Phenological Response of an Arizona Dryland Forest to Short-Term Climatic Extremes
Abstract
:1. Introduction
1.1. Dryland Forests and Woodlands
1.2. Ecological Importance of Dryland Forest Phenology
1.3. Data Fusion for Remote Sensing of Dryland Phenology
1.4. Objectives
- (1)
- Characterize the spatial and temporal variability of dryland forest phenology patterns in response to climate conditions;
- (2)
- Assess how terrain characteristics and vegetation composition influence the variability of phenological responses;
- (3)
- Investigate the use of phenological variability as an indicator of vegetation composition.
2. Study Site and Data
2.1. Study Site
2.2. Ponderosa Pine Land Cover
2.3. Imagery Datasets
2.3.1. MODIS
2.3.2. Landsat
2.3.3. U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) Imagery
2.4. Topographic Data
3. Methods
3.1. STARFM Algorithm
3.2. Creation of Time Series for Phenological Analysis
3.3. Creation of Random Point Dataset
Variables in Annual Analyses | Variables in Multi-Year Analyses | Mean (SD) |
---|---|---|
Elevation (m) | Elevation (m) | 2158.65 (84.8) |
Slope (°) | Slope (°) | 4.50 (3.7) |
Aspect (°) | Aspect (°) | 211.17 (3.3) |
Solar radiation (MJ/cm2/year) | Solar radiation (MJ/cm2/year) | 0.99 (0.036) |
Percent cover | Percent cover | 48.89 (20.9) |
Peak NDVI value (2005 to 2008) | 0.57 (0.064) | |
Peak NDVI value (2005 to 2009) | 0.56 (0.065) |
4. Exploratory Data Analysis
4.1. Annual Patterns of Peak Greenness Timing
4.2. Interannual Patterns of Peak Greenness Timing
5. Statistical Analysis
5.1. Spatial Analysis
5.2. Comparison of Site Characteristics
5.3. Multivariate Model Development and Analysis
6. Results
6.1. Test of Spatial Autocorrelation
Year | Index | Z-Score | p |
---|---|---|---|
2005 | 0.40 | 2.83 | 0.005 * |
2006 | 0.34 | 2.47 | 0.01 * |
2007 | 0.38 | 2.73 | 0.006 * |
2008 | 0.14 | 1.03 | 0.30 |
2009 | 0.86 | 6.11 | <0.001 * |
6.2. Results of t-Tests and Logistic Regression of Annual Monsoon vs. Post-monsoon Timing Characteristics
Year | Predictor | Coefficient | SE |
---|---|---|---|
2005 | Intercept | −4.75 *** | 1.05 |
Slope | −0.062 * | 0.028 | |
CV of NDVI | −0.25 *** | 0.066 | |
Mean NDVI | 11.26 *** | 1.64 | |
2006 | Intercept | 3.54 | 2.54 |
Elevation | −0.004 ** | 0.001 | |
Slope | −0.08 *** | 0.026 | |
CV of NDVI | −0.38 *** | 0.060 | |
Mean NDVI | 15.70 *** | 0.06 | |
Aspect 4 | −0.87 * | 0.37 | |
2007 | Intercept | −2.83 | 1.77 |
Slope | −0.15 ** | 0.050 | |
CV of NDVI | −0.53 *** | 0.099 | |
Mean NDVI | 10.29 ** | 2.73 | |
2008 | Intercept | −4.70 * | 2.19 |
CV of NDVI | −0.54 *** | 0.13 | |
Mean NDVI | 13.29 *** | 3.43 | |
2009 | Intercept | 14.96 * | 2.31 |
Elevation | −0.0059 *** | 0.001 | |
Slope | −0.088 ** | 0.025 | |
CV of NDVI | −0.64 *** | 0.066 | |
Mean NDVI | 5.89 *** | 1.41 |
6.3. Results of t-Tests and Logistic Regression between Multi-Year Low vs. High Variability of Peak NDVI Date
Time Period | Parameter | Variability of Peak NDVI Timing | T | df | |
---|---|---|---|---|---|
Low | High | ||||
Mean (SD) | Mean (SD) | ||||
2005–2008 | Elevation | 2164.79 (90.97) | 2149.87 (75.05) | 2.53 | 775.74 |
Percent cover | 45.83 (20.48) | 53.25 (20.63) | –5.02 | 702.84 | |
Mean peak NDVI | 0.56 (0.064) | 0.59 (0.059) | –7.06 | 739.89 | |
2005–2009 | Elevation | 2183.95 (93.99) | 2151.02 (80.70) | 4.31 | 270.82 |
Percent cover | 51.62 (21.12) | 48.06 (19.77) | 2.11 | 320.89 | |
Mean peak NDVI | 0.56 (0.059) | 0.57 (0.066) | 2.21 | 334.07 | |
Slope | 5.30 (4.14) | 4.27 (3.46) | 3.06 | 266.03 |
Time period | Variable | Coefficient | SE |
---|---|---|---|
2005–2008 | Intercept | 0.59 | 4.18 |
Elevation | –0.0031 *** | 0.001 | |
Slope | –0.062 * | 0.02 | |
Mean peak NDVI value | 9.38 *** | 1.72 | |
2005–2009 | Intercept | 7.0 | 4.39 |
Elevation | –0.0049 *** | 0.001 | |
Slope | –0.052 * | 0.02 |
7. Discussion
7.1. Drought-Induced Stress Leads to Fragmented Phenological Response
7.2. Drought Intensifies the Discriminatory Power of Site Variables
7.3. Variability of Peak NDVI Dates Linked to Topography and Herbaceous/Woody Composition
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Safriel, U.; Adeel, Z.; Niemeijer, D.; Puigdefabregas, J.; White, R.; Lal, R.; Winslow, M.; Ziedler, J.; Prince, S.; Archer, E.; et al. Dryland systems. In Ecosystems and Human Well-Being: Current State and Trends (The Millennium Ecosystem Assessment Series); Hassan, R.M., Scholes, R., Ash, N., Eds.; Island Press: Washington, DC, USA, 2005; pp. 623–662. [Google Scholar]
- Kaufmann, M.R.; Binkley, D.; Fulé, P.Z.; Johnson, M.; Stephens, S.L.; Swetnam, T.W. Defining old growth for fire-adapted forests of the western United States. Ecol. Soc. 2007, 12, 15. [Google Scholar]
- Breshears, D.D.; Rich, P.M.; Barnes, F.J.; Campbell, K. Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol. Appl. 1997, 7, 1201–1215. [Google Scholar] [CrossRef]
- Hufkens, K.; Bogaert, J.; Dong, Q.H.; Lu, L.; Huang, C.L.; Ma, M.G.; Che, T.; Li, X.; Veroustraete, F.; Ceulemans, R. Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid woodland. J. Arid Environ. 2008, 72, 1490–1505. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. USA 1998, 95, 14839–14842. [Google Scholar] [CrossRef] [PubMed]
- Covington, W.W. Helping western forests heal. Nature 2000, 408, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Allen, C.D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, S.W. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl. Acad. Sci. USA 2010, 107, 21289–21294. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Krist, F.J., Jr.; Ellenwood, J.R.; Woods, M.E.; McMahan, A.J.; Cowardin, J.P.; Ryerson, D.E.; Sapio, F.J.; Zweifler, M.O.; Romero, S.A. 2013–2027 National Insect and Disease Forest Risk Assessment; Forest Health Technology Enterprise Team, United States Department of Agriculture, Forest Service: Washington, DC, USA, 2014. [Google Scholar]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, R.; Jones, R.; Kolli, R.K.; Kwon, W.K.; Laprise, R.; et al. Regional climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.I., Eds.; Cambridge University Press: New York, NY, USA, 2007; pp. 849–940. [Google Scholar]
- Kirtman, B.; Power, S.B.; Adedoyin, J.A.; Boer, G.J.; Bojariu, R.; Camilloni, I.; Doblas-Reyes, F.J.; Fiore, A.M.; Kimoto, M.; Meehl, G.A.; et al. Near-term climate change: Projections and predictability. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 953–1028. [Google Scholar]
- Adams, H.D.; Guardiola-Claramonte, M.; Barron-Gafford, G.A.; Villegas, J.C.; Breshears, D.D.; Zou, C.B.; Troch, P.A.; Huxman, T.E. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Natl. Acad. Sci. USA 2009, 106, 7063–7066. [Google Scholar] [CrossRef] [PubMed]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [PubMed]
- Hicke, J.A.; Jenkins, J.C.; Ojima, D.S.; Ducey, M. Spatial patterns of forest characteristics in the Western United States derived from inventories. Ecol. Appl. 2007, 17, 2387–2402. [Google Scholar] [CrossRef] [PubMed]
- Lieth, H. Phenology and Seasonality Modelling; Springer: Berlin, Germany, 1974. [Google Scholar]
- Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biomet. 2000, 44, 76–81. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Ahas, R.; Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Global Chang. Biol. 2006, 12, 343–351. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef] [PubMed]
- White, M.A.; Brunsell, N.; Schwartz, M.D. Vegetation phenology in global change studies. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Kluwer Academic Publishers: New York, NY, USA, 2003; pp. 453–466. [Google Scholar]
- Peñuelas, J.; Rutishauser, T.; Filella, I. Phenology feedbacks on climate change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [PubMed]
- Körner, C.; Basler, D. Phenology under global warming. Science 2010, 327, 1461–1462. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H.; Valone, T.J.; Curtin, C.G. Reorganization of an arid ecosystem in response to recent climate change. Proc. Natl. Acad. Sci. USA 1997, 94, 9729–9733. [Google Scholar] [CrossRef] [PubMed]
- Loik, M.E.; Breshears, D.D.; Lauenroth, W.K.; Belnap, J. A multi-scale perspective of water pulses in dryland ecosystems: Climatology and ecohydrology of the western USA. Oecologia 2004, 141, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Borghi, C.E.; Ojeda, R.A. Desertification in central Argentina: Changes in ecosystem carbon and nitrogen from imaging spectroscopy. Ecol. Appl. 2003, 13, 629–648. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Chang. Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Negrón, J.F.; McMillin, J.D.; Anhold, J.A.; Coulson, D. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizstona, USA. For. Ecol. Manag. 2009, 257, 1353–1362. [Google Scholar] [CrossRef]
- Graham, R.T.; Jain, T.B. Ponderosa pine ecosystems. In Proceedings of the Symposium on Ponderosa Pine: Issues, Trends, and Management; Gen. Tech. Rep PSW-GTR-198; Pacific Southwest Research Station, U.S. Department of Agriculture, Forest Service: Berkeley, CA, USA, 2005; pp. 1–32. [Google Scholar]
- Adams, H.D.; Kolb, T.E. Drought responses of conifers in ecotone forests of northern Arizona: Tree ring growth and leaf δ13C. Oecologia 2004, 140, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Knutson, K.C.; Pyke, D.A. Western juniper and ponderosa pine ecotonal climate-growth relationship across landscape gradients in southern Oregon. Can. J. For. Res. 2008, 38, 3021–3032. [Google Scholar] [CrossRef]
- Bataineh, A.L.; Oswald, B.P.; Bataineh, M.M.; Williams, H.M.; Coble, D.W. Changes in understory vegetation of a ponderosa pine forest in northern Arizona 30 years after a wildfire. For. Ecol. Manag. 2006, 235, 283–294. [Google Scholar] [CrossRef]
- Laughlin, D.C.; Bakker, J.D.; Daniels, M.L.; Moore, M.M.; Casey, C.A.; Springer, J.D. Restoring plant species diversity and community composition in a ponderosa pine-bunchgrass ecosystem. Plant Ecol. 2007, 197, 139–151. [Google Scholar] [CrossRef]
- Rich, P.M.; Breshears, D.D.; White, A.B. Phenology of mixed woody-herbaceous ecosystems following extreme events: Net and differential responses. Ecology 2008, 89, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Walker, J.J.; de Beurs, K.M.; Wynne, R.H.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens. Environ. 2012, 117, 381–393. [Google Scholar] [CrossRef]
- Walker, J.J.; de Beurs, K.M.; Wynne, R.H. Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sens. Environ. 2014, 144, 85–97. [Google Scholar]
- De Beurs, K.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- Morisette, J.T.; Richardson, A.D.; Knapp, A.K.; Fisher, J.I.; Graham, E.A.; Abatzoglou, J.; Wilson, B.E.; Breshears, D.D.; Henebry, G.M.; Hanes, J.M.; et al. Tracking the rhythm of the season in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 2009, 7, 253–260. [Google Scholar] [CrossRef]
- Ganguly, S.; Friedl, M.A.; Tan, B.; Zhang, X.; Verma, M. Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef]
- Henebry, G.M.; de Beurs, K.M. Remote sensing of land surface phenology: A prospectus. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer: New York, NY, USA, 2013; pp. 385–411. [Google Scholar]
- Staudenmaier, M., Jr.; Preston, R.; Sorenson, P. Climate of Flagstaff, Arizona; NOAA Technical Document NWS WR-273; National Technical Information Service: Springfield, VA, USA, 2009. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) Climatological Rankings, 2005–2009. Available online: http://www.ncdc.noaa.gov/temp-and-precip/climatological-rankings/ (accessed on 15 January 2013).
- Lowry, J.; Ramsey, R.D.; Thomas, K.; Schrupp, D.; Sajway, T.; Kirby, J.; Waller, E.; Schrader, S.; Falzarano, S.; Langs, L.; et al. Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework: A case study of the Southwest Regional Gap Analysis Project (SWReGAP). Remote Sens. Environ. 2007, 108, 59–73. [Google Scholar] [CrossRef]
- USGS National Gap Analysis Program. Southwest Regional GAP Analysis Project—Land Cover Descriptions; RS/GIS Laboratory, College of Natural Resources, Utah State University, 2005. Available online: http://earth.gis.usu.edu/swgap/data/atool/files/swgap_legend_desc.pdf (accessed on 21 March 2012).
- Lucht, W. Expected retrieval accuracies of bidirectional reflectance and albedo from EOS-MODIS and MISR angular sampling. J. Geophys. Res.-Atmos. 1998, 103, 8763–8778. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. Int. J. Remote Sens. 2009, 30, 2061–2074. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Tucker, C.J. A comparison of satellite sensor bands for vegetation monitoring. Photogramm. Eng. Remote Sens. 1978, 44, 1369–1380. [Google Scholar]
- De Beurs, K.M.; Henebry, G.M. Spatio-temporal statistical methods for modelling land surface phenology. In Phenology of Ecosystem Processes: Applications in Global Change Research; Hudson, I.L., Keatley, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 177–208. [Google Scholar]
- McCune, B.; Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef]
- Moran, P.A.P. The interpretation of statistical maps. J. R. Stat. Soc. B 1948, 10, 243–251. [Google Scholar]
- Goovaerts, P.; Jacquez, G.M.; Marcus, A. Geostatistical and local cluster analysis of high resolution hyperspectral imagery for detection of anomalies. Remote Sens. Environ. 2005, 95, 351–367. [Google Scholar] [CrossRef]
- Austin, P.C.; Tu, J.V. Bootstrap methods for developing predictive models. Am. Stat. 2004, 58, 131–137. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Scott, R.L.; Huete, A.R. Functional differences between summer and winter season rain assessed with MODIS-derived phenology in a semi-arid region. J. Veg. Sci. 2010, 21, 16–30. [Google Scholar] [CrossRef]
- Salzer, M.W.; Kipfmueller, K.F. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, USA. Clim. Chang. 2005, 70, 465–487. [Google Scholar] [CrossRef]
- Bigler, C.; Gavin, D.G.; Gunning, C.; Veblen, T.T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 2007, 116, 1983–1994. [Google Scholar] [CrossRef]
- Davison, J.E.; Breshears, D.D.; van Leeuwen, W.J.D.; Casady, G.M. Remotely sensed vegetation phenology and productivity along a climatic gradient: On the value of incorporating the dimension of woody plant cover. Global Ecol. Biogeogr. 2011, 20, 101–113. [Google Scholar] [CrossRef]
- Hudson Dunn, A; de Beurs, K.M. Land surface phenology of North American mountain environments using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 2011, 115, 1220–1233. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, J.; De Beurs, K.; Wynne, R.H. Phenological Response of an Arizona Dryland Forest to Short-Term Climatic Extremes. Remote Sens. 2015, 7, 10832-10855. https://doi.org/10.3390/rs70810832
Walker J, De Beurs K, Wynne RH. Phenological Response of an Arizona Dryland Forest to Short-Term Climatic Extremes. Remote Sensing. 2015; 7(8):10832-10855. https://doi.org/10.3390/rs70810832
Chicago/Turabian StyleWalker, Jessica, Kirsten De Beurs, and Randolph H. Wynne. 2015. "Phenological Response of an Arizona Dryland Forest to Short-Term Climatic Extremes" Remote Sensing 7, no. 8: 10832-10855. https://doi.org/10.3390/rs70810832