A Satellite Full-Waveform Laser Decomposition Method for Forested Areas Based on Hidden Peak Detection and Adaptive Genetic Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Satellite Information
2.3. Real Validation Data
2.4. Research Methods
2.4.1. Full-Waveform Data Preprocessing
2.4.2. Hidden Peak Recognition
2.4.3. Initial Parameter Preliminary Optimization
2.4.4. Optimal Fit
2.4.5. Evaluation Indicators
3. Results
3.1. Waveform Decomposition Results and Accuracy Evaluation
3.2. Evaluation of Tree Height Extraction Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schimel, D.; Pavlick, R.; Fisher, J.B.; Asner, G.P.; Saatchi, S.; Townsend, P.; Miller, C.; Frankenberg, C.; Hibbard, K.; Cox, P. Observing terrestrial ecosystems and the carbon cycle from space. GCB 2015, 21, 1762–1776. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Guo, Q.; Li, C.; Wang, Z.; Fang, J. Global patterns and determinants of forest canopy height. Ecology 2016, 97, 3265–3270. [Google Scholar] [CrossRef] [PubMed]
- Malambo, L.; Popescu, S.C. Assessing the agreement of ICESat-2 terrain and canopy height with airborne lidar over US ecozones. Remote Sens. Environ. 2021, 266, 112711. [Google Scholar] [CrossRef]
- Salas, E.A.L. Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: A comprehensive review. Geo-Spat. Inf. Sci. 2021, 24, 23. [Google Scholar] [CrossRef]
- Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote. Sens. 2006, 60, 100–112. [Google Scholar] [CrossRef]
- Hilbert, C.; Schmullius, C. Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape. Remote Sens. 2012, 4, 2210–2235. [Google Scholar] [CrossRef]
- Chen, Q. Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne lidar data. ISPRS J. Photogramm. Remote. Sens. 2010, 65, 111–122. [Google Scholar] [CrossRef]
- Qin, R.; Tian, J.; Reinartz, P. 3D change detection—Approaches and applications. ISPRS J. Photogramm. Remote. Sens. 2016, 122, 41–56. [Google Scholar] [CrossRef]
- Shi, J.; Menenti, M.; Lindenbergh, R. Parameterization of Surface Roughness Based on ICESat/GLAS Full Waveforms: A Case Study on the Tibetan Plateau. J. Hydrometeorol. 2013, 14, 1278–1292. [Google Scholar] [CrossRef]
- Pan, Z.; Glennie, C.; Hartzell, P.; Fernandez-Diaz, J.C.; Legleiter, C.; Overstreet, B. Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry. Remote Sens. 2015, 7, 5133–5159. [Google Scholar] [CrossRef]
- Kristina, K.; Bernhard, H. Full-Waveform Airborne Laser Scanning in Vegetation Studies—A Review of Point Cloud and Waveform Features for Tree Species Classification. Forests 2016, 7, 198. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Shabanov, N.V.; Knyazikhin, Y.; Davis, A.B.; Dubayah, R.; Myneni, R.B. Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure. J. Geophys. Res. Atmos. 2003, 108(D15), 4484. [Google Scholar] [CrossRef]
- Hovi, A.; Korpela, I. Real and simulated waveform-recording LiDAR data in juvenile boreal forest vegetation. Remote Sens. Environ. 2014, 140, 665–678. [Google Scholar] [CrossRef]
- Shan, J.; Tian, X.; Li, S.; Li, R. Advances of spaceborne laser altimetry technology. Acta Geod. Cartogr. Sin. 2022, 51, 964. [Google Scholar] [CrossRef]
- Mallet, C.; Bretar, F. Full-waveform topographic lidar: State-of-the-art. ISPRS J. Photogramm. Remote. Sens. 2009, 64, 1–16. [Google Scholar] [CrossRef]
- Wu, J.; Van Aardt, J.A.N.; Asner, G.P. A Comparison of Signal Deconvolution Algorithms Based on Small-Footprint LiDAR Waveform Simulation. IEEE Trans. Geosci. Remote. Sens. 2011, 49, 2402–2414. [Google Scholar] [CrossRef]
- Hofton, M.A.; Minster, J.B.; Blair, J.B. Decomposition of Laser Altimeter Waveforms. IEEE Trans. Geosci. Remote. Sens. 2000, 38, 1989–1996. [Google Scholar] [CrossRef]
- Jutzi, B.; Stilla, U. Range determination with waveform recording laser systems using a Wiener Filter. ISPRS J. Photogramm. Remote. Sens. 2007, 61, 95–107. [Google Scholar] [CrossRef]
- Neuenschwander, A.L. Evaluation of waveform deconvolution and decomposition retrieval algorithms for ICESat/GLAS data. Can. J. Remote Sens. 2008, 34 (Suppl. S2), S240–S246. [Google Scholar] [CrossRef]
- Reitberger, J.; Krzystek, P.; Stilla, U. Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int. J. Remote Sens. 2008, 29, 1407–1431. [Google Scholar] [CrossRef]
- Chauve, A.; Mallet, C.; Bretar, F.; Durrieu, S.; Deseilligny, M.P.; Puech, W. Processing Full-Waveform Lidar Data: Modelling Raw Signals. ISPRS Arch. 2008, 36 Pt 3, 102–107. [Google Scholar]
- Zhao, Q.; Li, H.; Li, Y. Gaussian Mixture Model with Variable Components for Full Waveform LiDAR Data Decomposition and RJMCMC Algorithm. Acta Geod. Cartogr. Sin. 2015, 44, 1367–1377. [Google Scholar] [CrossRef]
- Wang, B.; Song, S.; Gong, W.; Chen, Z.; Lin, X.; Cheng, X.; Li, F.; Shi, S. Optimization Decomposition Method of Full-waveform LiDAR. Acta Geod. Cartogr. Sin. 2017, 46, 1859–1867. [Google Scholar] [CrossRef]
- Xie, J.; Yang, C.; Mei, Y.; Han, B. Full waveform decomposition of spaceborne laser based on genetic algorithm. Infrared Laser Eng. 2020, 49, 20200245. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Bailly, J.-S.; Barbier, N.; Gond, V.; Hajj, M.E.; Fabre, F.; Bourgine, B. Canopy Height Estimation in French Guiana with LiDAR ICESat/GLAS Data Using Principal Component Analysis and Random Forest Regressions. Remote Sens. 2014, 6, 11883–11914. [Google Scholar] [CrossRef]
- Azadbakht, M.; Fraser, C.S.; Khoshelham, K. A Sparsity-Based Regularization Approach for Deconvolution of Full-Waveform Airborne Lidar Data. Remote Sens. 2016, 8, 648. [Google Scholar] [CrossRef]
- Xu, X.; Qu, Q.; Zhang, H.; Wang, J.; Wu, J.; Ran, Y.; Tan, Z. Polarized laser target detection system for smoky environment based on full-waveform decomposition and multiscale convolutional neural networks with attention. ISPRS J. Photogramm. Remote Sens. 2023, 199, 214–225. [Google Scholar] [CrossRef]
- Li, P.; Xu, Q.; Xing, S.; Liu, Z.; Geng, X.; Hou, X.; Zhang, J. Full-waveform LiDAR data decomposition method based on global convergent LM. Infrared Laser Eng. 2015, 44, 2262–2267. [Google Scholar]
- Liang, M.; Wang, R.; Li, G. Study of Decomposition Based on Full-waveform Lidar Data. Geomat. World 2016, 23, 51–54. [Google Scholar]
- Kuang, H.; Jin, J.; Su, Y. Improving crossover and mutation for adaptive genetic algorithm. Comput. Eng. Appl. 2006, 12, 93–96. [Google Scholar]
- Wu, Y.; Liu, J.; Ge, H.Y. Comparison of Total Least Squares and Least Squares for Four- and Seven-parameter Model Coordinate Transformation. J. Appl. Geod. 2016, 10, 259–266. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Qin, Y.; Vu, T.T.; Ban, Y. Toward an optimal algorithm for LiDAR waveform decomposition. IEEE Geosci. Remote. Sens. Lett. 2011, 9, 482–486. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, W.; Zhang, L.; Wang, S. Decomposition of small-footprint full waveform LiDAR data based on generalized Gaussian model and grouping LM optimization. Meas. Sci. Technol. 2017, 28, 045203. [Google Scholar] [CrossRef]
- Dong, L. Based on Multi-Source Remote Sensing Data of the Three Gorges Reservoir Area of Forest Canopy Height and Biomass Estimation Method Research. Ph.D. Thesis, Institute of Remote Sensing Applications Chinese Academy of Sciences, Beijing, China, 2008. [Google Scholar]
- Pang, Y.; Li, Z.; Chen, E.; Sun, G. Lidar Remote Sensing Technology and Its Application in Forestry. Sci. Silvae Sin. 2005, 41, 129–136. [Google Scholar] [CrossRef]
- Harding, D.J.; Lefsky, M.A.; Parker, G.G.; Blair, J. Laser altimeter canopy height profiles: Methods and validation for closed-canopy, broadleaf forests. Remote Sens. Environ. 2001, 76, 283–297. [Google Scholar] [CrossRef]
- Hancock, S.; Armston, J.; Li, Z.; Gaulton, R.; Lewis, P.; Disney, M.; Danson, F.M.; Strahler, A.; Schaaf, C.; Anderson, K.; et al. Waveform lidar over vegetation: An evaluation of inversion methods for estimating return energy. Remote Sens. Environ. 2015, 164, 208–224. [Google Scholar] [CrossRef]
Index | Design Value |
---|---|
Laser beams | 5 |
Laser repetition rate | 40 Hz |
Laser operation wavelength | 1064 nm |
Laser waveform frequency | 1.2 GHz |
Number of bits of laser emission and echo quantization | 12 bit |
Camera resolution of optical axis monitoring | ≤8 m |
Number of bits quantized by camera in optical axis monitors | 12 bit |
“Goumang” Satellite/L2 | Data Acquisition Time |
---|---|
CM1_CASAL_A1_20220814_0000000155_L20000234185.h5 | 20220814 |
CM1_CASAL_A1_20220902_0000000443_L20000234183.h5 | 20220902 |
CM1_CASAL_A1_20220902_0000000443_L20000234184.h5 | 20220902 |
CM1_CASAL_A1_20220907_0000000520_L20000234190.h5 | 20220907 |
CM1_CASAL_A1_20221002_0000000906_L20000234188.h5 | 20221002 |
Parameter | Value |
---|---|
Wavelength | 1550 nm |
Pulse Divergence Angle | 0.25 mrad |
Transmit Pulse Width | 3 ns |
Scanning Angle Range | ±37.5° |
Maximum Re-Frequency | 2000 kHz |
Minimum Re-Frequency | 150 kHz |
Maximum Scan Rate | 300 lines/s |
Point Cloud Density | 1–3 pts/m2 |
Echo Count | Up to 15 per beam |
Ranging Accuracy (m) | 0.02 m |
Index | Lat/(°) | Lon/(°) | Hmean/(m) | Index | Lat/(°) | Lon/(°) | Hmean/(m) |
---|---|---|---|---|---|---|---|
0 | 50.976 | 121.506 | 13.724 | 24 | 50.867 | 121.572 | 13.018 |
1 | 50.843 | 121.434 | 13.241 | 25 | 50.947 | 121.64 | 11.576 |
2 | 50.842 | 121.63 | 7.522 | 26 | 50.875 | 121.533 | 14.070 |
3 | 50.766 | 121.423 | 12.542 | 27 | 50.967 | 121.569 | 7.959 |
4 | 50.823 | 121.371 | 12.689 | 28 | 51.116 | 121.672 | 6.403 |
5 | 50.791 | 121.488 | 13.709 | 29 | 50.938 | 121.417 | 10.601 |
6 | 50.784 | 121.52 | 3.854 | 30 | 50.804 | 121.505 | 14.301 |
7 | 50.967 | 121.537 | 17.105 | 31 | 51.016 | 121.632 | 9.176 |
8 | 50.808 | 121.507 | 16.445 | 32 | 50.836 | 121.485 | 19.227 |
9 | 50.842 | 121.672 | 10.380 | 33 | 50.941 | 121.583 | 8.219 |
10 | 50.897 | 121.51 | 12.905 | 34 | 50.84 | 121.684 | 15.023 |
11 | 50.927 | 121.663 | 8.797 | 35 | 50.889 | 121.397 | 13.299 |
12 | 50.78 | 121.537 | 5.747 | 36 | 50.84 | 121.433 | 12.229 |
13 | 50.937 | 121.667 | 13.961 | 37 | 51.016 | 121.577 | 11.145 |
14 | 50.881 | 121.469 | 15.552 | 38 | 50.942 | 121.602 | 13.748 |
15 | 50.798 | 121.667 | 14.784 | 39 | 50.996 | 121.549 | 15.553 |
16 | 50.785 | 121.54 | 10.863 | 40 | 50.967 | 121.593 | 8.317 |
17 | 51.062 | 121.631 | 4.073 | 41 | 50.938 | 121.546 | 10.759 |
18 | 50.792 | 121.555 | 17.389 | 42 | 50.954 | 121.607 | 13.482 |
19 | 51.07 | 121.599 | 8.605 | 43 | 50.981 | 121.599 | 11.562 |
20 | 50.769 | 121.546 | 6.032 | 44 | 50.842 | 121.52 | 14.556 |
21 | 50.82 | 121.609 | 7.873 | 45 | 50.925 | 121.595 | 8.120 |
22 | 50.774 | 121.548 | 3.510 | 46 | 50.816 | 121.619 | 10.819 |
23 | 50.828 | 121.569 | 14.178 | 47 | 50.78 | 121.429 | 4.607 |
Method | ||||
---|---|---|---|---|
HAGA | 0.955 | 8.071 | 0.065 | 7.94 |
ODM | 0.916 | 10.049 | 0.151 | 12.1 |
GA | 0.862 | 17.293 | 0.092 | 11.84 |
Method | ||||
---|---|---|---|---|
HAGA | 0.936 | 9.74 | 0.1 | 10.135 |
ODM | 0.852 | 14.315 | 0.232 | 17.851 |
GA | 0.794 | 22.087 | 0.107 | 14.614 |
Method | ||||
---|---|---|---|---|
HAGA | 0.928 | 9.87 | 0.123 | 11.334 |
ODM | 0.454 | 34.16 | 0.413 | 31.571 |
GA | 0.706 | 25.987 | 0.143 | 17.295 |
Method | ||||
---|---|---|---|---|
HAGA | 0.913 | 10.663 | 0.149 | 12.662 |
ODM | 0.064 | 46.806 | 0.403 | 33.818 |
GA | 0.573 | 31.12 | 0.182 | 20.67 |
Method | /(m) | MAX/(m) | MIN/(m) | /(m) | /(m) | CI |
---|---|---|---|---|---|---|
ODM | 2.03 | 9.008 | −4.277 | 2.77 | 2.74 | [−0.73, 0.837] |
GA | 1.795 | 9.574 | −5.292 | 2.621 | 2.595 | [−0.683, 0.801] |
HAGA | 1.499 | 3.472 | −4.171 | 1.816 | 1.899 | [−1.126, −0.099] |
Method | 10 < SNR < 11 | 11 < SNR < 12 | 12 < SNR < 13 | 13 < SNR < 14 | 14 < SNR < 15 |
---|---|---|---|---|---|
HAGA | 91% | 91% | 95% | 94% | 96% |
ODM | 64% | 70% | 82% | 87% | 91% |
GA | 74% | 61% | 76% | 91% | 86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Wang, X.; Wang, L.; Mo, F.; Zhao, L.; Yang, X.; Lv, X.; Xie, J. A Satellite Full-Waveform Laser Decomposition Method for Forested Areas Based on Hidden Peak Detection and Adaptive Genetic Optimization. Remote Sens. 2025, 17, 701. https://doi.org/10.3390/rs17040701
Zhang F, Wang X, Wang L, Mo F, Zhao L, Yang X, Lv X, Xie J. A Satellite Full-Waveform Laser Decomposition Method for Forested Areas Based on Hidden Peak Detection and Adaptive Genetic Optimization. Remote Sensing. 2025; 17(4):701. https://doi.org/10.3390/rs17040701
Chicago/Turabian StyleZhang, Fangxv, Xiao Wang, Leiguang Wang, Fan Mo, Liping Zhao, Xiaomeng Yang, Xin Lv, and Junfeng Xie. 2025. "A Satellite Full-Waveform Laser Decomposition Method for Forested Areas Based on Hidden Peak Detection and Adaptive Genetic Optimization" Remote Sensing 17, no. 4: 701. https://doi.org/10.3390/rs17040701
APA StyleZhang, F., Wang, X., Wang, L., Mo, F., Zhao, L., Yang, X., Lv, X., & Xie, J. (2025). A Satellite Full-Waveform Laser Decomposition Method for Forested Areas Based on Hidden Peak Detection and Adaptive Genetic Optimization. Remote Sensing, 17(4), 701. https://doi.org/10.3390/rs17040701