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Abstract: The enormous increase of remote sensing data from airborne and space-borne platforms,
as well as ground measurements has directed the attention of scientists towards new and efficient
retrieval methodologies. Of particular importance is the consideration of the large extent and the
high dimensionality (spectral, temporal and spatial) of remote sensing data. Moreover, the launch
of the Sentinel satellite family will increase the availability of data, especially in the temporal
domain, at no cost to the users. To analyze these data and to extract relevant features, such
as essential climate variables (ECV), specific methodologies need to be exploited. Among these,
greater attention is devoted to machine learning methods due to their flexibility and the capability
to process large number of inputs and to handle non-linear problems. The main objective of this
paper is to provide a review of research that is being carried out to retrieve two critically important
terrestrial biophysical quantities (vegetation biomass and soil moisture) from remote sensing data
using machine learning methods.
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1. Introduction

The importance of biomass (BM) and soil moisture (SM) in the global climate system
has recently been underlined by the Global Climate Observing System (GCOS) by endorsing
them as an Essential Climate Variables (http://www.wmo.int/pages/prog/gcos/index.php?name=
EssentialClimateVariables). SM is in fact a key state variable that influences both global water and
energy budgets by controlling the redistribution of rainfall into infiltration, runoff, percolation in
soil and evapotranspiration. SM is therefore a space-effective driver of hydrological and vegetation
processes. Extreme SM conditions that are represented by saturation and the permanent wilting point
(whose values depend on soil texture and structure) can promote flood events or indicate droughts.
For the meteorological processes, SM is the “memory of precipitation” because it stores rainwater
and emits it via evaporation or runoff with some delay. Due to these characteristics and to the great
effect on the surface energy exchange, SM content may have a strong impact on climate change
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dynamics. So far, only point measurements of SM are available on a daily and/or weekly basis at
very few stations, and there is a burning need for spatial information about the SM state of entire
landscapes and regions with enough frequency in time to better understand small- and large-scale
drought pattern, crop failures and flood generation processes.

On the other hand, the carbon cycle is also an important regulator of our climate due to the role
of CO; emitted into the atmosphere or sequestered in more stable components. Vegetation, and in
particular the forests, regulates the breath of our planet, acting as both sinks and sources of CO5.

Biomass information provides an estimate of terrestrial carbon stocks, and the observation
of biomass change is a direct measurement of carbon sequestration or loss [1]. Changes in
vegetation biomass have a critical impact on the greenhouse gas balance, as well as the future
evolution of climate change [2]. CO, uptake by plants is perhaps the only sustainable way
of reducing the atmospheric CO, (United Nations Environment Programme World Conservation
Monitoring Centre [3]). Biomass also influences biodiversity and environmental processes, such as
the hydrological cycle, soil erosion and degradation [4].

The important role biomass plays in the global ecosystem has long been recognized, but the
influences of changes in biomass on the environmental processes are not yet fully understood [1].
To reduce these uncertainties, the biomass distribution needs to be estimated accurately at local to
global scales, as well as its variation in time [4,5].

Forests play an important role in the global carbon cycle, since forests absorb approximately
one twelfth of the Earth’s atmospheric CO; stock every year, and much of this carbon is
stored as woody biomass or recycled into the soil. Overall, forested ecosystems account for
approximately 72% of the Earth’s terrestrial carbon storage [6]; therefore, aboveground biomass is
also on the Global Climate Observing System (GCOS) list of Essential Climate Variables. Thus,
accurate measurements of biomass and other forest biophysical parameters are essential for better
understanding of the global carbon cycle and global warming.
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Figure 1. Cumulative frequency of remote sensing studies for biomass and soil moisture using
machine learning methods.

The paper presents a review of the results obtained in the domain of SM and BM retrieval by
addressing different machine learning methodologies and different types of remotely-sensed data [7].
Figure 1 shows the number of publications on biomass and soil moisture retrieval reported in the
literature using machine learning methods. The paper is organized as follows. Section 2 provides
some concepts on the retrieval approaches and a short description of the main machine learning
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methods. Sections 3 and 4 are dedicated to the review of machine learning retrievals of biomass and
soil moisture, respectively. Section 5 summarizes the paper and discusses future trends.

2. Retrieval Approaches: Concepts and Challenges

This section discusses the general concept of parameter retrieval from remote sensing data.
Furthermore, we address the specific challenges associated with the retrieval of geo-/bio-physical
parameters. The section concludes with a top-level discussion of the common statistical and machine
learning parameter retrieval methodologies.

2.1. Limitations and Challenges

Changes in the chemical, physical and structural characteristics of a target (either natural or
man-made) determine the variations of its electromagnetic response in terms of absorption, emission,
transmission and reflection [8,9]. The possibility to quantitatively infer the geo-/bio-physical variable
of interest from the measurements performed by a remote sensing sensor is based on this behavior.
However, this task is not straightforward for many reasons:

o The complexity and non-linearity that often characterize the relationship between remote
sensing measurements and target variables [10]: On the one hand, geo-/bio-physical variables
may affect the electromagnetic properties of a target differently along their range of variability,
potentially leading to signal saturation and other nonlinear effects [11]. On the other hand,
electromagnetic radiation usually shows a non-uniform sensitivity to the different physical
phenomena depending, for instance, on the wavelength of the signal or the acquisition
geometry [12-14].

e The ill-posed nature of the retrieval problem: The total electromagnetic response of
a target is typically the result of multiple contributions, each one determined by a
different structural, chemical or physical characteristic [15]. This aspect determines the
so-called variable equifinality issue, or parameter ambiguity, i.e., the phenomenon whereby
similar electromagnetic responses can be associated with different geo-/bio-physical variable
configurations [16,17].

e The image formation process at the sensor level: Remote sensing sensors provide a quantized
representation of the investigated scene in the spatial domain. The electromagnetic energy
measured within an elementary resolution cell is the result of the presence of multiple objects
on the ground with slightly (or sometimes strongly) different characteristics. This behavior is
the origin of a mixed contribution at the sensor level. Even by increasing the spatial resolution,
this mixing phenomenon cannot be completely canceled, as it remains in pixels representing the
boundaries between objects [18]. Moreover, the response corresponding to a pixel can also be
affected by radiation components coming from the surrounding of the investigated area [19].

o The influence of external disturbing factors: The remote sensing acquisition system is not ideal,
but affected by disturbing factors, such as the noise and non-linearity at the sensor level and the
presence of the atmosphere. Even if these issues can be determined and corrected to some extent
with the help of calibration and atmospheric correction procedures, they may still corrupt the
signal measured at the sensor level and, thus, introduce further ambiguity and complexity in
the retrieval process [20,21].

These reasons outline the general complexity of the retrieval problem. However, they are not
meant to be exhaustive, as many other issues can be encountered when dealing with parameter
retrieval in specific application contexts (e.g., the influence of topography in mountain areas, temporal
changes in time series).
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2.2. Retrieval Problem

The retrieval method is the core of a retrieval system. It assumes that the addressed retrieval
problem can be expressed in terms of a mapping between a set of values of features extracted from
the signals acquired using remote sensors and the desired continuous variable that is related to the
target characteristics. From an analytic viewpoint, this concept can be expressed as:

y=flx)+e ey

where f denotes the desired and unknown mapping and e is a random variable taking into account
all of the random noise contributions affecting the retrieval problem. From the methodological
perspective, the retrieval of y corresponds to the problem of determining a mapping f’ as close as
possible to the true mapping f.

2.3. Classical Parameter Retrieval Methodologies

In the geo-/bio-physical parameter retrieval literature, this task has usually been addressed
following two approaches: (i) the derivation of empirical data-driven relationships; and (ii) the
inversion of physical models.

The first approach relies on the availability of a set of reference samples, i.e., couples of in situ
measurements of the desired target variable associated with the corresponding measurements of the
remote sensor. These samples are exploited for deriving an empirical mapping, e.g., by means of
statistical regression techniques in combination with parametric (linear, logarithmic or polynomial)
functions. Then, the identified relationship is extended to the whole satellite image. Examples can be
found in studies for the retrieval of vegetation characteristics from optical remote sensing data [22,23]
and suspended chemical and biological particles in coastal waters [24].

Analytically more sophisticated parametric functions have been defined when the complexity of
the retrieval problem increases. This is the case of the operational Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) chlorophyll concentration algorithm [25], were ratios between spectral bands and
log transformations were used to take into consideration the non-linear behavior of the investigated
mapping. Empirical relationships are appealing since they are typically fast to derive and quite
accurate. Moreover, they abstract complex physical phenomena to a higher level, which can be easily
addressed by non-experts without a specific background in the field. The main drawback is the need
of a set of possibly good representative reference samples. The collection of ground measurements
requires human intervention and is usually a time-consuming and expensive task. Moreover, errors
may occur for various reasons during the measurement process. This aspect affects the quality
and quantity of reference samples available. Another important issue is the fact that empirical
relationships are typically site and sensor dependent, since they are derived from samples collected
under specific operational conditions. This limits the possibility to extend their use to different areas
and different remote sensing systems, since they remain valid only under the conditions in which
reference samples have been collected [22,26].

The second approach demands the definition of the desired mapping function to analytic
electromagnetic models. Such models are based on a solid physical description of the mechanisms
involving the interaction of the electromagnetic radiation and the target object of interest. In the
direct operational way, they simulate the response of a target object as a function of: (i) the target
characteristics (i.e., structural, chemical and biophysical variables); and (ii) the signal characteristics
(i.e., wavelength, incidence/reflection angle, etc.). Thus, in the inverse operational way, they can be
used to represent the mapping between the measurements at the remote sensor and the variable of
interest. A wide variety of analytic electromagnetic models have been proposed in the literature, with
different levels of complexity and generality.

When dealing with microwave emission and scattering, one of the most widely-used models is
the integral equation model by Fung et al. [27], which is often coupled with models of homogeneous
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2D layers or heterogeneous 3D structures to handle complex targets, such as vegetated areas
and snow packs [28,29]. In the field of vegetation variable retrieval from optical signals, the
PROSAIL model (a combination of the PROSPECT leaf optical properties model and the SAIL canopy
bidirectional reflectance model, used to study plant canopy spectral and directional reflectance in
the solar domain) has been used in a wide variety of remote sensing studies [13,30]. Many other
examples can be found in the literature [31,32]. Thanks to the solid physical foundation and the wide
range of applicability (in terms of both target properties and system characteristics), electromagnetic
models can operate in more general scenarios that are difficult to represent through the collection
of in situ measurements. For this reason, they are particularly appealing to address the estimation
of geo-/bio-physical variables from remote sensing data. A major concern is related to the fact that
they rely on assumptions that simplify the representation of real phenomena. This issue is intrinsic
in the modelization process and can be reduced (but not completely eliminated) by increasing the
complexity of the model, at the price of reduced generalization ability [33] and potentially increased
parameter ambiguity. Another drawback of electromagnetic models is their high complexity and
dependence on a huge number of input parameters. These characteristics make the inversion process
often analytically not tractable. To face this problem, many different inversion strategies have been
proposed in the literature. The most common ones are: (i) iterative search algorithms, such as
the Nelder-Mead and the Newton-Raphson methods [26,34], which iteratively try different model
parameter configurations to minimize a dissimilarity measure between the simulated and measured
electromagnetic response of a target object; (ii) look-up table matching, which searches among a set
of pre-computed simulated spectra for the most similar to the remote measurement [33]; and (iii)
regression methods, which exploit a set of simulated samples (i.e., couples of target geo-/bio-physical
variables and simulated electromagnetic responses) to infer the inverse theoretical mapping [35].

2.4. Machine Learning Methodologies

Regardless of the considered approach, either empirical or based on a physical model, the high
complexity and non-linearity of retrieval problems requires the development and usage of more
advanced methods. A class of highly powerful regression methods, which has been successfully
introduced in the field of geo-/bio-physical variable estimation for two decades, generating an
increasing interest in the remote sensing community, is represented by non-linear machine learning
techniques. Due to advanced learning strategies, such techniques can learn and approximate even
complex non-linear mappings, exploiting the information contained in a set of reference samples.
Another advantage is the fact that no assumptions have to be made about the data distribution
(for this reason, non-linear machine learning methods are often referred to as distribution free).
Due to this property, the retrieval process can integrate data coming from different sources with
poorly-defined (or unknown) probability density functions and relating well to the target variable.

The artificial neural network (ANN) [36] is one of the often used techniques in the field of
geo-/bio-physical variable retrieval and has been widely investigated in many application domains.
The effectiveness of neural network model inversion for estimating soil moisture in comparison
with well-known inversion strategies, namely the Bayesian method and the simplex algorithm, is
investigated in Paloscia et al. [34] and Notarnicola et al. [37]. Final evaluations point out that
ANNSs are a good trade-off in terms of accuracy, stability and computational speed with respect to
the other strategies investigated. Other interesting examples can be found in the field of vegetation
parameters retrieval [38]. Support vector regression (SVR) [39] is another approach in the field of
geo-/bio-physical parameter retrieval that became popular in the last few years. Papers investigated
the effectiveness of this method for the retrieval of vegetation characteristics, open water chemical and
biological particle concentration and land and sea surface temperature [40,41]. The achieved results
point out the promising features of this method, such as the good intrinsic generalization ability and
the robustness to noise in the case of limited availability of the reference samples.
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3. Retrieval of Essential Variables: Biomass

The biosphere is known as the life zone on the Earth’s surface, and without this Earth is no more
different than the other lifeless planets, like Mars and Venus. It is responsible for food production and
the air that we breathe. Precise assessment of biomass at the regional and global scale is important
for forestry and agricultural management and for the evaluation of the changes caused by climate
and humans in order to better understand the carbon cycle. Grasslands, forests and croplands are
playing a very crucial role in the regulation of the global carbon cycle. The distribution of carbon
among these vegetation cover types is presented in Table 1 [42,43]. On the other hand, land cover
transformations, such as those caused, for example, by anthropogenic deforestation or natural fires,
contribute significantly to greenhouse gas emissions [44]. In fact, remote sensing technology has been
used operationally for many years for biomass estimation of different vegetation types (grasslands,
forests, croplands). Much research has been done on methodologies and implementations. For
example, already in 1974, scientists [45] showed interest in satellite-based biomass retrieval, right
after the launch of Landsat-1 (originally named the “Earth Resource Technology Satellite 1”) in 1972.

Table 1. Grasslands’, forests” and croplands’ global coverage and carbon stocks.

Carbon Stocks (Mg/ha) [43]

Biome Coverage (%) [42] Above Ground Soil Total
Grasslands/Herbaceous 31.5 21 160 181
Forests 27.7 97 113 210
Croplands 12.6 2 80 82

With the passage of time and the availability of new satellite data (with improved spectral, spatial
and temporal resolution) and the development in computing and modeling approaches, the methods
for biomass retrieval have evolved and improved in both accuracy and computational stability. A
literature review suggests that remote sensing-based biomass retrieval methodologies can be broadly
categorized into the following three main retrieval/estimation approaches:

o Utilization of satellite-driven parameters (i.e., vegetation indices, textural features, backscatter)
for the development of regression-based retrieval models,

e Machine learning algorithms and

e Simulation or biophysical models (data assimilation)

This remaining section will discuss the application of machine learning approaches to biomass
estimation and compare them to a limited number of references with empirical and model-based
retrieval approaches, just to give the perspective.

3.1. Grassland Biomass Retrieval

Machine learning algorithms are still considered to be novel in the domain of grassland biomass
retrieval. Even though using airborne data, Clevers et al. [46] showed the potential and feasibility
of such a kind of approach back in 2007. Sensors like MODIS and Landsat have been in operation
for many years and are providing free multi-temporal remote sensing data with different spatial and
temporal resolution. With the availability of such types of data sources, it is not very difficult to build
a reasonable time series in order to evaluate the performance of machine learning algorithms for
grassland biomass retrieval. The potential reasons for this gap or ignorance could be the complexity
of these methods and the requirement of a large sample size to train them.

The ANN, being one of the oldest machine learning algorithms, has mostly been used for
grassland biomass retrieval. For example, Xie ef al. [47] analyzed the performance comparison of
multiple linear regression (MLR) and ANN for grassland aboveground biomass in Xilingol River
Basin, Inner Mongolia. In this work, Landsat ETM+-driven (Normalized Difference Vegetation Index
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(NDVI), Bands 1, 3, 4, 5 and 7) information was used as input features for training, and ANN
(R? = 0.817, RMSE = 42.36%) outperformed the MLR (R? = 0.591, RMSE = 53.20%). In another
study, [48] tested the application of ANN for grassland biomass estimation where MODIS-driven
vegetation indices (NDVI), Enhanced Vegetation Index (EVI), Modified Soil Adjusted Vegetation
Index (MSAVI), Optimized Soil Adjusted Vegetation Index (OSAVI), Soil Adjusted Vegetation Index
(SAVI)) were used as inputs. Results demonstrated the improved performance of ANN as compared
to the traditional regression approaches. The performance of both of these studies cannot be
compared directly, because the former used a single date remote sensing image, where estimated
values could have a global spatial bias, and, on the other hand, the latter used the multi-temporal
remote sensing time series; in this case, the estimation bias will be more local.

Recently, Ali et al. [49] presented a comparative study of MLR, ANN and an adaptive
neuro-fuzzy inference system (ANFIS) with a 12-year time series of MODIS data. Results have shown
that the best performance was achieved by ANFIS (R? = 0.86) followed by ANN (R? = 0.57) and
MLR (R?> = 0.29). ANN has the ability to learn the complex patterns from the data, while, on
the other hand, fuzzy logic has the power of reasoning. ANFIS integrates the advantages of both
ANN and fuzzy logic, which makes it a powerful estimation system. ANFIS is not well known
among the remote sensing community, and only a couple of examples [49,50] are available where
this approach has be applied successfully. However, this technique is being used very frequently in
engineering for designing expert systems and estimation purposes [51,52]. The other state-of-the-art
machine learning methods, such as support vector machines (SVM) and random forests (RF), have
great potential for grassland (or vegetation in general) biomass retrieval applications, because they
are fast and require less training samples, as compared to the ANN.

3.2. Croplands Biomass Retrieval

Crop yield is one of the most vital pieces of information for agricultural decision making in
precision agriculture. For better utilization and management of limited crop resources, it is very
important to have correct and on time estimates of upcoming crop. During the last decade, the
utilization of remote sensing data has been extended from classification or land use/cover mapping
to real-time assessments of agricultural activities, termed precision agriculture [53], as was foreseen
by Moran et al. [54] 16 years ago in a review article. The scale of precise crop yield monitoring
is also an important point of concern in the mission design of new optical and radar space-borne
instruments. The current optical sensors have improved spatial, temporal and spectral resolution;
on the other hand, 3.2-cm wavelength (X-band) space-borne SAR sensors have been successfully
developed and launched in recent years (TerraSAR-X, COSMO-SkyMed) with improved spatial and
temporal resolution.

The currently available space-borne high-resolution sensors have the great potential to assess
inter- and intra-field variation for various crop types. The major methods for crop yield estimation
include: (i) visual assessment; (ii) regression models based on ground sampling,; (iii) crop simulation
models; (iv) UAV/aerial remote sensing; and (v) space-borne remote sensing data. The advantage of
using satellite remote sensing data over the other methods is the spatial coverage. The effectiveness
of machine learning methods has been tested on test-bed [55], airborne [56], UAV [57] and field
spectrometry [58] datasets for the retrieval of crop-related parameters. Table 2 shows the summary of
machine learning methods based on UAV, aerial and field spectrometry remote sensing [54—62].
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Table 2. Examples of machine learning applications for crop parameter retrievals using remote

sensing data.

Reference

Sensor

Crop/Parameter

Model/Method

Performance

[57]

UAV

Test-bed, X-band

Wheat and rapeseed crops;
green area index
Spinach; biomass, LAI,

Radiative transfer inversion model

R? =097

Performance analysis of

[55] spectrometer aver;g(i s}:frztc};eritge}:t’ soil ANN different transfer functions
Data assimilation; Kalman filter;
Field . . Crop Environment REsource 2
(5] spectrometry Winter wheat; LAI SyntEesis (CERES) wheat crop RT=083
model
Field Rice; LAI, green leaf LAIRMSE = 1.0496 units,
[60] chlorophyll density Support Vector Machines (SVM) GLCDRMSE = 523.0741 mg
spectrometry (GLCD) m-2
Field .
(58] spectrometry SUg‘"‘rlbeit d(.detemon of SVM (classification) 84.05%-92.35%
(Hyperspectral) plant diseases)
Aerial Corn; biomass, yield, plant
[56] hvperspectral height, nitrogen, SVM R? > 09
yperspectra chlorophyll, leaf greenness
Evolutionary Product-Unit Neural
Mapping Ridolfia segetum Networks (EPUNNSs), SVM, Logistic
[54,55] A?rial (color infestations in sunflower Regressi(.)r:l (LR), L(')gistic Regression LRIPU: 98% 99.2%
4 infrared) using Initial covariates and Product
crop Units (LRIPU), logistic model trees
(LMT)
[61] Aerial Sunflower vield mappin: EPUNN, Sparse Multinomial SMLR: R? = 0.23; EPUNN:
photographs y Pping Logistic Regression (SMLR) R? =043
[56] Airborne Corn; weed, nitrogen stress ANN, SVM SVM: 69.2%; ANN: 58.3%
(Hyperspectral)
X Wheat; plant water content 3
L-/X-band field R . PWCRMSE = 0.031 g/cm?,
[62] radiometer (PWCQ), soil moisture ANN SMC = 0.137 kg /gmz

content (SMC)

A literature review suggests that the use of machine learning methods in combination with
spaceborne satellite remote sensing data is more frequent for crop classification and mapping, which
is a non-quantitative approach of guessing how much biomass there is by calculating the number of
pixels in each class, which are surrogates of area calculation [42,44,45], and, finally, biomass allocation.
Table 3 shows the overview of a few recent examples from the literature with key highlights where
machine-learning classifiers were used for spaceborne remote sensing image classification [63-72].

Apart from classification, there are other direct and more sophisticated methods for crop biomass
estimation that include parametric (regression models) and non-parametric (SVM, k-NN, random
forest, decision tree, maximum entropy model, ANN, efc.) approaches. Regression modeling is one
of the most widely-used approaches in remote sensing related studies. For example, in recent studies,
Schulthess et al. [73] and Kogan et al. [74] developed regression models based on RapidEye and
MODIS data for maize and wheat yield estimation, respectively. Even though parametric models
are computationally faster, they have a fixed number of parameters and make strong assumptions
about the data. The performance of these models depends on the goodness of these assumptions. On
the other hand, in the case of non-parametric approaches/algorithms, the number of parameters is
flexible, and it changes as they learn from the data. In this case, there are fewer assumptions, and
for that reason, this approach is computationally slower than parametric approaches. The trade-offs
between parametric and non-parametric approaches are computational cost and accuracy. The use
of these methods for crop yield /biomass retrieval is getting more popular, especially with the given
availability of high quality space-borne data with consistent and short revisit times.
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Table 3. Classification of crop types using machine learning methods for indirect
parameter estimation.
Reference Sensor Crop/Parameter ML Classifier Performance
Landsat-5 TM and Discriminating various .
(63] -7 ETM+ crop types SVM > 86%
[64] I&%ZSI?SIX%(& Corn, soybeans Decision tree classification (DTC) > 90%
Hyperion satellite Optimally-pruned extreme learning . _
[65] hyperspectral Soybeans machines (OP-ELM), SVM, 1-NN, OP-ELM (Kappa = 0.815)
produced the best results
sensor C45
[66] iapid]?lye Different crop types SVM, random forest (RF) 94.6%
yperion . e
[67] (hyperspectral), . Land cover types, SVM, object E’gs'fg)d““ﬁcatw“ SVM: 76.23%; OBC: 81.3%
QuickBird including permanent crops
P Crops (RFKappa : 0.98,
[68] Landsat TM Land cover (14 classes) RF, classification tree (CT) CTKappa : 0.94)
[691 Hyperion Land cover/use (10 classes) SVM, ANN SVM: 89.26%; ANN: 85.95%
(hyperspectral)
[70] SPOT-5 Cor, cotton, grain SVM 84.3%-94.0%
sorghum, sugarcane
[71] ALOS Paddy rice mapping SVM Kappa : 0.87
DTC, Gaussian adaptive resonance
. ! MLC: 495-53%; DT: 88%,;
72] MODIS, AVHRR Land cover mapping (25 theory (ART), fuzzy ART neural Gaussian ART: 83%; fuzzy

classes)

network (ARTNN), maximum

ARTNN: 79%

likelihood classification (MLC)

Jia et al. [75] used ANN for rice biomass retrieval by using ground-based scatterometer and
RADARSAT-2 data. The rice plant growth model’s output was used as an input to the Monte Carlo
backscatter model in order to simulate the backscattering data. ANN produced satisfactory results for
rice biomass retrieval from both the ground-based scatterometer (R?> = 0.989, RMSE = 0.477 kg/m?)
and RADARSAT-2 (R? = 0.983, RMSE = 0.582 kg/m?) datasets. In another study, Johnson et al. [76]
used MODIS-driven NDVI and LST along with precipitation data for corn and soybean yield
forecasting in the United States. In this study, a six-year time series from 2006-2011 was used for
the development of regression tree models for both crops (corn and soybean) at the county level with
high accuracy (R? = 0.93). Finally, the developed models were used for yield prediction for the year
2012, and satisfactory results were obtained (corn: R? = 0.77, RMSE = 1.26 t/ha; soybean: Rz =071,
RMSE = 0.42 t/ha) after comparing against the official statistics.

Studies show that the use of space-borne remote sensing in combination with machine learning
is not limited to crop yield estimation or mapping, but also, it can be used for the monitoring of
other crop-related activities, for example: crop losses due to floods [77] or the estimation of nitrogen
concentration in sugarcane leaf [78].

3.3. Forest Biomass Retrieval

The monitoring of forest biomass is of critical importance in the carbon cycle and the related
climate change sciences. Forest biomass, covering about 77% of the total vegetation carbon stores [79],
represents a significant component of the global carbon sources and sinks. For example, the
Intergovernmental Panel on Climate Change (IPCC) estimated in 2007 [80] that the human-caused
deforestation amounts to between 10% and 30% of the total anthropogenic carbon dioxide flux. The
range of uncertainty is large due to the lack of accurate global observational techniques. To reduce
these uncertainties is one of the important challenges that can be addressed only in combination with
remote sensing.

Other forest biomass-related areas of remote sensing applications are related for instance to
the classification of forest types, individual forest tree species, change monitoring (e.g., detecting
forest fires, illegal logging, deforestation), forest health monitoring, forestry and wood products and
wood-based bio-energy [81]. Biodiversity in terrestrial ecosystems is receiving a due part of the
attention, where forest habitat characterization is one component in the analysis.

While attempts are made to estimate below-ground biomass from remote sensing instruments,
for example using low-frequency radars that penetrate through forest canopy and part of the soil, the
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majority of forest biomass estimation research focuses on above-ground biomass (AGB). The exact
measurement of tree AGB is destructive, as the trees have to be harvested and weighed. A less
intrusive approach by ecologists is to measure a few properties of the individual trees related to
its structure (usually the diameter at breast height (DBH) and tree height) and relate these to biomass
using the allometric equations that were empirically developed individually for the different tree
species [82]. This still requires a large amount of work on the ground. Using remote sensing, biomass
is estimated indirectly from other observables. Related parameters that are used in the estimation
frameworks are, for example, the forest stem volume, forest height, 3D structure and the leaf area.
AGB is, in the most simple form, the amount of tree volume times the wood density that is specific
to the tree species type. The bulk of the tree volume is usually well represented by the stem volume,
which is trunk cut area times the tree height.

Different remote sensing instruments are sensitive and better suited to measure different forest
properties. The passive optical and hyperspectral sensors can provide information on the chemical
compositions of individual forest patches or tree canopy, the leaf area and tree species type. However,
these measurements are weather and sun light dependent, though the costs are usually low, and
global coverage is provided in a timely manner.

Active sensors, such as LiDAR, scatterometer and SAR, are independent of the Sun and the
time of the day. Especially LiDAR is well suited to measure the 3D structure of the forest at
high spatial resolution. However, its utilization is limited by the relatively small coverage and the
inability to penetrate clouds. Radar, and in particular synthetic aperture radar (SAR), is sensitive to
different parts of the forest depending on the used electromagnetic wavelength [12]. Low-frequency
radars (wavelengths close to 1 m) are able to penetrate canopy without much attenuation, and the
backscattered signal contains the signatures of tree trunks, big branches and the ground under the
forest. High-frequency radars (at and below centimeter level wavelengths) are getting attenuated
strongly by even small leaves and represent the upper canopy and the gap structure of the forests
more. In between, the intermediate wavelengths at the order of a few centimeters to decimeters are
naturally affected by both extrema: they penetrate into the canopy, and are most affected by the
branch structure of the trees.

Radar data can provide a multi-faceted source of information, in dependence of acquisition
parameters: frequency, incidence angles range, polarization, interferometric baseline. For example,
acquiring data in multiple polarizations can inform the geometry of the scattering elements and the
morphology of the trees, as well as the water content in the ground under the canopy. Interferometric
SAR is used to estimate the 3D structure of the forests and is also very sensitive to even the slightest
changes between the acquisitions. SAR data are independent of the time of the day, weather
conditions (almost) and cloud cover and can provide large to global coverage at very high spatial
and temporal resolutions. The combination of multiple interferometric and polarimetric acquisitions
(multi-baseline PolInSAR) enables one to estimate multiple key quantities of the forest. The prices for
the feature richness of SAR data are the more expensive costs of the instrument and the more complex
processing of the data, requiring more specialized knowledge.

The evaluation of machine learning methods for forest remote sensing is usually conducted
on small forest areas, with data either from airborne or space-borne instruments. This leads to a
low ability to generalize the learned parameters to areas with different forest structure distributions
and dynamics.

With the launch of new space-borne satellite sensors (i.e., TerraSAR-X, ALOS-2, RapidEye,
COSMO-SkyMed, QuickBird, Sentinel) with high spatial, temporal and spectral resolution, the
issue of limited areal extent inherited from airborne remote sensing is reduced and encourages the
approaches to develop global solutions.

Like in other application areas, the increased availability of always getting better remote sensing
data in combination with advances in computational power and the developments of machine
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learning led to an increased usage of machine learning methods for forest biomass estimation.
Examples cover a wide range of remote sensing instruments and machine learning methodologies.

Space-borne remote sensing data were initially used over extended regions for qualitative and
quantitative mapping of forest biomass using machine learning approaches [83-88].

Airborne LiDAR data have been successfully used for forest biomass estimation [89,90] and
the characterization of forest canopy structure [91]. Space-borne LiDAR, combined with other data
sources, has been successfully applied to coarse-resolution forest height estimation globally [92].
Airborne SAR data were used for biomass estimation in various modes, including utilizing
polarimetry and interferometry [93-95].

The used machine learning methods include the well-known approaches of SVM, ANN and RF.
In recent studies, the authors showed the potential of the stochastic gradient boosting (SGB) algorithm
for AGB estimation by using both optical (medium [96] and high resolution [97]) and SAR [98]
space-borne remote sensing data.

One direction in machine learning remote sensing is the combination of data from different
sensors in order to improve the performance. The multi-source or data fusion approaches are
currently actively investigated. For example, Joibary et al. [99] studied the application of
non-parametric models (k-NN, SVR, RF, ANN) for the estimation of forest volume and basal area
based on airborne LiDAR and Landsat TM data. The results show that SVR performed better against
the other models when LiDAR and Landsat TM data were used in combination. Similar findings
were observed by Zhang et al. [100], where they used Geoscience Laser Altimeter System (GLAS)
and MODIS data for forest biomass mapping. Recently, another exercise was done in southwest
Thailand [101] where a GeoEye-1 and ASTER-based SVM model was developed for mangrove
biomass estimation (R> = 0.66). Other examples where machine-learning methods were used
in combination with space-borne remote sensing data for forest biomass estimation are listed in
Table 4 [79,102-109].

Table 4. Examples from the literature on the application of machine learning methods for forest
biomass estimation.

Reference Sensor Parameter(s) ML algorithm Performance
Bagging stochastic
[102] ALOS PALSAR Biomass gradient boosting R? =090
(BagSGB)
- Height, biomass, Support vector 2
(103] QuickBird volume regression (SVR) R* =072

Stem volume (v), basal
[104] TerraSAR-X area (a), height (h), Random forest RMSE (%): v=34,a=29,h=14,d=19.7
diameter (d)

Random forest (RF),

[105] WorldView-2 Biomass RF: RMSE = 12.9%, regression: RMSE = 15.9%

regression
[106] Landsat Above-ground woody RF R2 = 0943
biomass
[107] SPOT-5, LIDAR Ab%‘.’e'ground RF R? = 0.84
iomass
RF: RMSE, = 26.86, RMSE, = 18.39,
Volume (v), basal area RMSE; = 20.64; SVR: RMSE, = 25.86,
[108] ASTER (a), st 4 ) k-NN, SVR, RF RMSE, = 19.35, RMSE; = 22.09; k-NN:
a), stems {8 RMSE, = 28.54, RMSE, = 20.20,
RMSE; = 20.64
[79] Landsat-7 Biomass SVM SVM = 84.62%; regressive analysis = 82.93%
g Yy
[109] Landsat time Forest biomass Rei:g?gﬂ?sj(;:;is’ RF: RMSE 4izona = 32.19,
series dynamics g N RMSE pminnesota = 39.23

neighbor, RF
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4. Retrieval of Essential Variables: Soil Moisture

SM is a key variable of the water cycle, as it controls the infiltration rate during precipitation
events, runoff production and evapotranspiration [110]. Thus, it influences both water availability
and energy balances [111]. Accurate, spatially- and temporally-distributed information about the
concentration of soil moisture is of great importance in hydrological applications, such as flood
prediction related to extreme rainfall events, watershed management during dry periods, irrigation
scheduling, precision farming, in addition in Earth sciences, such as climate change analysis and
meteorology [112,113].

In the last two decades, the increasing numbers of space-borne sensors with complete,
periodic and synoptic coverage of the Earth’s surface has increased interest in the estimation of
bio-geophysical surface parameters from remotely-sensed data. In particular, microwave remote
sensing sensors, such as radiometers, scatterometers and synthetic aperture radar (SAR), have been
intensively exploited to estimate soil moisture content, thanks to the well-established sensitivity
of microwave electromagnetic waves to the dielectric properties (and thus, the water content) of
soils [114]. The retrieval process is typically a challenging task, and it falls into the category of
an ill-posed problem. This means that beyond the non-linearity of the relationship between input
features (sensor measurements) and the target variable (soil moisture), more than one combination of
soil characteristics (in terms of soil moisture, roughness, vegetation coverage, efc.) leads to the same
electromagnetic response at the sensor. In addition to this, one has to take into account the sensitivity
of the microwave signal to various target properties (e.g., soil roughness and vegetation coverage)
and the effect of topography and land use heterogeneity [12,115,116]. Soil moisture retrieval has been
addressed by several methodologies that fall into the following main categories:

e Empirical approaches
e Approaches based on theoretical electromagnetic models
e Machine learning approaches.

A review of different methodologies for soil moisture retrieval is presented in Barrett et al. [117].
This paper will focus attention on the use of machine learning methods that have been exploited and
developed to retrieve SM from active and passive radar data.

4.1. Machine Learning Methodologies for Soil Moisture Retrieval

Among the different machine learning methods, ANNs plays a dominant role, being in use for
already 25 years. Notarnicola et al. [118] proposed to use an ANN to invert a theoretical backscattering
model, such as the integral equation model (IEM), in different configurations in terms of polarizations
and incidence angles. In the following years, other works combined electromagnetic models with NN
approaches. In 1997, Dawson et al. [119] considered the ANN for the retrieval a multilayer perceptron
basis function (MLPBF), that is a fully-connected network, an improved version of the simple
feed-forward MLP network. In detail, MLPBF has more free parameters (weights) and, thus, a higher
pattern storage capacity. This method combined with the IEM, an electromagnetic model suitable for
simulating backscattering coefficients from bare soil, was applied to POLARimetric SCATterometer
(POLARSCAT) data, providing an RMSE of 0.034 m3/m? in the soil moisture estimation.

Satalino et al. [120] used an ANN approach to investigate the feasibility of soil moisture retrieval
by using ERS datasets, as well as the impact of different sources of error on the retrieval performances.
In particular, the author addresses a realistic variability for the soil roughness by exploiting a large
pan-European dataset of roughness profiles. The ANN was trained by using simulated data from the
IEM model. The overall RMSE in the retrieved volumetric soil moisture content has been found in the
order of 6% on the measured data. The results show that, for a sensor with one single configuration,
such as ERS, the main source of retrieval error is the intrinsic inversion error: the error in the retrieval
is almost exclusively due to variations in roughness conditions, which influence the relationship
between the soil moisture coefficient and the radar backscattering coefficient. The other sources of
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error only marginally affect retrieval results. For example, a measurement error of 0.5 dB or 1.0 dB
affects only the overall retrieval performance slightly, increasing the RMSE value from 5.48 to 5.76
and 6.12, respectively.

More recently, Paloscia et al. [121] have adopted different configurations of ANN for the
estimation of soil moisture from ASAR and RADARSAT2 images, simulating also conditions that will
be available with Sentinel 1 data. As an electromagnetic model, they exploited the advanced integral
equation model (AIEM). The different configurations consider the VV polarization, the VV and VH
polarization and VV polarization in combination with the NDVI parameter used to take into account
the contribution from vegetation. The retrieval accuracy for volumetric SMC was < 0.05 m3/m3,
and this was fulfilled by most of the SMC estimated values. However, the validation results were
penalized in test sites where only VV polarization SAR images and MODIS low-resolution NDVI
were available. The accuracy (RMSE) of the algorithm ranges indeed from around 0.02 m®/m? of
SMC, when even HV polarization is available, to 0.06 m3/m3 of SMC in the worst case, when only
VV polarization is present. Regarding the processing time, the proposed ANN algorithm makes a
rapid inversion possible with a processing time with the 3 h from image acquisitions.

Baghdadi et al. [122] uses ANN to perform the inversion on two main parameters, which
may influence radar response, soil moisture and surface roughness. The neural networks were
trained and validated on a noisy simulated dataset generated from the IEM on a wide range
of surface roughness and soil moisture, as is encountered in agricultural contexts for bare soils.
The performances of neural networks in retrieving soil moisture and surface roughness were
tested for several inversion cases using or not using a priori knowledge on soil parameters.
The inversion approach was then validated using RADARSAT-2 images in polarimetric mode.
The introduction of expert knowledge on the soil moisture (dry to wet soils or very wet soils)
improves the soil moisture estimates, whereas the precision on the surface roughness estimation
remains unchanged. Moreover, polarimetric parameters and anisotropy were used to improve the soil
parameters estimates. These parameters provide neural networks the probable ranges of soil moisture
(lower or higher than 0.30 cm®/cm?®) and surface roughness (root mean square surface height lower
or higher than 1.0 cm). Soil moisture can be retrieved correctly from C-band SAR data by using the
neural networks technique [122]. Soil moisture errors were estimated at about 0.098 cm®/cm? without
a priori information on soil parameters and 0.065 cm?/cm3 (RMSE) applying a priori information on
the soil moisture. The retrieval of surface roughness is possible only for low and medium values
(lower than 2 cm). Results show that the precision on the soil roughness estimates was about 0.7 cm.
For surface roughness lower than 2 cm, the precision on the soil roughness is better, with an RMSE of
about 0.5 cm. The use of polarimetric parameters improves the soil parameters estimates only slightly.

Other works exploited mainly the ANN approach on experimental data without the further
support of simulated data. Prasad et al. [123] used a radial basis function ANN to estimate
soil moisture, crop biomass and Leaf Area Index from X-band ground-based scatterometer
measurements. The new model proposed in this paper gives near perfect approximation for all
three target parameters, namely soil moisture, biomass and Leaf Area Index, even though the model
performances are based on a limited number of data. The retrievals for biomass and Leaf Area Index
were found to be better than soil moisture content with RMSE around 0.03 m®/m3, 0.01 kg/m? and
0.01 for soil moisture, biomass and LAI, respectively. It is worth underlining that soil moisture values
vary in the range 0.22-027 cm?®/cm?, biomass in the range 0.85-1.84 kg/m? and LAI in the range
1.28-6.5. This indicates that the LAI was the main parameter varying in the test data.

Xie et al., [124] employ an artificial neural network with a back-propagation learning algorithm
(BPNN) to solve soil moisture retrieval for Sichuan Middle Hilly Area in China. Eighteen kinds
of BPNN models have been developed using AMSR-Eobservations to retrieve soil moisture. The
results show that the 18.7-GHz band has some positive effect on improving soil moisture estimation
accuracy, while the 36.5-GHz one may interfere with deriving soil moisture, and vertical brightness
temperature has a closer relationship to observed near-surface soil moisture than horizontal TB. The
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BPNN model driven by a vertical and horizontal TB dataset at 6.9 GHz and 10.7 GHz has the best
performance of all of the BPNN models with an r value of 0.5 and an RMSE of 10.3%. Generally,
the BPNN model is more suitable for soil moisture estimation than the NASA product for the study
area and can provide significant soil moisture information due to its ability to capture non-linear and
complex relationships.

In the last few years, ANN performances have been also compared to other statistical
approaches. Paloscia et al. [34] explicitly compares the inversion performances of ANNs to those
achieved with the Nelder-Mead simplex algorithm and the Bayesian method. The experiments
carried out with SAR images acquired with the ENVISAT/ASAR sensor on agricultural areas
indicate comparable accuracies between the investigated technique, on average lower than 10% on
the whole range of soil moisture values, despite the lowest values being achieved by the simplex
method. However, ANNs outperform the other two inversion strategies in terms of computational
complexity and speed in the prediction phase, indicating that they are effective for efficiently
inverting electromagnetic models and predicting soil moisture from remotely-sensed data. The
critical point regarding ANNs emerging during the analysis is the difficulty in handling the training
phase of the method. The latter may affect the accuracy of the estimates and, thus, should be
properly controlled.

Lakhankar ef al. [125] compared multivariate regressions, ANN and fuzzy logic to estimate soil
moisture by exploiting RADARSAT-1 datasets. Validation results showed that fuzzy logic and neural
network models performed better compared to multiple regression. Moreover, the results show that
the addition of the NDVI and soil characteristics in addition to microwave observations to these
models reduced the RMSE for soil moisture retrieval by 30% approximately. The following figures of
merit were obtained in their better configurations (backscattering with NDVI and soil characteristics):

e ANN: RMSE = 3.39%, R? = 0.77
e Fuzzy logic: RMSE = 3.45%, R? = 0.76
e Multivariate statistics: RMSE = 4.48%, RZ = 0.72

The potential of machine learning methods for the inversion of forward analytical models
and the retrieval of soil moisture was specifically investigated also in the work carried out by
Pasolli et al. [126]. In this case, the ANN algorithm was compared to another state-of-the-art method,
namely support vector regression (SVR), for the retrieval of soil moisture in bare agricultural areas
from C-band scatterometer data.

The analysis points out once more the good and similar retrieval performances achieved by the
two methods, despite the fact that the SVR showed greater robustness in the presence of outliers and a
higher stability in the presence of a reduced number of reference training data. This suggests, again,
the importance of a robust and extensive reference dataset for the training of the ANN technique.
The above-mentioned research clearly points out the potential of the theoretical forward model
inversion for dealing with the retrieval of soil moisture content from SAR remote sensing data.

Pasolli ef al. [127] tested a regression based on support vector regression on fully-polarimetric
RADARSAT-2 images. The method proposed for the soil moisture estimation was combined with an
innovative multi-objective model selection strategy. The results indicated that the use of polarimetric
features, such as the HH and HV channels, improved the estimation of soil moisture content in the
investigated mountain area with an RMSE of 0.0485 m®/m?>. The improved results obtained with
the HV channel indicated the capability of this channel to disentangle the vegetation effect on the
radar signal.

Ahmad et al., [128] tested an SVM model on 10 sites for soil moisture estimation in the Lower
Colorado River Basin (LCRB) in the western United States by using backscatter and incidence angle
from the Tropical Rainfall Measuring Mission (TRMM) and the Normalized Difference Vegetation
Index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR). Simulated SM (%)
time series for the study sites are available from the variable infiltration capacity three-layer (VIC)
model for the top 10-cm layer of soil for the years 1998-2005. The SVM model is trained on five
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years of data, i.e., 1998-2002, and tested on three years of data, i.e., 2003—2005. The results indicate
that the SM estimated correlation coefficients range from 0.34-0.77, with an RMSE less than 2% at all
of the selected sites, showing that the SVM model is able to capture the variability in measured soil
moisture. Results from the SVM modeling are compared to the estimates obtained from feed-forward
back propagation ANN and the multivariate linear regression model (MLR) and show that the SVM
model performs better for soil moisture estimation than the ANN and MLR models. For all of the
data, the SVM model results in RMSE, MAE and R of 1.98, 1.86 and 0.51, for NN 2.79, 2.09 and 0.42
and for MLR 2.854, 2.25 and 0.36.

Machine learning techniques have been also exploited for downscaling information between
sensors with different resolutions. Srivastava et al. [129] compared three artificial intelligence
techniques along with the generalized linear model (GLM) to improve the spatial resolution of soil
moisture and ocean salinity (SMOS)-derived soil moisture products, which are currently available
at a very coarse scale of ~ 40 km. Artificial neural network (ANN), support vector machine (SVM),
relevance vector machine (RVM) and generalized linear models are selected for this study to integrate
the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) with
the SMOS-derived soil moisture. The statistical performance indices, such as R, %Bias and RMSE, are
the following for each approach:

e ANN: (R = 0.751, %Bias = 0.628 and RMSE = 0.011);
e RVM: (R = 0.691, %Bias = 1.009 and RMSE = 0.013);
e SVM: (R = 0.698, %Bias = 2.370 and RMSE = 0.013);
e GLM: (R = 0.698, %Bias = 1.009 and RMSE = 0.013).

The downscaled data performances are higher in comparison to the non-downscaled data
(R = 0.418 and RMSE = 0.017) with slight out-performance of the ANN algorithm.

A novel machine-learning algorithm is proposed to disaggregate coarse-scale remotely-sensed
observations to finer scales, using correlated auxiliary data at the fine scale [130]. The approach
includes a regularized Cauchy-Schwarz distance to cluster data and to assign soft memberships to
each pixel at the fine scale. A kernel regression is then used to compute the value of the desired
variable at all of the pixels. This algorithm, based on self-regularized regressive models (SRRM), is
implemented to disaggregate soil moisture (SM) from 10 km down to 1 km by exploiting different
features, such as land cover, precipitation, land surface temperature, Leaf Area Index and also
the ground pointy observations of SM. The approach was initially tested on multi-scale synthetic
observations in Florida for heterogeneous agricultural land cover (corn and cotton). It was found
that the root mean square error (RMSE) for 96% of the pixels was less than 0.02 m®/m3. In some
recent work [131], ANN was applied to multispectral data acquired with an unmanned air vehicle
(UAV), resulting in promising results for this application (RMSE around 0.02 m?/m?3 and a correlation
coefficient of 0.88).

As the last point, it is worthwhile mentioning that machine learning methods have been also
successfully used for soil moisture prediction by using only ground data, such as time series of soil
moisture ground measurements and meteorological data [132].

A summary of the relevant literature and results are presented in Table 5 [119,121-124,127-130,
132,133].
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Table 5. Soil moisture retrieval summary.

Reference Sensor Parameter Model/Method Performance
POLARimetric .
SCATterometer Integral equation model
[119] (POLARSCAT) Soil moisture (IEM) + multilayer RMSE = 0.034 m®/m?
(airborne) perceptron basis function
ENVISAT
ASAR/RADARSAT-2/ IEM + multilaver 0.02 m3/m® < RMSE < 0.06 m®/m?
[121] Optical data for Soil moisture M}I:P based on different input
vegetation perceptron ( ) configurations
correction
Ground-based . . . .
[123] scatterometer Soﬂ:;lg;fr;féﬁ;i:rea Bacl;—lp rop ;gah%r;)ll\flzla\]r nng RMSE = 0.03 m®/m?®
data gorithm ( )
_ 3 /103 wi
Soil moisture/surface .RMSE N 0'998 m’/m ‘éﬂth?ut.
[122] RADARSAT-2 roughness IEM + MLP prior information, 0.065 m°/m° with
& prior information
Advanced
Microwave
cannin; 0il moisture =0Im’/m
[124] S ing Soil moi BPNN RMSE = 0.1 m*/m3
Radiometer-EOS
(AMSR-E)
- 0il moisture =0. m’/m
[127] RADARSAT-2 Soil moi Support V(esf{;’ﬁ)regress“’“ RMSE = 0.0485 m®/m?
[128] TRMM + AVHRR Soil moisture SVM RMSE < 0.05 m®/m?®
. . . SVR, relevance vector ANN: RMSE = 0.011 m®/m?3, SVR
[129] SMOS Soil moisture downscaling machine (RVM), ANN and RVM: RMSE = 0.013 m® /m®
. . . . Self-regularized regressive _ 3,3
[130] Synthetic data Soil moisture downscaling model (SRRM) RMSE = 0.02m’/m
. RMSE = 0.0405 — —0.042 m®/m?
Grr‘;‘(‘)ri‘s‘iu‘ﬁt:ézo‘l (RMSE = 0.055 — —0.056 m3/m?
[132] meteorological Soil moisture forecast SVM with only meteorological data,
fime Seri‘is) 0.076-0.086 m?/m® with only soil
moisture data)
AirSAR data . . SVM: RMSE = 0.017 m?/m? RVM:
[133] (SMEX02) Soil moisture SVM, RVM RMSE — 0.014 m?/m?
[122] Multispectral Soil moisture ANN RMSE = 0.02 m®/m?

sensor on UAV

5. Conclusions

In this paper, we reviewed the applications of advanced machine learning methods (the list of
the most commonly-used machine learning algorithms and their advantages and disadvantages are
shown in Table 6) and systems for the retrieval of geo-/bio-physical variables from satellite remote
sensing imagery. In particular, several issues related to different steps of the retrieval process, as well
as to its application to the estimation of biomass and soil moisture were addressed. This represents
a hot topic in the scientific community, especially in the last years, thanks to the potential offered by
the new generation and upcoming satellite remote sensing systems and the growing interest in the
accurate and up-to-date mapping and monitoring of the Earth’s surface.

In the last few years, research activities have paid much attention to machine learning methods
as a main tool for biomass and soil moisture retrieval.

The review indicates that several machine learning methods have been used in the last few
years, such as artificial neural networks, support vector machine and relevant vector machine,
e.g., [123,129]. These approaches, initially developed to solve classification problems, are now applied
to the retrieval approach. One issue, which limited, until now, a wide use of these methods for
retrieval, may be related to the limited availability of remotely-sensed data useful to determine robust
machine learning-based approaches.
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Table 6. List of most commonly-used regression/empirical models and the state-of-the-art machine
learning algorithms.

Algorithms

Examples

Advantages

Disadvantages

Regression

Machine learning

Decision tree

Bayesian

Artificial neural
network

Deep learning

Ensemble

Support vectors

Linear, power, logistic
regression

Conditional decision trees,
C5.0, decision stump

Bayesian network, naive,
Gaussian naive and
multinomial naive Bayes

Perceptron,
back-propagation, radial
basis function network

Deep belief networks,
convolutional neural
networks

Random forest, bagging,
gradient boosting

Support vector machines,
support vector regression

The principal advantage of empirical

modeling is its simplicity, availability,

interpretability and acceptance among
the scientific community.

Often much more accurate than
human-crafted rules, as they are data
driven. Automatic method to search for
hypotheses explaining data. Flexible and
can be applied to any learning task. Rich
interplay between theory and practice,
with improved results as datasets
increase.

Simple to understand and to interpret.
Trees can be visualized. Requires little
data preparation. Fast and able to handle
both numerical and categorical data.

Provide good results with small samples
size. Past information about the
parameter can be used for future
analysis. It provides a natural and
theoretically solid mechanism to
combine prior information and data.

Artificial neural networks have the
power to retrieve the complex, dynamic
and non-linear patterns from the data.
Being one of the oldest machine learning
methods, they are well studied and are
easy to implement as many libraries and
software tools are available.

Capable of processing the complex input
data and learning tasks. It is capable of
“learning features” from the data at each
level.

The basic idea is to train a set of experts
and to allow them to vote.

It has a regularization parameter and
uses the kernel trick. SVM is defined by a
convex optimization problem, and it is
an approximation to a bound on the test
error rate.

In a nonlinear dynamic environment, the
data from chaotic systems do not
correspond to the strong assumptions of
a linear model. These models do not
have a physical basis and are mostly
used for site-specific analysis or model
development.

Data-driven methods need many labeled
data, requiring extensive ground truth
datasets. Typically require some
programming knowledge.

Decision-tree learners can create
over-complex trees that do not generalize
the data well, and trees can be biased if
some classes dominate.

It is difficult to select prior, and posterior
distributions are heavily influenced by
the priors. The models with a large
number of parameters are
computationally high in cost.

Artificial neural networks are “black
boxes”, and the user has no role/control,
except providing the input data. With
large datasets, the process gets slow.
Back-propagation networks tend to be
slower to train than other types of
networks and sometimes require
thousands of epochs.

Deep learning is not an easy to use
method, but packages (Torch7 and
Theano + Pylearn2) are available for
users for different applications.

This provides an improved estimation
accuracy. It is difficult to understand an
ensemble of classifiers.

Kernel models are sensitive to
over-fitting. From a practical perspective,
it gives poor results if the number of
features is much greater than the number
of samples.

Machine learning methods have shown their versatility in different contexts by using optical and
radar data, by fusing remotely-sensed data with ground data, as well as exploiting data derived from
a UAV platform. These approaches have been also compared to other parametric approaches (such
as iterative or Bayesian approaches), indicating that in most of the cases, machine learning methods
outperformed these latest ones [34].

It is to be underlined that there are certain unavoidable limitations in the data-driven models. In
fact, the accuracy of the results is strongly dependent on the relationship of the training dataset with
the outputs for the study region; the presence of outliers and erroneous values in the training data
may deteriorate the model performance; the model definition, such as ANN architecture and SVR
parametrizations, and the choice of the kernel function can be computationally demanding and/or
may lead to sub-optimal solutions. All of these issues are well known, and developers try to reduce
them with specific strategies. Moreover, now, the availability of large datasets will help data-driven
models achieve better generalization.

As an example, it is worthwhile to mention that, actually, some of the main operative SM
algorithms are based on empirical or statistical approaches. The SM operational products based on
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Advanced Scatterometer (ASCAT) data use semi-empirical approaches [134], while for SMOS data,
the SM algorithm relies on an iterative approach and on a radiative transfer model [131]. However,
great attention is also paid to comparisons of such methods with machine learning approaches [135].

Machine learning approaches have been shown to be able to ingest different kinds of data
(optical and radar, radar + auxiliary, efc.). In some cases, this aspect can also be a disadvantage in the
case of an operative product, as auxiliary information shall be available and/or that contemporary
acquisitions of more than one satellite are needed.

In any case, machine learning methods have offered in the last few years the playground for
testing different sensor configurations, the integration of several datasets, the downscaling of coarse
resolution data and the comparison with other approaches (see Table 5).

In the upcoming years, with the availability of Sentinel data with increasing overlaps between
optical and radar data, most of the results obtained so far can enter into play for improving the high
resolution mapping and monitoring of biophysical parameters.

Some of the interesting aspects to be addressed in the upcoming years are:

o The development of retrieval methodologies that can fully exploit the high temporal frequency
of new generation and upcoming satellite remote sensing systems to improve the temporal
consistency and accuracy of the estimation process. Moreover, the combined use of multiple
frequency (C-, X- and L-band) can further improve the retrieval process, but being in its infancy,
this needs further development.

o The study of automatic methods for the adaptation of the retrieval system to different domains
(e.g., several study areas with slightly different topographic and phenological conditions) [136].

e Generalization of the proposed methods and systems to the retrieval of different
geo-/bio-physical variables from a new generation of satellite remote sensing imagery.
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