Dai, F.C.; Lv, T.Y.; Cui, Z.J. Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages. Quat. Int. 2013, 298, 107–113. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Du, X.S.; Zhu, S.; Li, L.Y.; Sun, D.Y. Recent movement changes of main fault zones in the Sichuan-Yunnan region and their relevance to seismic activity. Sci. China Earth Sci. 2016, 59, 1267–1282. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide types and processes. Landslides Eng. Pract. 1958, 24, 20–47. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Xu, D.D.; Wang, H.B.; Xu, W.X.; Luan, Z.Q.; Xu, X. LiDAR applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives. Forests 2021, 12, 550. [Google Scholar] [CrossRef]
- Beland, M.; Parker, G.; Sparrow, B.; Harding, D.; Chasmer, L.; Phinn, S.; Antonarakis, A.; Strahler, A. On promoting the use of lidar systems in forest ecosystem research. For. Ecol. Manag. 2019, 450, 117484. [Google Scholar] [CrossRef]
- Sutinen, R.; Hyvönen, E.; Kukkonen, I. LiDAR detection of paleolandslides in the vicinity of the Suasselkä postglacial fault, Finnish Lapland. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 91–99. [Google Scholar] [CrossRef]
- Cai, J.H.; Zhang, L.; Dong, J.; Dong, X.J.; Li, M.H.; Xu, Q.; Liao, M.S. Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM. Eng. Geol. 2022, 305, 106730. [Google Scholar] [CrossRef]
- Yao, J.; Yao, X.; Liu, X. Landslide detection and mapping based on SBAS-InSAR and PS-InSAR: A case study in Gongjue County, Tibet, China. Remote Sens. 2022, 14, 4728. [Google Scholar] [CrossRef]
- Fruneau, B.; Achache, J.; Delacourt, C. Observation and modelling of the Saint-Etienne-de-Tinée landslide using SAR interferometry. Tectonophysics 1996, 265, 181–190. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite multi temporal interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Tsokas, A.; Rysz, M.; Pardalos, P.M.; Dipple, K. SAR data applications in earth observation: An overview. Expert Syst. Appl. 2022, 205, 117342. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi Stefanelli, C.; Agostini, A.; Catani, F. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; US Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- Cruden, D. (Ed.) Landslide Risk Assessment; Routledge: London, UK, 2018. [Google Scholar]
- Wang, F.W.; Zhang, Y.M.; Huo, Z.T.; Peng, X.M.; Araiba, K.; Wang, G.H. Movement of the Shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China. Landslides 2008, 5, 321–329. [Google Scholar] [CrossRef]
- Hilley, G.E.; Bürgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 2004, 304, 1952–1955. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, Z.; Zhao, C.Y.; Qu, W. InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California. Remote Sens. Environ. 2021, 258, 112400. [Google Scholar] [CrossRef]
- Hong, Y.; Hiura, H.; Shino, K.; Sassa, K.; Suemine, A.; Fukuoka, H.; Wang, G.H. The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides 2005, 2, 97–105. [Google Scholar] [CrossRef]
- Huang, X.H.; Wang, L.; Ye, R.Q.; Yi, W.; Huang, H.F.; Guo, F.; Huang, G.L. Study on deformation characteristics and mechanism of reactivated ancient landslides induced by engineering excavation and rainfall in Three Gorges Reservoir area. Nat. Hazards 2022, 110, 1621–1647. [Google Scholar] [CrossRef]
- Bogaard, T.A.; van Asch, T.W.J. The role of the soil moisture balance in the unsaturated zone on movement and stability of the Beline landslide, France. Earth Surf. Process. Landf. 2002, 27, 1177–1188. [Google Scholar] [CrossRef]
- Cui, Y.L.; Deng, J.H.; Dai, F.C.; Lee, C.F.; Fu, W.J. Causes analysis of ancient landslides based on the landscape and kinematical characteristics. J. Sichuan Univ. 2015, 47, 68–75. [Google Scholar]
- Huang, Q.X.; Wang, J.L.; Xue, X. Interpreting the influence of rainfall and reservoir infilling on a landslide. Landslides 2016, 13, 1139–1149. [Google Scholar] [CrossRef]
- Li, Z.R.; Wei, S.L.J.; Wu, K.; Sha, Y.L.; Zhang, X.; Li, D.L.; Xin, R.F.; Guan, P. Study on Temporal and Spatial Distribution of Landslides in the Upper Reaches of the Yellow River. Appl. Sci. 2024, 14, 5488. [Google Scholar] [CrossRef]
Parameters | Sentinel-1A |
---|---|
Direction | Descending |
Path | 33 |
Frame | 492, 497 |
Band | C |
Radar wavelength(cm) | 5.6 |
Incident angle (°) | 38.71 |
Image interval (days) | 12 |
Time | 3 November 2014 to 8 October 2023 |
Number of images | 222 |
Landslide | Planar Morphology | Rear Edge Elevation/m | Elevation Difference/m | Area/m2 | Thickness/m | Volume/m3 |
---|---|---|---|---|---|---|
L01 | Irregular | 2766 | 87 | 104 | 10 | 105 |
L02 | Tongue | 2824 | 132 | 104 | 12 | 106 |
L03 | Irregular | 2760 | 47 | 104 | 10 | 105 |
L04 | Irregular | 2904 | 142 | 105 | 24 | 106 |
L05 | Irregular | 2781 | 40 | 104 | 8 | 104 |
L06 | Tongue | 2987 | 206 | 105 | 21 | 106 |
L07 | Tongue | 3024 | 197 | 104 | 14 | 105 |
L08 | Tongue | 2871 | 39 | 103 | 5 | 104 |
L09 | Tongue | 2949 | 95 | 103 | 7 | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Guo, C.; Chen, W.; Wei, P.; Jin, F.; Yan, Y.; Liu, G. Deformation Mechanisms and Rainfall Lag Effects of Deep-Seated Ancient Landslides in High-Mountain Regions: A Case Study of the Zhongxinrong Landslide, Upper Jinsha River. Remote Sens. 2025, 17, 687. https://doi.org/10.3390/rs17040687
Li X, Guo C, Chen W, Wei P, Jin F, Yan Y, Liu G. Deformation Mechanisms and Rainfall Lag Effects of Deep-Seated Ancient Landslides in High-Mountain Regions: A Case Study of the Zhongxinrong Landslide, Upper Jinsha River. Remote Sensing. 2025; 17(4):687. https://doi.org/10.3390/rs17040687
Chicago/Turabian StyleLi, Xue, Changbao Guo, Wenkai Chen, Peng Wei, Feng Jin, Yiqiu Yan, and Gui Liu. 2025. "Deformation Mechanisms and Rainfall Lag Effects of Deep-Seated Ancient Landslides in High-Mountain Regions: A Case Study of the Zhongxinrong Landslide, Upper Jinsha River" Remote Sensing 17, no. 4: 687. https://doi.org/10.3390/rs17040687
APA StyleLi, X., Guo, C., Chen, W., Wei, P., Jin, F., Yan, Y., & Liu, G. (2025). Deformation Mechanisms and Rainfall Lag Effects of Deep-Seated Ancient Landslides in High-Mountain Regions: A Case Study of the Zhongxinrong Landslide, Upper Jinsha River. Remote Sensing, 17(4), 687. https://doi.org/10.3390/rs17040687