Ensemble Streamflow Simulations in a Qinghai–Tibet Plateau Basin Using a Deep Learning Method with Remote Sensing Precipitation Data as Input
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Stacking Ensemble Method
2.2.1. Base-Learner Models
2.2.2. Ensemble Simulation Method
2.3. Data Sources and Modelling Setting
2.4. Statistical Analysis
3. Results
3.1. Evaluation of GPM IMERG Product Based on Ground Measurement
3.2. Streamflow Simulations of Individual Models
3.3. Comparisons of Ensemble Simulations Among 1D CNN, SAM, and WAM
3.4. SHAP-Based Interpretability Analysis of 1D CNN Ensemble Simulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Ye, A.; Deng, X.; Ma, F.; Duan, Q.; Zhou, Z.; Du, C. Integrating weather and climate predictions for seamless hydrologic ensemble forecasting: A case study in the Yalong River basin. J. Hydrol. 2017, 547, 196–207. [Google Scholar] [CrossRef]
- Gupta, H.V.; Beven, K.J.; Wagener, T. Model Calibration and Uncertainty Estimation. In Encyclopedia of Hydrological Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Arshad, M.; Ma, X.; Yin, J.; Ullah, W.; Ali, G.; Ullah, S.; Liu, M.; Shahzaman, M.; Ullah, I. Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan. Atmos. Res. 2021, 249, 105341. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Gao, C.; Ruben, G.; Wang, G. Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin. Remote Sens. 2019, 11, 304. [Google Scholar] [CrossRef]
- Suliman, A.H.A.; Awchi, T.A.; Al-Mola, M.; Shahid, S. Evaluation of remotely sensed precipitation sources for drought assessment in Semi-Arid Iraq. Atmos. Res. 2020, 242, 105007. [Google Scholar] [CrossRef]
- Sun, R.; Yuan, H.; Liu, X.; Jiang, X. Evaluation of the latest satellite–gauge precipitation products and their hydrologic applications over the Huaihe River basin. J. Hydrol. 2016, 536, 302–319. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Li, L.; Wang, J.; Qi, W.; Xu, C.-Y.; Kim, J.-S. Evaluation of Multi-Satellite Precipitation Datasets and Their Error Propagation in Hydrological Modeling in a Monsoon-Prone Region. Remote Sens. 2020, 12, 3550. [Google Scholar] [CrossRef]
- Lu, D.; Yong, B. A Preliminary Assessment of the Gauge-Adjusted Near-Real-Time GSMaP Precipitation Estimate over Mainland China. Remote Sens. 2020, 12, 141. [Google Scholar] [CrossRef]
- Sun, W.C.; Wang, J.; Li, Z.J.; Yao, X.L.; Yu, J.S. Influences of Climate Change on Water Resources Availability in Jinjiang Basin, China. Sci. World J. 2014, 2014, 908349. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.B.; Du, J.; Lin, A.W.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, C.; Zhao, X.; Zhang, Q.; Su, J. Evaluation of the GPM IMERG product at the hourly timescale over China. Atmos. Res. 2023, 285, 106656. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Li, X.; Lyu, J.; Zhao, L. Evaluation of the GPM-IMERG V06 Final Run products for monthly/annual precipitation under the complex climatic and topographic conditions of China. J. Appl. Meteorol. Clim. 2023, 62, 929–946. [Google Scholar] [CrossRef]
- Sungmin, O.; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21, 6559–6572. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, D.; Yong, B.; Shen, Z.; Wu, H.; Yu, L. Evaluation of GPM-IMERG Precipitation Product at Multiple Spatial and Sub-Daily Temporal Scales over Mainland China. Remote Sens. 2023, 15, 1237. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; Van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Beven, K.J.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Pechlivanidis, I.; Jackson, B.; Mcintyre, N.; Wheater, H. Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Glob. Nest J. 2011, 13, 193–214. [Google Scholar]
- Beven, K.J. Rainfall-Runoff Modeling: Introduction. In Encyclopedia of Hydrological Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, f. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Frame, J.M.; Kratzert, F.; Klotz, D.; Gauch, M.; Shalev, G.; Gilon, O.; Qualls, L.M.; Gupta, H.V.; Nearing, G.S. Deep learning rainfall–runoff predictions of extreme events. Hydrol. Earth Syst. Sci. 2022, 26, 3377–3392. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K.-W. ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS. Eng. Appl Artif. Intel. 2015, 45, 429–440. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Wu, L.; Chen, G.; Wang, L.; Qin, H. Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting. J. Hydrol. 2020, 582, 124293. [Google Scholar] [CrossRef]
- Humphrey, G.B.; Gibbs, M.S.; Dandy, G.C.; Maier, H.R. A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network. J. Hydrol. 2016, 540, 623–640. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Slater, L.J.; Arnal, L.; Boucher, M.-A.; Chang, A.Y.Y.; Moulds, S.; Murphy, C.; Nearing, G.; Shalev, G.; Shen, C.; Speight, L.; et al. Hybrid forecasting: Blending climate predictions with AI models. Hydrol. Earth Syst. Sci. 2023, 27, 1865–1889. [Google Scholar] [CrossRef]
- Altman, N.; Krzywinski, M. The curse(s) of dimensionality. Nat. Methods 2018, 15, 399–400. [Google Scholar] [CrossRef]
- Li, W.; Sankarasubramanian, A. Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination. Water Resour. Res. 2012, 48, W12516. [Google Scholar] [CrossRef]
- Xu, W.; Chen, J.; Corzo, G.; Xu, C.; Zhang, X.J.; Xiong, L.; Liu, D.; Xia, J. Coupling Deep Learning and Physically Based Hydrological Models for Monthly Streamflow Predictions. Water Resour. Res. 2024, 60, e2023WR035618. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.; Jena, P.P.; Chatterjee, C.; Mishra, A. Identification of the best multi-model combination for simulating river discharge. J. Hydrol. 2015, 525, 313–325. [Google Scholar] [CrossRef]
- Nourani, V.; Elkiran, G.; Abdullahi, J. Multi-step ahead modeling of reference evapotranspiration using a multi-model approach. J. Hydrol. 2020, 581, 124434. [Google Scholar] [CrossRef]
- Gelete, G.; Nourani, V.; Gokcekus, H.; Gichamo, T. Physical and artificial intelligence-based hybrid models for rainfall-runoff-sediment process modelling. Hydrol. Sci. J. 2023, 68, 1841–1863. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; Hinkelmann, R. Ensemble machine learning paradigms in hydrology: A review. J. Hydrol. 2021, 598, 126266. [Google Scholar] [CrossRef]
- Gelete, G.; Nourani, V.; Gokcekus, H.; Gichamo, T. Ensemble physically based semi-distributed models for the rainfall-runoff process modeling in the data-scarce Katar catchment, Ethiopia. J. Hydroinform. 2023, 25, 567–592. [Google Scholar] [CrossRef]
- Gichamo, T.; Nourani, V.; Gökçekus, H.; Gelete, G. Ensemble of artificial intelligence and physically based models for rainfall-runoff modeling in the upper Blue Nile Basin. Hydrol. Res. 2024, 55, 976–1000. [Google Scholar] [CrossRef]
- Yan, J.; Jia, S.; Lv, A.; Zhu, W. Water Resources Assessment of China’s Transboundary River Basins Using a Machine Learning Approach. Water Resour. Res. 2019, 55, 632–655. [Google Scholar] [CrossRef]
- Sun, W.; Trevor, B. A stacking ensemble learning framework for annual river ice breakup dates. J. Hydrol. 2018, 561, 636–650. [Google Scholar] [CrossRef]
- Cavadias, G.; Morin, G. The Combination of Simulated Discharges of Hydrological Models: Application to the WMO Intercomparison of Conceptual Models of Snowmelt Runoff. Hydrol. Res. 1986, 17, 21–32. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Z.; Hu, Y.; Li, B.; Xu, B.; Wang, D. A multi-model integration method for monthly streamflow prediction: Modified stacking ensemble strategy. J. Hydroinform. 2019, 22, 310–326. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, X.; Zhang, G.; Wei, T.; Zhao, Y.; Ma, W.; Chen, Y.; Li, Y.; Wang, Y. Applications and interpretations of different machine learning models in runoff and sediment discharge simulations. Catena 2024, 238, 107848. [Google Scholar] [CrossRef]
- Samek, W.; Wiegand, T.; Müller, K.-R. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv 2017, arXiv:1708.08296. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Liu, Q.; Gui, D.; Zhang, L.; Niu, J.; Dai, H.; Wei, G.; Hu, B.X. Simulation of regional groundwater levels in arid regions using interpretable machine learning models. Sci. Total Environ. 2022, 831, 154902. [Google Scholar] [CrossRef] [PubMed]
- Shapley, L.S. A Value for n-Person Games. Contributions to the Theory of Games; Harold William, K., Albert William, T., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; Volume 2, pp. 307–318. [Google Scholar] [CrossRef]
- Lama, L.; Wilhelmsson, O.; Norlander, E.; Gustafsson, L.; Lager, A.; Tynelius, P.; Ẅarvik, L.; Östenson, C.G. Machine learning for prediction of diabetes risk in middle-aged Swedish people. Heliyon 2021, 7, e07419. [Google Scholar] [CrossRef]
- Wen, X.; Xie, Y.; Wu, L.; Jiang, L. Quantifying and comparing the effects of key risk factors on various types of roadway segment crashes with LightGBM and SHAP. Accid. Anal. Prev. 2021, 159, 106261. [Google Scholar] [CrossRef]
- Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
- Liu, J.; Ren, K.; Ming, T.; Qu, J.; Guo, W.; Li, H. Investigating the effects of local weather, streamflow lag, and global climate information on 1-month-ahead streamflow forecasting by using XGBoost and SHAP: Two case studies involving the contiguous USA. Acta Geophys. 2023, 71, 905–925. [Google Scholar] [CrossRef]
- Wang, R.Z.; Kim, J.H.; Li, M.H. Predicting stream water quality under different urban development pattern scenarios with an interpretable machine learning approach. Sci. Total Environ. 2021, 761, 144057. [Google Scholar] [CrossRef]
- Kuntl, S.K.; Saharia, M.; Kirstetter, P. Global-scale characterization of streamflow extremes. J. Hydrol. 2022, 615, 128668. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H.; Liang, S. Prediction of estuarine water quality using interpretable machine learning approach. J. Hydrol. 2022, 605, 127320. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, D.; Wang, G.; Qiu, J.; Long, K.; Du, Y.; Xie, H.; Wei, Z.; Shangguan, W.; Dai, Y. A hybrid deep learning algorithm and its application to streamflow prediction. J. Hydrol. 2021, 601, 126636. [Google Scholar] [CrossRef]
- Wang, X.; Sun, W.; Lu, F.; Zuo, R. Combining Satellite Optical and Radar Image Data for Streamflow Estimation Using a Machine Learning Method. Remote Sens. 2023, 15, 5184. [Google Scholar] [CrossRef]
- Takeuchi, K.; Ao, T.; Ishidaira, H. Introduction of block-wise use of TOPMODEL and Muskingum-Cunge method for the hydroenvironmental simulation of a large ungauged basin. Hydrol. Sci. J. 1999, 44, 633–646. [Google Scholar] [CrossRef]
- Hishinuma, S.; Takeuchi, K.; Magome, J. Challenges of hydrological analysis for water resource development in semi-arid mountainous regions: Case study in Iran. Hydrol. Sci. J. 2014, 59, 1718–1737. [Google Scholar] [CrossRef]
- Petpongpan, C.; Ekkawatpanit, C.; Kositgittiwong, D. Landslide risk assessment using hydrological model in the Upper Yom River Basin, Thailand. Catena 2021, 204, 105402. [Google Scholar] [CrossRef]
- Basijokaite, R.; Kelleher, C. Time-Varying Sensitivity Analysis Reveals Relationships Between Watershed Climate and Variations in Annual Parameter Importance in Regions with Strong Interannual Variability. Water Resour. Res. 2021, 57, e2020WR028544. [Google Scholar] [CrossRef]
- Islam, K.I.; Elias, E.; Carroll, K.C.; Brown, C. Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-DrivenWatershed. Remote Sens. 2023, 15, 3999. [Google Scholar] [CrossRef]
- Xie, Y.; Sun, W.; Ren, M.; Chen, S.; Huang, Z.; Pan, X. Stacking ensemble learning models for daily runoff prediction using 1D and 2D CNNs. Expert. Syst. Appl. 2023, 217, 119469. [Google Scholar] [CrossRef]
- Hussain, D.; Hussain, T.; Khan, A.A.; Naqvi, S.A.A.; Jamil, A. A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin. Earth Sci. Inform. 2020, 13, 915–927. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.J.M.; Larraondo, P.R.; McVicar, T.R.; Pan, M.; Dutra, E.; Miralles, D.G. MSWX: Global 3-Hourly 0.1° Bias-Corrected Meteorological Data Including Near-Real-Time Updates and Forecast Ensembles. Bull. Am. Meteorol. Soc. 2022, 103, E710–E732. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Alazzy, A.A.; Lü, H.; Chen, R.; Ali, A.B.; Zhu, Y.; Su, J. Evaluation of Satellite Precipitation Products and Their Potential Influence on Hydrological Modeling over the Ganzi River Basin of the Tibetan Plateau. Adv. Meteorol. 2017, 2017, 3695285. [Google Scholar] [CrossRef]
- Deng, H.; Chen, W.; Huang, G. Deep insight into daily runoff forecasting based on a CNN-LSTM model. Nat. Hazards 2022, 113, 1675–1696. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Chen, J.; Santisirisomboon, J.; Lu, W.; Zhao, B. A physical process and machine learning combined hydrological model for daily streamflow simulations of large watersheds with limited observation data. J. Hydrol. 2020, 590, 125206. [Google Scholar] [CrossRef]
- Nearing, G.S.; Kratzert, F.; Sampson, A.F.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2020, 57, e2020WR028091. [Google Scholar] [CrossRef]
- Asadi, S.; Jimeno-Sáez, P.; López-Ballesteros, A.; Senent-Aparicio, J. Comparison and integration of physical and interpretable AI-driven models for rainfall-runoff simulation. Results Eng. 2024, 24, 103048. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water 2018, 10, 192. [Google Scholar] [CrossRef]
No. | Parameter | Parameter Description | Unit | Min | Max |
---|---|---|---|---|---|
1 | T0_Clay | Saturated transmissivity of soil (Clay) | m2/h | 3 | 51 |
2 | T0_Sand | Saturated transmissivity of soil (Sand) | m2/h | 8 | 150 |
3 | T0_Silt | Saturated transmissivity of soil (Silt) | m2/h | 5 | 101 |
4 | sdbar | Initial value of average soil saturation deficit | m | 0.001 | 1 |
5 | n0 | Block average roughness coefficient | — | 0.001 | 0.07 |
6 | alpha | Drying function parameter | — | 1 | 8 |
7 | m | Decay factor of transmissivity | m | 0.001 | 0.2 |
8 | Srmax1 | Maximum root zone storage of deep-rooted | — | 0.001 | 0.01 |
9 | Srmax2 | Maximum root zone storage of shallow-rooted | — | 0.001 | 0.04 |
10 | Srmax3 | Maximum root zone storage of impervious | — | 0.0001 | 0.02 |
11 | Tsm | Soil freezing threshold temperature | °C | −1 | 1 |
12 | Tb | Threshold temperature of snowfall | °C | −2 | 0 |
13 | Tr | Threshold temperature of rainfall | °C | 0 | 2 |
14 | Mf | Degree day factor | mm °C−1day−1 | 1 | 4 |
15 | T_base | Threshold temp for snow melt | °C | 0 | 2 |
16 | Phi | Snow pack yield parameter | — | 0.1 | 1.5 |
17 | Cfr | Refreezing coefficient | mm day−1 | 0.01 | 1 |
Type of Data | Model | Data Products | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|---|---|
DEM | BTOPMC | Shuttle Radar Topography Mission | 90 × 90 m | - | http://www.gscloud.cn/ (accessed on 4 February 2025). |
Land Use and Land Cover | BTOPMC | China’s Land Use Remote Sensing Mapping System (CNLUCC) Dataset | 1 × 1 km | - | http://www.geodata.cn/ (accessed on 4 February 2025). |
Soil | BTOPMC | Chinese Soil Science Database | 1 × 1 km | - | http://vdb3.soil.csdb.cn/ (accessed on 4 February 2025). |
Precipitation | — | Ground-Based Measurement | - | Daily | https://data.cma.cn/data (accessed on 4 February 2025). |
BTOPMC/RF/LSTM | GPM IMERG | 0.1° | Daily | https://pmm.nasa.gov/data-access/downloads/gpm (accessed on 4 February 2025). | |
Temperature | BTOPMC/RF/LSTM | MSWX | 0.1° | Daily | http://www.gloh2o.org/mswx/ (accessed on 4 February 2025). |
Weather | BTOPMC | CRU TS | 0.5° | Monthly | https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/ (accessed on 4 February 2025). |
Evapotranspiration | RF/LSTM | GLEAM 3.8a | 0.25° | Daily | https://www.gleam.eu (accessed on 4 February 2025). |
Streamflow | BTOPMC/RF/LSTM | Hydrological Year Book | - | Daily | Ministry of Water Resources, China |
Parameter | t | t − 1 | t − 2 | t − 3 | t − 4 | t − 5 | |
---|---|---|---|---|---|---|---|
RF | CAL_NSE | 0.71 | 0.72 | 0.78 | 0.82 | 0.84 | 0.86 |
CAL_KGE | 0.71 | 0.72 | 0.76 | 0.80 | 0.81 | 0.82 | |
VAL_NSE | 0.41 | 0.43 | 0.49 | 0.53 | 0.56 | 0.58 | |
VAL_KGE | 0.62 | 0.63 | 0.67 | 0.70 | 0.71 | 0.73 | |
LSTM | CAL_NSE | 0.55 | 0.57 | 0.61 | 0.69 | 0.72 | 0.78 |
CAL_KGE | 0.62 | 0.63 | 0.71 | 0.82 | 0.77 | 0.86 | |
VAL_NSE | 0.43 | 0.46 | 0.48 | 0.37 | 0.54 | 0.43 | |
VAL_KGE | 0.62 | 0.64 | 0.69 | 0.69 | 0.74 | 0.71 |
BTOPMC | RF | LSTM | |
---|---|---|---|
CAL_NSE | 0.63 | 0.84 | 0.72 |
CAL_KGE | 0.66 | 0.81 | 0.77 |
CAL_R2 | 0.84 | 0.88 | 0.85 |
CAL_MAE | 102.3 | 77.9 | 91.1 |
CAL_MAPE | 0.37 | 0.29 | 0.34 |
VAL_NSE | 0.54 | 0.55 | 0.54 |
VAL_KGE | 0.66 | 0.71 | 0.74 |
VAL_R2 | 0.79 | 0.76 | 0.76 |
VAL_MAE | 102.7 | 116.1 | 114.5 |
VAL_MAPE | 0.36 | 0.51 | 0.49 |
SAM | WAM | 1D CNN | |
---|---|---|---|
CAL_NSE | 0.80 | 0.80 | 0.84 |
CAL_KGE | 0.74 | 0.73 | 0.88 |
CAL_R2 | 0.91 | 0.91 | 0.91 |
CAL_MAE | 66.5 | 66.8 | 64.0 |
CAL_MAPE | 0.20 | 0.21 | 0.21 |
VAL_NSE | 0.71 | 0.70 | 0.71 |
VAL_KGE | 0.74 | 0.73 | 0.82 |
VAL_R2 | 0.84 | 0.84 | 0.85 |
VAL_MAE | 85.5 | 87.3 | 87.4 |
VAL_MAPE | 0.32 | 0.33 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, Z.; Zhou, L.; Ma, C.; Sun, W. Ensemble Streamflow Simulations in a Qinghai–Tibet Plateau Basin Using a Deep Learning Method with Remote Sensing Precipitation Data as Input. Remote Sens. 2025, 17, 967. https://doi.org/10.3390/rs17060967
Wang J, Li Z, Zhou L, Ma C, Sun W. Ensemble Streamflow Simulations in a Qinghai–Tibet Plateau Basin Using a Deep Learning Method with Remote Sensing Precipitation Data as Input. Remote Sensing. 2025; 17(6):967. https://doi.org/10.3390/rs17060967
Chicago/Turabian StyleWang, Jinqiang, Zhanjie Li, Ling Zhou, Chi Ma, and Wenchao Sun. 2025. "Ensemble Streamflow Simulations in a Qinghai–Tibet Plateau Basin Using a Deep Learning Method with Remote Sensing Precipitation Data as Input" Remote Sensing 17, no. 6: 967. https://doi.org/10.3390/rs17060967
APA StyleWang, J., Li, Z., Zhou, L., Ma, C., & Sun, W. (2025). Ensemble Streamflow Simulations in a Qinghai–Tibet Plateau Basin Using a Deep Learning Method with Remote Sensing Precipitation Data as Input. Remote Sensing, 17(6), 967. https://doi.org/10.3390/rs17060967