Spectral Aging Model Applied to Meteosat First Generation Visible Band
Abstract
:1. Introduction
2. Data Selection and Processing
2.1. Selection of Targets
2.2. Reflectance Ratio r Time Series
2.3. Selecting Model Parameters
- (1)
- Simulate the spectral radiance L(λ) for different scene types, cloudiness types and geometries
- (2)
- Set the model parameters (s, β, γ) to an initial value
- (3)
- (4)
- Convert these simulated radiances into reflectances
- (5)
- Do the unfiltering through Equation (4), fitting the a and b values for these simulated reflectance values
- (6)
- (7)
- (8)
- Calculate the cost function (Equation (6))
- (9)
- If the variance is not yet the lowest possible, the Powell routine returns a new set of (s, β, γ) parameters and goes back to step 3.
3. Original Degrading Time Series
3.1. Aerosol Correction
3.2. 6-bit Digitisation
3.3. Saturation
3.4. Aerosol Corrected Time Series
4. Meteosat-2
5. Meteosat-3
5.1. Atlantic Ocean Data Coverage (ADC/XADC)
6. Meteosat-4
7. Meteosat-5
7.1. Indian Ocean Data Coverage (IODC)
8. Meteosat-6
9. Meteosat-7
9.1. Indian Ocean Data Coverage (IODC)
10. Discussion
11. Conclusions and Future Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van de Berg, L.C.J.; Schmetz, J.; Whitlock, J. On the calibration of the Meteosat water vapor channel. J. Geophys. Res.: Atmos 1995, 100, 21069–21076. [Google Scholar]
- Gube, M.; Gärtner, V.; Schmetz, J. Analysis of the operational calibration of the Meteosat infrared-window channel. Meteorol. Appl 1996, 3, 307–316. [Google Scholar]
- Tjemkes, S.A.; König, M.; Lutz, H.J.; van de Berg, L.C.J.; Schmetz, J. Calibration of Meteosat water vapor channel observations with independent satellite observations. J. Geophys. Res.: Atmos 2001, 106, 5199–5209. [Google Scholar]
- Koepke, P. Vicarious satellite calibration in the solar spectral range by means of calculated radiances and its application to Meteosat. Appl. Opt 1982, 21, 2845–2854. [Google Scholar]
- Kriebel, K.T.; Amann, V. Vicarious calibration of the Meteosat visible channel. J. Atmos.Ocean. Technol 1993, 10, 225–232. [Google Scholar]
- Moulin, C.; Lambert, C.E.; Poitou, J.; Dulac, F. Long term (1983–1994) calibration of the Meteosat Solar (VIS) channel using desert and ocean targets. Int. J. Remote Sens 1996, 17, 1183–1200. [Google Scholar]
- Lefèvre, M.; Bauer, O.; Iehle, A.; Wald, L. An Automatic method for the calibration of time-series of Meteosat images. Int. J. Remote Sens 2000, 21, 1025–1045. [Google Scholar]
- Rigollier, C.; Lefèvre, M.; Blanc, P.; Wald, L. The operational calibration of images taken in the visible channel of the meteosat series of satellites. J. Atmos. Ocean. Technol 2002, 19, 1285–1293. [Google Scholar]
- Govaerts, Y.M.; Clerici, M.; Clerbaux, N. Operational calibration of the meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens 2004, 42, 1900–1914. [Google Scholar]
- Brooks, D.R.; England, C.F.; Hunt, G.E.; Minnis, P. An intercalibration of METEOSAT-1 and GOES-2 visible and infrared measurements. J. Atmos. Ocean. Technol 1984, 1, 283–286. [Google Scholar]
- Sohn, B.J.; Schmetz, J.; Tjemkes, S.; Koenig, M.; Lutz, H.; Arriaga, A.; Chung, E.S. Intercalibration of the Meteosat-7 water vapor channel with SSM/T-2. J. Geophys. Res.: Atmos 2000, 105, 15673–15680. [Google Scholar]
- Doelling, D.R.; Nguyen, L.; Minnis, P. Calibration Comparisons between SEVIRI, MODIS and GOES Data. Proceedings of the EUMETSAT Meteorological Satellite Conference, EUMETSAT, Prague, Czech Republic, 31 May–4 June 2004; pp. 77–83.
- Saunders, R.W.; Stowe, L.L.; Hunt, G.E.; England, C.F. An intercomparison between radiation budget estimates from METEOSAT 1, Nimbus 7 and TIROS-N satellites. J. Clim. Appl. Meteorol 1983, 22, 546–559. [Google Scholar]
- Stewart, T.B.; Arnold, G.S.; Hall, D.F.; Marvin, D.C.; Hwang, W.C.; Owl, R.C.Y.; Marten, H.D. Photochemical Spacecraft Self-Contamination: Laboratory Results and Systems Impacts; Aerospace Report No. tor-0090(5470-01)-3; Chemistry and Physics Laboratory-Laboratory Operations: El Segundo, CA, USA, 1990. [Google Scholar]
- Govaerts, Y.M.; Arriaga, A.; Schmetz, J. Operational vicarious calibration of the MSG/SEVIRI solar channels. Adv. Space Res 2001, 28, 21–30. [Google Scholar]
- Decoster, I.; Clerbaux, N.; Baudrez, E.; Dewitte, S.; Ipe, A.; Nevens, S.; Blazquez, A.V.; Cornelis, J. Modeling the aging effects of Meteosat-7 visible band. J. Atmos. Ocean. Technol 2013, 30, 496–509. [Google Scholar]
- EUMETSAT. Available online: http://www.eumetsat.int/website/home/Data/Products/Calibration/MFGCalibration/index.html (accessed on 17 March 2014).
- Frink, M.; Folkman, M.; Darnton, L. Photodeposition of molecular contaminants with a vacuum ultraviolet solar illumination lamp. Proc. SPIE 1992, 1754, 46–57. [Google Scholar]
- Ipe, A.; Clerbaux, N.; Bertrand, C.; Dewitte, S.; Gonzalez, L. Pixel-scale composite top-of-the-atmosphere clear-sky reflectances for Meteosat-7 visible data. J. Geophys. Res 2003, 108, 4612. [Google Scholar]
- Loeb, N.G.; Manalo-Smith, N.; Kato, S.; Miller, W.F.; Gupta, S.K.; Minnis, P.; Wieliki, B.A. Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the earth’s radiant energy system instrument on the tropical rainfall measuring satellite. Part I: Methodology. J. Appl. Meteorol 2003, 42, 240–265. [Google Scholar]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall MEasuring Mission (TRMM) sensor package. J. Atmos. Ocean. Technol 1998, 15, 809–817. [Google Scholar]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Manalo-Smith, N.; Doelling, D.R. Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the earths radiant energy system instrument on the terra satellite. Part II: Validation. J. Atmos. Ocean. Technol 2007, 24, 564–584. [Google Scholar]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—description and examples of use. Atmos. Chem. Phys. Discuss 2005, 5, 1319–1381. [Google Scholar]
- Key, J.R.; Yang, P.; Baum, B.A.; Nasiri, S.L. Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res 2002, 107. [Google Scholar] [CrossRef]
- Decoster, I.; Clerbaux, N.; Govaerts, Y.M.; Baudrez, E.; Dewitte, S.; Ipe, A.; Nevens, S.; Blazquez, A.V.; Cornelis, J. Evidence of pre-launch characterization problem of Meteosat-7 visible spectral response curve. Remote Sens. Lett 2013, 4, 1008–1017. [Google Scholar]
- Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J 1964, 7, 155–162. [Google Scholar]
- Geogdzhayev, I.V.; Mishchenko, M.I.; Rossow, W.B.; Cairns, B.; Lacis, A.A. Global two-channel AVHRR retrievals of aerosol properties over the ocean for the period of NOAA-9 observations and preliminary retrievals using NOAA-7 and NOAA-11 data. J. Atmos. Sci 2002, 59, 262–278. [Google Scholar]
- Mishchenko, M.I.; Geogdzhayev, I.V.; Cairns, B.; Rossow, W.B.; Lacis, A.A. Aerosol retrievals over the ocean using channel 1 and 2 AVHRR data: A sensitivity analysis and preliminary results. Appl. Opt 1999, 38, 7324–7341. [Google Scholar]
- Loeb, N.G.; Kato, S. Top-of-atmosphere direct radiative effect of aerosols over the tropical oceans from the Clouds and the Earth’s Radiant Energy System (CERES) satellite instrument. J. Clim 2002, 15, 1474–1484. [Google Scholar]
- Govaerts, Y.M.; Lattanzio, A. Retrieval error estimation of surface albedo derived from geostationary large band satellite observations: Application to Meteosat-2 and Meteosat-7 data. J. Geophys. Res. Atmos. (1984–2012) 2007, 112, 262–278. [Google Scholar]
- Kondratyev, K.Y.; Galindo, I. Volcanic Activity and Climate, 1st ed; A. Deepak Publishing: Virginia, VA, USA, 1997. [Google Scholar]
- Govaerts, Y.M. Exploitation of the Meteosat Archive for Climate Monitoring: Expectations and Limitations. Proceedings of the 1999 EUMETSAT Meteorological Satellite Data Users’ Conference, EUMETSAT, Copenhagen, Denmark, 6–10 September 1999; pp. 255–266.
- Govaerts, Y.M. Govaerts Consulting, Brussels, Belgium. Personal communication. August 2013.
Property | VIS | WV | IR |
---|---|---|---|
λmin–λmax | 0.4–1.1 μm | 5.7–7.1 μm | 10.5–12.5 μm |
Temporal frequency | 25 min scanning + 5 min retracing scan mirror | ||
Number of detectors | 2 | 1 | 1 |
Pixel resolution | 2.5 × 2.5 km | 5 × 5 km | 5 × 5 km |
Image size | 5000 × 5000 pixels | 2500 × 2500 pixels | 2500 × 2500 pixels |
Satellite | Longitude | Launch Date | Data Period Used | Gain Level | Calibration Coefficient | Offset | Solar Irradiance |
---|---|---|---|---|---|---|---|
Meteosat-2 | 0° | 19/06/1981 | 12/02/1982–11/05/1987 | 0 | 0.6519 | 3.730 | 499.9 |
12/05/1987–09/08/1988 | 1 | 0.5454 | 3.685 | 499.9 | |||
Meteosat-3 | 0° | 15/06/1988 | 11/08/1988–27/06/1989 | 1 | 0.6277 | 3.712 | 602.2 |
13/01/1990–09/12/1990 | 0 | 0.7571 | 4.001 | 602.2 | |||
(ADC) | 50°W | 01/08/1991–22/01/1993 | 0 | 0.7571 | 4.001 | 602.2 | |
(XADC) | 75°W | 21/02/1993–22/05/1995 | 0 | 0.7571 | 4.001 | 602.2 | |
Meteosat-4 | 0° | 06/03/1989 | 19/06/1989–03/02/1994 | 4 | 0.7320 | 4.661 | 599.5 |
Meteosat-5 | 0° | 02/03/1991 | 20/01/1994–03/02/1997 | 5 | 0.8142 | 4.460 | 690.6 |
(IODC) | 63°E | 01/07/1998–05/04/2007 | 5 | 0.8142 | 4.460 | 690.6 | |
Meteosat-6 | 0° | 20/11/1993 | 29/01/1997–13/06/1998 | 5 | 0.8376 | 5.542 | 691.4 |
Meteosat-7 | 0° | 02/09/1997 | 03/06/1998–11/07/2006 | 6 | 0.9184 | 4.840 | 690.8 |
(IODC) | 57°E | 01/11/2006–20/09/2012 | 6 | 0.9184 | 4.840 | 690.8 |
Surface Type | Number of Sites | Weight wi |
---|---|---|
clouds | 60 | 0.6562 |
ocean | 55 | 0.1611 |
dark vegetation | 57 | 0.0252 |
bright vegetation | 102 | 0.0554 |
dark desert | 47 | 0.0268 |
bright desert | 37 | 0.0753 |
Surface Type | Meteosat-2 | Meteosat-3 | ||
Before | After | Before | After | |
convective clouds | −0.9411 ± 0.0489 | −0.0678 ± 0.0477 | −0.8336 ± 0.3232 | 0.0075 ± 0.3264 |
ocean | −0.3510 ± 0.1219 | 0.1316 ± 0.1222 | −0.7546 ± 0.3728 | −0.1708 ± 0.3769 |
dark vegetation | −0.7939 ± 0.0659 | −0.0262 ± 0.0509 | −2.1408 ± 0.2955 | −1.4830 ± 0.2999 |
bright vegetation | −0.5011 ± 0.0426 | 0.2081 ± 0.0436 | −1.7529 ± 0.2232 | −1.1043 ± 0.2293 |
dark desert | −0.3485 ± 0.0474 | 0.4394 ± 0.0520 | −1.6432 ± 0.2326 | −0.9330 ± 0.2402 |
bright desert | −0.5794 ± 0.0437 | 0.2440 ± 0.0464 | −1.2364 ± 0.1558 | −0.4679 ± 0.1625 |
Surface Type | Meteosat-4 | Meteosat-5 | ||
Before | After | Before | After | |
convective clouds | −2.1375 ± 0.0652 | −0.1832 ± 0.0649 | −0.8667 ± 0.1033 | 0.1179 ± 0.1057 |
ocean | −1.8306 ± 0.1168 | 0.0407 ± 0.1153 | −1.4873 ± 0.1062 | −0.6385 ± 0.1413 |
dark vegetation | −1.1990 ± 0.0880 | 0.3420 ± 0.0958 | −1.1213 ± 0.1158 | −0.4815 ± 0.1169 |
bright vegetation | −1.3130 ± 0.0733 | 0.2756 ± 0.0812 | −1.0542 ± 0.0922 | −0.3321 ± 0.0926 |
dark desert | −1.5212 ± 0.0881 | 0.2430 ± 0.0939 | −0.6019 ± 0.0894 | 0.2502 ± 0.0903 |
bright desert | −1.7410 ± 0.0822 | 0.1453 ± 0.0868 | −0.7289 ± 0.0708 | 0.2000 ± 0.0717 |
Surface Type | Meteosat-6 | Meteosat-7 | ||
Before | After | Before | After | |
convective clouds | −0.9775 ± 0.6855 | 1.0503 ± 0.6779 | −1.8838 ± 0.0293 | −0.1016 ± 0.0261 |
ocean | −2.2195 ± 0.7879 | −0.3318 ± 0.7890 | −2.0222 ± 0.0297 | −0.3107 ± 0.0268 |
dark vegetation | −1.5746 ± 0.6235 | −0.3872 ± 0.6344 | −1.4012 ± 0.0221 | −0.1232 ± 0.0201 |
bright vegetation | −1.5382 ± 0.4842 | −0.1884 ± 0.5002 | −1.4073 ± 0.0215 | −0.0281 ± 0.0201 |
dark desert | −1.3293 ± 0.5439 | 0.2368 ± 0.5553 | −1.5427 ± 0.0226 | 0.01731 ± 0.0236 |
bright desert | −1.0094 ± 0.2533 | 0.7208 ± 0.2620 | −1.6924 ± 0.0195 | −0.0026 ± 0.0209 |
Meteosat-5 IODC | Meteosat-7 IODC | |||
---|---|---|---|---|
Surface Type | Before Ageing Correction | After Ageing Correction | Before Ageing Correction | After Ageing Correction |
convective clouds | −0.9833 ± 0.0267 | −0.2384 ± 0.0279 | −0.917 ± 0.047 | −0.087 ± 0.0476 |
ocean | −0.5651 ± 0.0453 | 0.2848 ± 0.0451 | −0.612 ± 0.051 | 0.263 ± 0.053 |
dark vegetation | −0.6889 ± 0.0257 | −0.1921 ± 0.0268 | −0.340 ± 0.050 | 0.205 ± 0.052 |
bright vegetation | −0.6563 ± 0.0226 | −0.1042 ± 0.0236 | −0.481 ± 0.041 | 0.102 ± 0.042 |
dark desert | −0.7204 ± 0.0240 | −0.0856 ± 0.0255 | −0.546 ± 0.046 | 0.148 ± 0.049 |
bright desert | −0.9257 ± 0.0193 | −0.2355 ± 0.0206 | −0.698 ± 0.029 | 0.069 ± 0.031 |
Satellite | Normalisation Coefficient |
---|---|
Meteosat-2 | 0.9889 |
Meteosat-3 | 1.0096 |
Meteosat-4 | 1.0195 |
Meteosat-5 | 1.0303 |
Meteosat-6 | 0.9903 |
Meteosat-7 | 1.0000 |
Satellite | Slope (yr−1) | α (day−110−3) | β | γ (μm−1day−1 10−3) | stddev | Normalised Calibration |
---|---|---|---|---|---|---|
Meteosat-2 | −0.017 ± 0.008 | 0.44 ± 0.34 | 0.90 ± 0.26 | 0.000 ± 0.000 | 0.023 ± 0.012 | 0.645/0.539 |
Meteosat-3 | −0.009 ± 0.027 | 0.10 ± 0.29 | 0.75 (fixed) | 0.000 ± 0.396 | 0.024 ± 0.047 | 0.634/0.764 |
Meteosat-4 | −0.026 ± 0.002 | 0.28 ± 0.08 | 0.74 ± 0.15 | 0.049 ± 0.037 | 0.020 ± 0.014 | 0.746 |
Meteosat-5 | −0.011 ± 0.001 | 0.12 ± 0.01 | 0.75 (fixed) | 0.055 ± 0.020 | 0.017 ± 0.003 | 0.839 |
Meteosat-6 | −0.023 ± 0.018 | 0.25 ± 0.05 | 0.75 (fixed) | 0.100 ± 0.025 | 0.030 ± 0.001 | 0.829 |
Meteosat-7 | −0.032 ± 0.002 | 0.37 ± 0.06 | 0.77 ± 0.02 | 0.074 ± 0.011 | 0.017 ± 0.011 | 0.918 |
Surface Type | Meteosat-4–7 (17 yrs) | Meteosat-2–7 (24 yrs) |
---|---|---|
convective clouds | 0.0123 | 0.0239 |
ocean | 0.0167 | 0.0611 |
dark vegetation | 0.0140 | 0.0437 |
bright vegetation | 0.0120 | 0.0266 |
dark desert | 0.0142 | 0.0230 |
bright desert | 0.0098 | 0.0099 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Decoster, I.; Clerbaux, N.; Baudrez, E.; Dewitte, S.; Ipe, A.; Nevens, S.; Blazquez, A.V.; Cornelis, J. Spectral Aging Model Applied to Meteosat First Generation Visible Band. Remote Sens. 2014, 6, 2534-2571. https://doi.org/10.3390/rs6032534
Decoster I, Clerbaux N, Baudrez E, Dewitte S, Ipe A, Nevens S, Blazquez AV, Cornelis J. Spectral Aging Model Applied to Meteosat First Generation Visible Band. Remote Sensing. 2014; 6(3):2534-2571. https://doi.org/10.3390/rs6032534
Chicago/Turabian StyleDecoster, Ilse, Nicolas Clerbaux, Edward Baudrez, Steven Dewitte, Alessandro Ipe, Stijn Nevens, Almudena Velazquez Blazquez, and Jan Cornelis. 2014. "Spectral Aging Model Applied to Meteosat First Generation Visible Band" Remote Sensing 6, no. 3: 2534-2571. https://doi.org/10.3390/rs6032534
APA StyleDecoster, I., Clerbaux, N., Baudrez, E., Dewitte, S., Ipe, A., Nevens, S., Blazquez, A. V., & Cornelis, J. (2014). Spectral Aging Model Applied to Meteosat First Generation Visible Band. Remote Sensing, 6(3), 2534-2571. https://doi.org/10.3390/rs6032534