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Abstract: We describe the use of Bayesian inference techniques, notably Markov chain 
Monte Carlo (MCMC) and reversible jump MCMC (RJMCMC) methods, to recover forest 
structural and biochemical parameters from multispectral LiDAR (Light Detection and 
Ranging) data. We use a variable dimension, multi-layered model to represent a forest 
canopy or tree, and discuss the recovery of structure and depth profiles that relate to 
photochemical properties. We first demonstrate how simple vegetation indices such as the 
Normalized Differential Vegetation Index (NDVI), which relates to canopy biomass and 
light absorption, and Photochemical Reflectance Index (PRI) which is a measure of 
vegetation light use efficiency, can be measured from multispectral data. We further 
describe and demonstrate our layered approach on single wavelength real data, and on 
simulated multispectral data derived from real, rather than simulated, data sets. This 
evaluation shows successful recovery of a subset of parameters, as the complete recovery 
problem is ill-posed with the available data. We conclude that the approach has promise, 
and suggest future developments to address the current difficulties in parameter inversion. 

Keywords: laser radar; multispectral canopy LiDAR; forest structure and biochemistry; 
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1. Introduction 

Laser scanning has become leading edge technology for the acquisition of topographical data and 
for mapping the Earth’s surface. Recent technological advances in electronic devices for fast digitising 
and storing of mass data have made it possible to digitally sample the entire laser pulse echo as a 
function of time. Typical waveform LiDARs are particularly attractive for forest applications as a laser 
beam can penetrate a forest’s structure, and so provides 3-dimensional information at a high point 
density of the intensity of the return signal, but only at one specific wavelength. For over a decade 
waveform LiDAR has been used to retrieve forest parameters such as tree height, crown diameter, 
number of stems, stem diameter and basal area [1,2]. LiDAR remote sensing has also been widely used 
to infer estimates of vegetation structure and biomass [3,4] at various scales ranging from single-tree 
level [5] to landscape level depending on the application and/or the LiDAR system used. What is 
missing with current LiDAR technology is the ability to measure a suite of wavelengths which are 
sensitive not only to structural elements but also to the spectral reflectance properties of those elements 
which are in turn indicative of physiological changes within the leaves [6]. Whilst current multispectral 
remote sensing approaches enable monitoring ecosystems productivity related functions at synoptic 
time and space scales through observation and understanding of ecosystem carbon-related spectral 
responses, passive systems suffer from viewing mostly only the top of the canopy, both obscuring and 
shading the understorey and ground that lie beneath the canopy. There is a real need for an active 
(laser) system capable of measuring both structural parameters and physiological changes through the 
depth of the canopy, including the understorey. 

Therefore, a multispectral canopy lidar (MSCL) would provide much needed information on the 
vertical distribution of physiological processes which in turn would provide greater detail on actual 
carbon sequestration as well as existing stocks, with the spectral contrast further allowing separation of 
the ground from canopy returns. This will inform our understanding of the seasonal dynamics of 
ecosystem carbon uptake in response to environmental drivers such as water, temperature, light and 
nutrient availability.  

In conjunction with sensor development, we are investigating improved methods to better interpret 
single and multispectral LiDAR data, which are the principal contributions of this article. Previously, 
we presented an effective approach to process full waveform LiDAR data [7] with the capability to 
resolve and better detect low amplitude surface returns and improve resolution. We now show how full 
waveform processing using Bayesian techniques can provide a variable dimension model of the tree or 
forest canopy structure, and then extend these ideas to process across different wavelengths so that our 
inference is simultaneous on depth and wavelength. We evaluate our approach on simulated and real 
data, on photon count and pulsed intensity laser systems. We then summarise some of the necessary 
steps that need to be taken to design and exploit multi- or hyper-spectral LiDAR systems. 

2. Forest Monitoring Using LiDAR Data 

LiDAR is used primarily for recovering depth, and by extension 3D imagery when the sensor is 
scanned or a 2D focal plane sensor is employed. Mallet and Bretar [8] provide a comprehensive survey 
of both air and space borne LiDAR systems that can be used to provide full waveform data with 
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particular emphasis on data recovery from wooded areas, although they also include examples from 
mountains and urban regions. Leuwen and Nieuwenhuis [2] complement this article by reviewing the 
recovery by LiDAR of structural parameters from forest areas. The key parameters they describe are 
tree or canopy height, leaf area index, fractional cover, foliage height profile, biomass and tree volume, 
terrain and terrain slope, and by extension, species classification. 

In evaluating structural properties from LiDAR data, a standard approach has been to assume that 
the instrumental response is known, usually modeled by a Gaussian, and to decompose the waveform 
into a series of such Gaussians that indicate the presence of “apparent” reflecting surfaces. This 
technique was applied to the Laser Vegetation Imaging Sensor (LVIS) data [9] to recover forest 
structural characteristics such as stem diameter, basal area and above ground biomass, using known 
regression relationships between these and measured canopy height, height of median energy and the 
energy ratio in the ground return [10]. The problem was to determine the number and position of the 
Gaussians by finding inflection points, but this is difficult in the presence of noise as it relies on 
derivatives, even if the data is smoothed. In later work [11], they extracted a number of parameters 
(centroid, signal beginning, end, etc.) from full waveform LiDAR to measure tree height, again by 
learnt allometric relationships. Similarly, Jaskerniak et al. [12] fitted bimodal and occasionally 
multimodal distribution functions to interpret the understorey and overstorey of a vegetation profile in 
eucalyptus forest. However, there was an a priori assumption that the number of layers of the forest 
canopy was known, i.e., that the number of modes was predetermined.  

Mallet et al. [13] described an approach to allow variation in the number of modes using reversible 
jump Markov chain Monte Carlo (RJMCMC) inference; this is a dimension varying strategy we have 
previously employed [7] and continue here. Further, they also applied a switching strategy between 
three different structural models based on tree shape; this could then be convolved with a fixed 
instrumental response. They employed a perturbation strategy to alter the parameters of the structural 
alternatives, i.e. within model parameter variation. In this paper, we do not switch shape models. We 
use a layered model strategy that is general, in that asymmetric shapes for example, are represented by 
closely spaced discrete convolved responses of different amplitude. Further we also address the 
problems of spectral variation and mixture of materials (e.g., leaf, bark, soil).  

Several researchers (e.g., [14–16]) have cited and discussed the use of spectral analysis of leaves to 
estimate biochemical content, and further comment that the main photosynthetic components, 
including chlorophyll a and b (Cab), are effective indicators of the health of the forest canopy, and 
whether the canopy is under physiological stress. Variations in chlorophyll content are also dependent 
on species type, needle age and the illumination conditions within the canopy. However, measuring the 
spectral reflectance of foliage at canopy, as opposed to leaf scale, is very difficult as the spectrum is 
confounded by the proportion of woody elements such as trunk, branch and twig elements, and in an 
integrated passive sensing instrument this can also be affected by a proportion of soil reflectance from 
below the canopy. A key difference between the spectral characteristic of photosynthetic vegetation 
(PV) and non-photosynthetic vegetation (NPV) and litter within the canopy is the presence of the “red 
edge”, a steep rise in reflectance between 680 nm and 730 nm, which survives the superimposition of 
PV and NPV signatures. 

The Normalized Differential Vegetation Index (NDVI) is formed from the normalized reflectance 
values either side of the red edge, which discriminates between live green and other canopy material. 
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Subject to the caveat that the NDVI can be affected by both the relative proportion of PV and the health 
of that vegetation, it has been found to correlate reasonably well with above ground biomass, leaf area 
index (LAI) and the fraction of absorbed, photosynthetically active radiation (FAPAR). However, it does 
not capture fine temporal and spectral variation of physiological parameters [17]. The Photochemical 
Reflectance Index [18] (PRI) uses the reflectance at two narrow bands centred on 531 nm (or 532 nm) 
and 550 nm (or 570 nm) to quantify vegetation Light Use Efficiency (LUE), via the change in state of 
the xanthophyll cycle pigments. As noted in [16,18] the relative photosynthetic rates can only be 
reliably determined “if issues of canopy and stand structure can be resolved”. If simple indices such as 
NDVI and PRI are not sufficient to distinguish between the health of vegetation and the relative 
proportions of PV and NPV, then what additional information is required? The first option is to make 
use of a priori data that might be used to constrain the inversion problem. For example, in interpreting 
data from a Sitka Spruce canopy in Scotland (which occurs in one of our proposed test areas) we can 
use a priori models such as the vertical and horizontal distributions of needle area density [19,20] 
approximated by a two dimensional Beta distribution within a homogeneous ellipsoidal crown, which 
can be linked quite effectively to radiative transfer models. Malenovsky et al. [21] have considered the 
effect of different a priori assumptions on reflectance parameters using the DART model as a tool for 
parameter recovery, i.e., leaf only, leaves trunks and first order branches, and the addition of woody 
twigs. As expected, the inclusion of woody elements does indeed perturb the recorded values of the 
NDVI and another index, the AVI (Angular Vegetation Index), and they conclude not surprisingly that 
a priori knowledge is needed to solve the inversion problem. Alternatively, one can combine LiDAR 
data with a passive hyperspectral imaging system (e.g., [22,23]). In a simple case, the two information 
sources may provide assumed, independent structural and biochemical and structural forest properties. 
However, this assumes both temporal and spatial registration of the source data. This has rarely been 
the case as the data often come from different platforms. Further, the spectral signature is integrated 
over all depth rather than a function of depth and so loses information. This impels the development of 
multispectral LiDAR systems for the monitoring of forest canopy properties [24,25]. 

The recently developed and active airborne photon counting LiDAR system called SIMPL (Slope 
Imaging Multi-polarization Photon Counting Lidar) [26] is a dual channel system that measures at two 
wavelengths (532 nm and 1,064 nm) in parallel and perpendicular polarization channels, and is a  
time-correlated single photon counting system deployed in an airborne platform. In this paper, we also 
use a time-correlated photon counting LiDAR system to acquire measurements from a small sample 
conifer to illustrate our techniques. Moving beyond a small subset of wavelengths and simple 
reflectance ratios, an exciting prospect is to use a super continuum laser to provide a hyperspectral 
LiDAR system that can capture a vertical profile of spectral data that could possibly resolve structural, 
material and biophysical parameters in a single instrument. Chen et al. [27] experimented with a 
super continuum laser to measure NDVI on Norway Spruce with only two of the possible wavelengths. 
Later they combined a monochromatic LiDAR with a spectrometer using the same supercontinuum 
source [28] to create a ‘virtual’ hyperspectral system. This was used to differentiate between materials 
including trunk/wood and needles, but such a system does provide a full spectrum that could be used 
for further analysis. Of particular interest, in the conclusions they talked of the potential to retrieve 
target chlorophyll content which is a subject of this paper. 
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In Section 3, we describe a preliminary experiment that shows the potential of multispectral LiDAR 
to measure simple indices that can be related to tree stress. In Section 4, we formulate a modelling and 
inversion framework that can be applied to ether single or multiple wavelength LiDAR data. However, 
the data presented in Section 3 is not suitable for full parameter inversion, so in Section 5, we apply 
these methods to recover a variable dimension structural model from a single wavelength signal, using 
time-correlated single photon counting data acquired by our own LiDAR system from a small conifer 
at a range of 330 m. We then extend the approach to recover structural and photochemical parameters 
in Section 6, using a simulated set of waveforms based on the real structure of the conifer 
measurement. Finally we summarise our work and suggest future developments in Section 7. 

3. Measuring Multi Spectral Data 

A joint research contract between the University of Edinburgh and SELEX-GALILEO was held 
during 2008, with the aim of conducting a preliminary trial to assess the capability of a bread board 
MSCL instrument to distinguish between stressed and unstressed evergreen conifer trees (Cupressus 
macrocarpa). Unstressed samples were watered regularly over that period, but the stressed samples 
had the root ball encased in plastic and were not watered. Measurements were taken of both stressed 
and unstressed trees with a tunable laser (500–550 nm and 690–800 nm) using a optical parametric 
oscillator (OPO) as a resonant laser cavity. The return energy was focused onto the detector and a fast 
digitizing oscilloscope sampled the signal at up to 10MSamples·s−1. An instrumental response was 
obtained for each spectral channel by reflection from a white card immediately previous to any tree 
measurement to allow for calibration of variations in power as a function of time and wavelength.  

Figure 1. (a) Multispectral pulsed laser system built and used for measurement of a small 
conifer at SELEX GALILEO. (b) Cupressus macrocarpa was the species used for the 
measurements. 

  
(a)        (b) 

A schematic illustration of the system is given in Figure 1(a) and a picture of the laser signal on the 
conifer in Figure 1(b). The measurements were taken in two sets of two wavelengths (531/550 nm and 
690/780 nm) to mimic the recording or PRI and NDVI data, rather than measuring all four channels 
simultaneously. As discussed in Section 2, the utility of PRI and NDVI wavelengths for understanding 
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light use efficiency and light absorption in a forested environment is very well established, and we 
have ~15 years experiences of passive data analysis. The two sets of signals are not registered either 
spatially or temporally and the recorded measurements were averaged over 16 samples. 

Figure 2(a,b) shows the normalized response data for both stressed and unstressed trees for all four 
wavelengths, in which the lower two and upper two wavelengths are registered temporally and on the 
same part of the tree, but this is not the case for the two sets of data. However, the two trees sampled 
were the same age with very similar structures. The actual mix of foliage and branch observed would 
have differed slightly but the same area of material was illuminated by the laser. 

Figure 2. (a) Normalised data for stressed conifer. (b) Normalised data for unstressed 
conifer. The data at 532 and 550 nm were taken at the same time on the same part of the 
tree; the data at 690 nm and 780 nm were taken later on a different part of the tree.  

  
(a)        (b) 

Figure 3. Comparing (a) NDVI and (b) PRI as a function of time (depth) on Cupressus 
macrocarpa. 

 
(a)       (b) 

From this data we can compare the stressed and unstressed data in Figure 3. Defining the NDVI as 
(R780−R690)/(R780+R690), we notice a drop in the canopy from 0.89 (unstressed) to 0.76 (stressed) at the 
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point of maximum difference, 1.28.10−7 s. Over the canopy volume, the PRI, defined as 
(R532−R550)/(R532+R550), is far less consistent, and it is difficult to come to a meaningful conclusion. 
These results can be compared with recent airborne measurements on conifer forests by Hernandez-
Clemente et al. [29] Similar to the results presented here, they too observed a substantial drop in NDVI 
for the ‘stressed’ crown, from 0.71 to 0.55, but we cannot compare values exactly as these are different 
species, different degrees of stress, different mixtures of needles and other material. In short, this 
preliminary experiment demonstrates the potential, but is insufficient for further analysis, so we use 
our own data augmented by simulations in what follows. 

3. Formulating the Modelling and Inversion Framework 

In modelling trees or forest canopies, we have limiting choices between a full structural mesh that 
can represent leaf, wood or ground elements by polygons with parameters to define the reflectance 
(and possibly absorption and transmittance) function [30,31] and structurally homogeneous models 
that represent the canopy, for example, by a medium with known wavelength dependent entry and exit 
probabilities and turbid medium extinction coefficients. Models such as FLIGHT, a widely used model 
of light transport for the optical domain, based on Monte Carlo solution of radiative transfer [32], use a 
hybrid structure where the crowns are turbid media, but rays are traced between different structural 
elements, e.g., from crown to crown or crown to ground. Together with a leaf optical properties model 
such as PROSPECT [33] to determine the canopy spectral reflectance, and measured spectral variation 
of bark and reflectance properties, radiative transfer models provide powerful tools for simulation, and 
to some extent evaluation of inversion algorithms. A full and thorough comparison of these can be 
found in the series of RAMI benchmarking exercises [34]. 

In modelling radiative transfer, we have to balance the complexity of the model against the nature 
of the sensed data, and the likelihood of parameter recovery. On the one hand, it is wholly intractable 
and not useful to recover the parameters of each leaf, although that can be represented in a graphical 
model. On the other hand, representation of the canopy by a homogeneous medium has no value as we 
seek to recover variation of structure and photochemistry as a function of canopy penetration. Even a 
complex graphical model does not fully account for absorption, multiple reflection and transmission, 
so where should one “draw the line” in considering multiple reflection? If we consider for example the 
model of Smolander and Stenberg [35] for shoot scattering in Scots pine, we can see that the delay 
between hits is very short as the needles are densely packed, and that longer delays are more prevalent 
in either flat leafed species or where the incident photons hit woody material. Disney et al. [36] have 
also investigated the contribution to the measured signal of secondary and higher order scattering 
events in their own and the Smolander-Stenberg shoot designs, and show that in each case the signal 
contribution drops off rapidly in amplitude, with 76% from the primary reflection at the appropriate 
nadir angle of incidence. Hancock [37] further confirms in a series of simulations that the principal 
effect of multiple scattering is to increase reflectance, rather than change the shape of the waveform. 
Therefore, and for reasons of tractability, we further assume a Lambertian reflectance model. 

A single LiDAR footprint provides no information on (x,y) spatial location, so this leads us to 
assume homogeneity within the (x,y) planes of the footprint, or at least an integrated measurement 
parameter. We consider the full waveform LiDAR signals as independent measurements, we do not 
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consider dependencies between laser footprints that are adjacent spatially on the earth’s surface. We 
have considered a fixed layer canopy representation similar to Garcia-Haro et al. [38], but this has two 
drawbacks. First, it introduces needless complexity if we try to recover layer parameters for which no 
or little data exists, e.g., gaps in the canopy as a function of depth (z). Second, any fixed, layered 
model is not matched to the LiDAR response, that is to say the maxima in the scattering profile will 
not in general coincide with predefined layer positions. Therefore we will use a variable (number, 
positions and amplitudes) dimension model to represent the canopy derived from the structural LiDAR 
signal. This has the advantages of adapting to the structure of each signal and reducing the model 
dimension for accurate representation of the underlying canopy or tree structure. Thus the signal is 
sampled regularly in depth by the sensor, but our representation approximates this by a smaller, finite 
set of irregularly spaced layered approximations that best represent the canopy structure. 

Hence, there are L full LiDAR waveforms, each of length N bins (i,1…N), one for each wavelength. 
It is assumed that each of the L waveforms is recorded from the same structure at the same time, the 
spectral channels are co-axial as in our own sensors. In each bin, yz,l, is a sample from a Poisson 
distribution to represent variation in the count data. The known instrumental function is represented a 
piecewise exponential [7]. We represent the multispectral LiDAR response by a mixture model [39] 
consisting of discrete returns from several aggregated surfaces. This does not suggest that a tree 
canopy can truly be represented by discrete layers of no thickness, but we demonstrate that this 
provides an excellent approximation to the real data, certainly within the limits of typical noise levels.  

Hence, ൫ݕ௭,ఒห݇, ߱, ൯ ൌ ∑ ∑ ߱௭,݂൫ݕ௭,ఒ|݇, ,൯ோ,ଵ,ଵ   ఒ    (1)ܤ

where 
 .௭,ఒ is the photon count within a bin, indexed by (z,λ) defining the distance and wavelengthݕ •
• ݇ is the variable number of layers. 
• R defines the number of materials (e.g., needles, bark, soil) of the mixture. We shall assume 

this is fixed, i.e., the number of possible materials is known. 
• Φm,l is the parameter vector of the mth layer response for the lth component of the mixture. ߶ ൌ ሾ߶௭, ߶ఒሿ, where ߶௭ defines the temporal, and ߶ఒ the spectral signature. The temporal 

signature is defined by the instrumental response, which we assume is not wavelength 
dependent, or can be calibrated to adjust for wavelength dependence. The spectral signature is 
defined by the Prospect model. 

• ߱௭, defines the fraction or abundance of lth component at distance, z. These satisfy the 
conditions, ߱௭,  0 for all z, l and ∑ ߱௭,ோ,ଵ ൌ 1. 

• Bλ is a background and dark photon count level, which we assume is constant in all bins at the 
same wavelength, but varies across wavelengths. 

 .is a conditional probability distribution function  •

ϕz is defined by 
β:   area parameter 
z0:   positional parameter (depth) 
Bλ:   background parameter  
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The spectral response depends on both the relative abundance and the spectral signature of each 
mixture component. We use the Prospect to model the leaf spectra, 
ϕλ  {leaf} 
  N:  leaf structural parameter 
  Cab:   concentration of chlorophyll a and b 
  Cw:  equivalent water thickness 
  Cm:   concentration of dry matter 
  Cbrown:   concentration of brown pigments 
  Car:   concentration of carotenoids 

For measurements in the visible and near infra red regions of the spectrum, the key constituents are 
Cab and Cm, as the others have lesser or no effect. We use prototypical fixed spectra for the other 
mixture components, ϕx, taken from [40,41], effectively look-up tables that can be chosen to suit the 
bark and soil properties. If not known, then this would provide yet another parameter to add to the  
ill-posed nature of the problem, discussed in Section 5.1. 

Given a set of data, and a variable dimension mixture model, we would apply Bayesian inference to 
recover the number of layers and the parameter vector, ϕm,l, for each layer. For this inference, we 
apply a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm. We have already 
employed both MCMC and RJMCMC algorithms to successfully locate the positions and amplitudes 
of all returns in full waveform LiDAR data [7] and the reader is referred to that paper for a full 
discussion. However, this paper extends the discussion to define appropriate models for the forest 
canopy parameter inversion problem, and considers the use of multispectral data to recover 
biochemical parameters for the first time. 

The value yz,λ recorded in each bin is considered as a random sample from a Poisson distribution 
with intensity that depends on the model parameters. 

ܲ൫ݕ௭,ఒ|݇, ߱, ߶൯ ൌ ݁ି൫௬,ഊห,ఠ,൯ ൫௬,ഊห,ఠ,൯ೕ௬,ഊ!      (2) 

Furthermore, assuming that the observations recorded in each channel are conditionally independent 
given the values of the parameters, and each record is an independent measurement, the joint 
probability distribution of y is defined as  ܮሺݕ|݇, ߱, ߶ሻ ൌ ∏ ∏ ݁ି൫௬,ഊห,ఠ,൯ ൫௬,ഊห,ఠ,൯,ഊ௬,ഊ!ோ,ଵ௭,ଵ     (3) 

As it is not possible to have negative values of yz,λ, and because the product tends to zero, we minimize 
−2lnL(c/φ) as is common practice. The last of the three terms, ln(yz,λ!), is omitted as it is constant. െ2 ln൫ܮሺݕ|݇, ߱, ߶ሻ൯ ൌ 2 ∑ ∑ ቂ൫ݕ௭,ఒห݇, ߱, ൯ െ ௭,ఒ݈݊ݕ ቀ൫ݕ௭,ఒห݇, ߱, ൯ቁቃோ,ଵ௭,ଵ   (4) 

To make inferences about the dimension, k, and the consequent parameter vector, ϕ, of our model 
given the data, y, the likelihood, L, is combined with prior information, P. This is summarised in a 
posterior, or target distribution,  ߨሺ݇, ߱, ሻݕ|߶ ൌ ሺ,ఠ,థ|௬ሻሺ,ఠ,థሻ ሺ,ఠ,థ|௬ሻሺ,ఠ,థሻఋሺ,ఠ,థሻ    (5) 
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At each iteration, there are two steps, a parameter updating step, with fixed dimension, and a 
dimension-changing step that allows jumps between different numbers of returns. This latter increase 
or decrease can be achieved by a birth of a new, or splitting of an existing return, or a death of an 
existing, or a merging of two existing returns. Hence a single ‘sweep’ of an ideal Markov chain for all 
the parameters of interest is 

Algorithm 1: Updating of parameters in a multispectral RJMCMC algorithm 
Fixed dimension (known number of layers, k): 

• Update ϕz  
o Update area vector, β 
o Update position vector, zo 

• Update ϕλ  
o Update abundance vector, ω 
o Update Prospect model, Cab and Cm 

• Update background values, Bλ 

Change of dimension, k 
• Birth or split of return/layer, increments k 
• Death or merge of two returns/layers, decrement k  

A proposed move is accepted with the general probability,  ߙሺ݇, ߱, ߶, ݇ᇱ, ߱ᇱ, ߶Ԣሻ ൌ ݉݅݊ ቄ1, గ൫ᇲ,ఠᇲ,థᇲ|௬൯గሺ,ఠ,థ|௬ሻ ܺ ൫ᇲ,ఠᇲ,థᇲ,,ఠ,థ൯ሺ,ఠ,థ,ᇲ,ఠᇲ,థᇲሻቅ    (6) 

where αm is the acceptance probability for a move from (k,ω,φ) to (k’,ω’,φ’), π is the target 
distribution, y the data distribution, qm the proposal distribution, and the subscript m denotes the type 
of move. For parameter updating at a fixed number of returns, this reduces to the conventional 
Metropolis-Hastings probability,  ߙሺ߶, ߱, ߶ᇱ, ߱Ԣሻ ൌ ݉݅݊ ቄ1, గ൫ఠᇲథᇲ|௬൯గሺఠ,థ|௬ሻ ൈ ୯ౣ൫னᇲ,மᇲ,ன,ம൯୯ౣሺ,ன,ம,னᇲ,மᇲሻቅ    (7) 

The birth/death and split/merge moves require a change of dimension and, therefore, RJMCMC is 
used. Considering the birth death moves, then the acceptance probability becomes  ߙሺ݇, ߱, ߶, ݇ᇱ, ߱Ԣ, ߶ᇱሻ ൌ ݉݅݊ ቄ1, గ൫ᇲ,ఠᇲథᇲ|௬൯గሺ,ఠ,థ|௬ሻ ൈ ୰ౣ൫ఠᇲ,థᇲ,ఠ,థ൯୰ౣሺఠ,థ,ఠᇲ,థᇲሻ ൈ ቚఋ൫ఠᇲ,థᇲ൯ఋሺఠ,థ,௨ሻቚቅ   (8) 

where rm(x) is the probability of choosing move type m when in state (ω,φ), u is a vector of continuous 
random variables which ensures the reversibility of the deterministic function φ’,h(ω,φ, u), which 
allows the move to a higher-dimensional space and q(u) is the probability density function of u. The 
Jacobian term, arising from the change of variable from (ω,φ, u), to (ω’,φ’), ensures the dimension 
balancing condition that allows reversible jumps between different dimensions of k.  

4. Determining Structure from Single Wavelength LiDAR Data 

To demonstrate the recovery of structural data from full waveform LiDAR we used the system 
described in [42] to measure a 10 by 10 matrix of full waveforms of a small conifer on a bright day in 
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high white cloud, as shown in Figure 4. The stand-off distance was ~325 m from the baseboard. This 
resulted in a beam spot size at the target of approximately 14 mm. The baseboard was half soil, half 
grass, with a side dimension of 1,250 mm. The height of the conifer was 1.10 m. The laser wavelength 
was 842 nm, repetition rate 3 MHz and illumination power at the target about 50 μW on average. As 
the laser source was low, each measurement used a 10s dwell time, and was repeated at temporal 
resolutions of 4 ps and 16 ps. 

Figure 4. (a) Photograph of the small conifer mounted on a mixed soil and grass 
baseboard. The height of the conifer was ~1.10 m. (b) Full waveform from central pixel 
(c) from peripheral pixel (d) integrated signal formed by summing all pixel contributions. 

 
(a) 

(b) 

(c) (d) 

If we look at Figure 4(b), it is clear that little light penetrates to ground level, even in such a small, 
sparsely foliated specimen, but we can see a number of peaks below (right) of the first return. In 
Figure 4(c), we observe structure from the side of the tree and the ground beneath. Figure 4(d) shows 
the integrated return from all 100 pixels of the tree image and is equivalent to a wider footprint image 
of the tree as a whole, although the background level is higher. In the integrated plot, the three tier 
structure of the tree is very evident as the three leftmost peaks. The higher bimodal peak on the right is 
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the ground return, distributed in depth as the LiDAR beam is not normal to the ground plane. The dip 
in the middle is where the ground is obscured below the tree. 

We estimate the numbers, amplitudes and positions of the several “layers” in the conifer. We do not 
yet attempt to retrieve any biochemical parameters as there is no information about spectral variation. 
The aggregated counts shown in Figure 4(d) are a result of reflections from densely distributed needle, 
twig, branch, trunk and ground data, compounded by background counts and multiple reflections. We 
cannot say whether a given amplitude of return is due to a large area of low reflectivity, or a small area 
of high reflectivity, where reflectivity depends on material. We use non-informative priors on the 
number, position and amplitude/area of the returns. In summary, we recover a variable dimension 
layered model, tree height and layer area distribution, and a single sweep of the algorithm is now 

Algorithm 2: updating of structural parameters only from a single wavelength 
Fixed dimension (known layer positions): 

• Update ϕz  
o Update amplitude vector, β 
o Update position vector, zo 

• Update background values, Bλ 

Change of dimension, k 
• Birth or split of return/layer, increments k 
• Death or merge of two returns/layers, decrement k 

Figure 5. (a) Integrated response from all 100 pixels of the tree image. The blue curve 
shows the real, raw data, and the red curve the result of a synthetic, noise-free waveform 
generated from the parameter estimation by RJMCMC. (b) This shows the trace of k for 
105 iterations, and the a-posteriori distribution on k, the number of layers used to 
approximate the waveform. 

 
(a)       (b) 

The red curve in Figure 5(a) shows an exemplary result of an RJMCMC chain having 105 iterations, 
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shown in Figure 5(b) and the final parameter values, p(ϕ|k,y), for the most likely number of “layers” 
are tabulated in Table 1. Due to the random sampling and finite run length of the algorithm, different 
runs will produce different values for both k and the subsequent distribution of peaks and amplitudes, 
but in general the accumulated errors between the two curves are equivalent. For the most probable 
k = 19, the other parameters are tabulated below. 

Table 1. Positions and amplitudes of layers on the measured, 842 nm integrated LiDAR 
data from small conifer. The background level was estimated at 854.2 counts and the mean 
rms fitting error was 0.67 counts. 

Position (bins) 478 517 547 601 626 662 686 706 729 759 

Amplitude (counts) 48.6 108.1 116.0 141.1 75.9 97.6 157.5 145.0 124.2 141.7 

Position (bins) 822 841 849 869 887 910 926 940 959  

Amplitude (counts) 291.5 279.9 142.8 202.4 165.7 186.9 110.2 188.0 249.6  

This is a purely structural measurement, so we do not recover physiological properties. Structural 
parameters such as height and biomass can be recovered from the measurements, and if appropriate by 
previously established regression relationships. For example, if we define the height as the separation 
between the minimum and maximum positions, then the separation is 440 bins of width 16 ps which 
corresponds to 1.06 m, allowing for the go-return path. This height is relative to the furthest ground 
position and equates to the known size and geometry of the tree and baseboard. The amplitudes of 
return are more problematic; as noted above, we would need to assume a known mixture model to 
measure leaf area index, and model the transmission path effectively. If we measure a continuous 
canopy, then we can assume a model of penetration where the incident light at each layer is reduced by 
the already reflected or absorbed light at higher layers. In this experiment, however, as the single tree 
is scanned as an image and the several counts integrated, the bulk of the returns at lower levels of the 
tree are from the sides rather than from penetrations into the tree at the centre. (The same would be 
true if we had deliberately increased beam divergence to give a wide footprint.)  

5. Determining Structure and Photochemical Properties from Multi Spectral LiDAR Data 

5.1. Spectral Data and the Ill-Posed Problem 

With reference to Algorithm 1, we could in theory apply simultaneous inversion of all parameters of 
interest. This involves the computation of likelihood functions on all wavelengths for every parameter 
proposal, and has in general great complexity defined both by the number of iterations in the Markov 
chain, and the number of bins in the histograms of photon counts. Further, we observe that in principle, 
the positions (but not the amplitudes) of the returns should be identical if all are aligned, as all should 
impact the same surfaces, at least to the first reflection. However, we cannot hope to recover all 
parameters unambiguously from four wavelengths, which we consider here as those necessary to 
recover NDVI and PRI, as the likelihood function can have many maxima for different values of 
abundance, Cab and Cm.  

To demonstrate the complex nature of parameter inversion, consider the variation of NDVI with 
different values of abundance and Cab, illustrated in Figure 6, using spectral data generated from 
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PROSPECT and Spruce bark. We do not consider variation in bark spectra or leaf Cm. This clearly 
shows that NDVI can assume any value for abundance dependent on the modelled density of Cab, or 
vice versa. In principle, with appropriate proposal management, we might explore loci of maximum 
likelihood, but that may not be tractable and is beyond the current scope. Rather, we investigate the 
recovery of two subsets of structural and photochemical parameters as defined in Section 5.2. 

Figure 6. Variation of NDVI as a function of Cab and leaf/bark ratio. 

 

5.2. Recovering Area and Photochemical Parameters from Multispectral Data 

We use the same data to demonstrate the recovery of area and photochemical parameters as Section 4. 
As we only have real, single waveform data, we create a synthetic set of full waveform data shown in 
Figure 7(d) at the four wavelengths of interest, i.e., 531 nm, 570 nm, 690 nm and 780 nm. To do this 
we first use RJMCMC to define a layered model as described in Section 4. We then define an 
abundance model using the data of Wang and Jarvis [20] to model the distribution of current, first and 
second year leaves, and defining Cab concentrations from Malenovsky [21]. We further assume that the 
overall proportion of NPV to PV returns is about 0.06, as measured by Hancock [37] in his 
simulations. This gives simulated abundance and Cab profiles as shown in Figure 6. To generate the 
waveforms shown in Figure 7, we finally add Poisson distributed noise. We stress that these are not 
true distributions, but have some prior basis, and provide ground truth to evaluate the algorithm. 

We can make some general observations on these spectra. First the ground return is assumed to be 
soil alone, so there is an increase in reflectance with wavelength because the soil reflectance is 
monotonically increasing. Examining the canopy, we have assumed predominant returns from needle 
rather than woody material, so that the peak at 531 nm and the dip in reflectance at 690 nm are 
observed even though some monotonically increasing bark reflectance is present. 
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Figure 7. (a) Assumed distribution of current, first year, and older leaves using published 
data. (b) Normalised distributions of leaf bark and soil used in the simulations (c) Resulting 
Cab profile using previous data (d) Example of generated multispectral signature with 
added noise. 

(a) 
 

(b) 

(c) 
 

(d) 
The inversion process recovers background, positions and amplitudes from a single spectrum 

(780 nm) similar to Algorithm 2 (Stage 1), then fixes the dimension (k) and positions in a multispectral 
inversion (Stage 2). We have conducted experiments with many combinations of parameters, but 
demonstrate one example where the solution space is relatively stable. In addition to the structural 
measurement, we also measure Cab as a function of canopy penetration. Hence, the process is 
summarized as follows, 

Stage 1: Using a single wavelength: unknown number of layers, positions and amplitudes 
Fixed dimension (known number of layers, k): 

• Update ϕz  
o Update amplitude vector, β 
o Update position vector, zo 

• Update background values, Bλ 
Change of dimension, k 
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• Birth or split of return/layer, increments k 
• Death or merge of two returns/layers, decrement k  

Stage 2: Using multiple wavelengths: known number of layers and positions 
Fixed dimension (known number of layers, k, abundance vector, ω, and Cm): 

• Update ϕz  
o Update area vector, Α 

• Update ϕλ  
o Update Prospect model, Cab, for each layer 

• Update background values, Bλ 

There is a distinction between the calculation of the amplitude vector in a single waveform, which 
is related to the area and reflectance (and hence material) of the intersecting surfaces, and the area 
update in a multi spectral waveform, which depends on the known or current estimates of abundance 
and reflectance (from PROSPECT) to compute an amplitude in each waveform. 

First we consider a noise free example. As stated above, we use non-informative priors on all the 
parameters of interests, and effectively recover the positions, areas and Cab concentrations as a 
function of depth into the tree signature. The number of iterations of each chain was 4.104 and we used 
a burn-in period of 104, although this was not critical. As we can see from both the fitted waveform at 
531 nm (actually the worst fit) and the recovered area values in Figure 8, the process recovers the 
overall structural distribution well, as was the case with the real data in Section 4. Of more interest is 
the recovery of the Cab concentration in Figure 8(c). This shows that the profile is well recovered with 
a root mean square error of 1.96 ug·cm−2, but of course this is on noise free data. 

Figure 8. (a) An example of the recovered waveform in comparison with the synthesized 
data at 531 nm. (b) The recovered areas for a known abundance profile (c) A comparison 
of the recovered Cab concentrations against the true values. The root mean square error is 
1.96 ug·cm−2. 
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Figure 8. Cont. 

 
(c) 

We next investigate the more realistic example of synthesized TCSPC waveforms in which Poisson 
noise is added to each bin of the histogram in accordance with mean photon count level of the bin, i.e., 
data such as that shown in Figure 7(d). In running repeated tests on noisy data we observe that as both 
synthesis and recovery are random processes, at each run we both create a different set of spectral 
signatures and run a different set of chains. Hence the recovered layer positions should not and do not 
correspond exactly between any two runs, even though in general the waveforms are well 
approximated by the parameter recovery. Otherwise the initial conditions and chain lengths were 
equivalent to the noise free experiments. 

The first key observation from Figure 9 is that the areas and positions of the recovered layers, 
together with the assumed abundance values and the PROSPECT generated spectra model the raw data 
quite well, within the error of the generated noise distribution. This is one example, but the root mean 
square error is less than one count in all cases. In practice, the positions and corresponding areas can 
vary considerably, as the waveforms with noise may be fitted by several position, area, spectrum 
combinations. This can be seen in Figure 9(e,f), in which the complete set of recovered area and Cab 
parameters are shown on single graphs. First, the area graph can be compared with the noise free 
example in Figure 8(b); in Figure 9(e) we can see that it captures the three layer structure of the conifer 
well but at this stage we have no real ground truth for comparison. The Cab data of Figure 9(f) has been 
fitted by a polynomial of the third order (although this is not significant) and this can be compared to 
both the noise free example and the ground truth which is shown in the same graph. The parameter 
inversion does recover the decreasing trend of the Cab profile well, but is clearly some distance above 
the regression fit, and there is considerable scatter in the recorded points with a residual norm of 
approximately 100 counts. This illustrates again how difficult the problem is with only four spectral 
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measurements. If one looks at the likelihood function as a function of Cab variation, it is relatively flat, 
i.e., a slight variation in Cab estimation does not alter the synthesized waveform in comparison with the 
added noise. Again this suggests that we may need additional spectral data to fully resolve the 
problems of spectral un-mixing combined with physiological parameter recovery. Here, we were only 
interested in investigating wavelengths that were directly related to gross primary productivity but are 
exploring other frequencies that relate to water content of vegetation and fluorescence. The exact 
choice of these wavelengths depends primarily on optimal recovery of the Prospect parameters, other 
material parameters, together with system parameters including for example the detector spectral 
response and atmospheric transmission spectra. 

Figure 9. Results from repeated RJMCMC analysis on noisy multispectral data. (a–d) 
show fitted results from one trial at wavelengths 531 nm, 570 nm, 690 nm and 780 nm 
respectively. (e) shows the recovered area values as a function of bin number through the 
canopy for all 15 trials. (f) shows as scattered points the recovered Cab values, as a solid 
black line a regression fit to the scattered points, and as a solid red line the ground truth, 
i.e., the modeled Cab profile. 
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Figure 9. Cont. 

 
(e)       (f) 

6. Conclusions 

In this paper, we have developed and applied MCMC and RJMCMC simulation algorithms for 
Bayesian inference of the structural and biochemical parameters of a tree or forest canopy from 
multispectral LiDAR data. In particular, using a heterogeneous layered model, we have shown how it 
is possible to recover area indices as a function of variable “layer” position from a single LiDAR 
waveform, allowing a more detailed model of the structural profile than the commonly applied 
measures discussed in our review. We then extended our analysis to infer both structural and 
photochemical properties using a part-simulated set of four spectral LiDAR signatures. 

This analysis showed that is possible to combine the structural and photochemical inversion in a 
two-stage process, but that the problem is not fully resolved for several parameters. Constraining the 
analysis to a single parameter of interest, we were able to recover the chlorophyll profile as a function 
of tree or canopy depth, although this showed considerable variance when applied to simulated noisy 
data. In general, variations in the LiDAR spectra can be caused by tree species, the relative abundance 
of mixture components, changes in underlying terrain and structure such as slopes, and many other 
biochemical parameters in addition to chlorophyll content, as included in the PROSPECT model. Our 
analysis has made a number of a priori assumptions that would need to be justified in any deployed 
aerial or satellite system. Further, we have been restricted by the availability of suitable multispectral 
data, which has led to the inclusion of two different datasets for analysis, none of which is wholly 
satisfactory.  

The work has posed several imperatives for future work. First, the ill-posed nature of the inversion 
problem suggests we need to deploy a true multispectral or hyperspectral sensor to collect full 
waveform LiDAR data from natural forest canopies. To fully evaluate such data, we need to perform 
accompanying, traditional field based methods, e.g., hypsometer height measurements, high resolution, 
colour digital hemispherical photographs (separating leafy and woody canopy components), and 
profile radiometric measurements. Second, we need to develop and validate the multi-layer model 
against this true data, and determine whether this approach is valid for future development. For 
example, we make no allowance for absorption and transmission, and for the effects of multiple 
reflections beyond the first return along each ray direction. Third, we need to progressively remove 
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some of the a priori assumptions that we make when interpreting the data. Finally, although we are 
enthused by the prospect of hyperspectral LiDAR, we would not rule out the benefits of simultaneous 
recovery of passive hyperspectral imagery which may make interpretation of multispectral LiDAR 
data better posed. 

An extension of the ground based and simulation work presented here will take steps towards 
resolving forest structure and processes directly related to vegetation productivity. However there is a 
real need for an active (laser) system capable of measuring both structural parameters and 
physiological changes throughout entire forested canopies, including the understorey, which is only 
achievable from an airborne or spaceborne platform. At the time of writing no dedicated capability 
exists to increase the capacity for mapping biomass carbon and measure dynamic topography and 
ecosystem change in great detail. The proposed BIOMASS (European Space Agency) Earth Explorer 
mission is an attempt to address this issue, albeit with a capacity to monitor dramatic changes and  
re-growth, rather than detailed forest parameters at a high resolution directly. In this regard, an 
airborne or spaceborne multi spectral lidar instrument would provide valuable complementary data 
with greater information content, but less spatial coverage. This would be further enhanced by the 
capacity for vertically resolved discrimination of the types of surfaces that can be separated by spectral 
characteristics. A LiDAR instrument that actively measures vegetation spectral response in well-chosen 
narrow wavelength bands would provide unprecedented information both as a detailed sampling tool 
and for calibration of passively acquired multi-spectral vegetation data. 
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