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Abstract: Satellite remote sensing may assist in meeting the needs of lake monitoring. In this
study, we aim to evaluate the potential of Sentinel-2 to assess and monitor water constituents and
bottom characteristics of lakes at spatio-temporal synoptic scales. In a field campaign at Lake
Starnberg, Germany, we collected validation data concurrently to a Sentinel-2A (S2-A) overpass.
We compared the results of three different atmospheric corrections, i.e., Sen2Cor, ACOLITE and MIP,
with in situ reflectance measurements, whereof MIP performed best (r = 0.987, RMSE = 0.002 sr−1).
Using the bio-optical modelling tool WASI-2D, we retrieved absorption by coloured dissolved
organic matter (aCDOM(440)), backscattering and concentration of suspended particulate matter
(SPM) in optically deep water; water depths, bottom substrates and aCDOM(440) were modelled in
optically shallow water. In deep water, SPM and aCDOM(440) showed reasonable spatial patterns.
Comparisons with in situ data (mean: 0.43 m−1) showed an underestimation of S2-A derived
aCDOM(440) (mean: 0.14 m−1); S2-A backscattering of SPM was slightly higher than backscattering
from in situ data (mean: 0.027 m−1 vs. 0.019 m−1). Chlorophyll-a concentrations (~1 mg·m−3) of the
lake were too low for a retrieval. In shallow water, retrieved water depths exhibited a high correlation
with echo sounding data (r = 0.95, residual standard deviation = 0.12 m) up to 2.5 m (Secchi disk
depth: 4.2 m), though water depths were slightly underestimated (RMSE = 0.56 m). In deeper water,
Sentinel-2A bands were incapable of allowing a WASI-2D based separation of macrophytes and
sediment which led to erroneous water depths. Overall, the results encourage further research on
lakes with varying optical properties and trophic states with Sentinel-2A.

Keywords: WASI; atmospheric correction; bathymetry; submerged vegetation; sun glint;
water quality; validation; inland waters; inverse modelling

1. Introduction

The monitoring of lake water quality is gaining increasing importance due to an increase in
stressors such as climate change, eutrophication, contamination of organic and inorganic substances,
and anthropogenic influences which threaten ecological functions [1,2]. Humans both benefit from and
depend on a variety of ecosystem services provided by lakes, e.g., drinking water, irrigation, energy
production, fisheries, and recreation [3]. Therefore, healthy lake ecosystems are of great importance.
International and national legislations such as the European Water Framework Directive [4] or the US
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Clean Water Act [5] include regular monitoring schemes that observe the ecological states of lakes and
detect changes which may influence lake ecology and water quality [6]. Most monitoring schemes are
based on selective sampling during summer or installation of measurement buoys [7]. Deploying these
sampling strategies is labour, time and cost intensive [8]; yet, it may not allow for the detection of
changes which occur on varying temporal and spatial scales [9].

To overcome spatio-temporal limitations, remote sensing may assist in situ monitoring since
it can extract indicators on water transparency, biota, bathymetry, water surface temperature
and ice phenology [10]. Empirical and physical-based algorithms can be used to retrieve water
constituents, water depths and bottom substrates. Several publications provide reviews of existing
approaches [10–14]. Compared to empirical algorithms, physically-based approaches are broadly
applicable and transferable among lakes and sensors. Suitable sensors must deploy bands in the visible
and near-infrared (VNIR) wavelengths with high radiometric sensitivity such as ocean colour sensors
(e.g., MODIS and MERIS). Owing to their spatial resolution (≥300 m), studies conducted with these
sensors focus mainly on large lakes such as Lake Balaton [15], Lake Geneva [16], Lake Taihu [17–19],
or Great Lakes [20], but rarely on small lakes [21,22]. Studies on smaller lakes refer to less sensitive
Landsat data [23] or to high spatial resolutions from commercial sensors such as WorldView [24] or
Quickbird [25]. Moreover, airborne hyperspectral data often are used for mapping bottom substrates
or water depths (e.g., [26–28]). Though designed primarily for land applications, the new generation
of multispectral sensors such as Landsat 8 and Sentinel-2 offers unprecedented opportunities for lake
remote sensing [10,29]. Additional bands in the VNIR wavelengths, higher radiometric sensitivity,
signal-to-noise ratios and, in the case of Sentinel-2—the spatial resolution of up to 10 m, enables
detailed lake analyses. Synergetic multi-sensor use may increase temporal coverage and allow for
cloud-free data [10]. Landsat 8 has the capabilities for retrieving water constituents [30–33], water
depths [31,34], Secchi disk depth [35] and bottom substrates [34]. Model based sensitivity and field data
analyses have revealed a high potential of Sentinel-2 for water constituent retrieval [36,37] and bottom
substrate mapping such as coral reefs [38]. A study by Toming et al. ([39], this special issue) focused
on transferring empirical algorithms to S2-A for retrieving water quality parameters in optically
deep water.

This study was conducted at Lake Starnberg, a clear, deep lake located in the peri-alpine region;
its current trophic state is oligotrophic [40]. The shallow waters along the shoreline are partially
covered by submerged macrophytes, sand or stony ground. Earlier studies at Lake Starnberg
analysed multi-temporal RapidEye data with a depth-invariant index to track the development
of submerged native and invasive macrophytes [41,42]. Rößler et al. [43] applied the bio-optical
modelling tool BOMBER [44] in order to retrieve water constituents and submerged macrophytes
from airborne hyperspectral imagery. Gege [45] also used a physical based bio-optical modelling tool,
i.e., WASI-2D [46], and focused on deriving water depths from airborne hyperspectral imagery.

In this study, we assess the suitability of S2-A for retrieving water constituents, water depths and
bottom substrates using the physically-based model, WASI-2D. The study is based on the results by
Dörnhöfer et al. [47] who demonstrated the potential of S2-A data for retrieving SPM, aCDOM(440)
and water depths. We aim (1) to compare the performance of three different atmospheric corrections
over water surfaces (2) to evaluate the capability of S2-A to retrieve absorption by coloured dissolved
organic matter (aCDOM), backscattering and concentration of suspended particulate matter (SPM) in
optically deep water; (3) to derive water depths and bottom substrates in optically shallow waters.
For validation, we use in situ data acquired during a measurement campaign concurrently with a S2-A
image acquisition from August 2015.
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2. Materials and Methods

2.1. Study Area and Field Data

Located in the pre-alpine region, Lake Starnberg (11◦19′14′ ′E, 47◦49′34′ ′N) formed during
the last ice age. With an area of 56.4 km2, it is the fifth largest lake in Germany reaching a
maximum depth of 127.8 m (average depth: 53.2 m) [48]. In comparison to the lake’s total volume
(2.999 Mio. m3), the catchment area, made up primarily of forest and cultivated grassland, is relatively
small (315 km2). Inflows are slow, and consist of groundwater flows, small creeks and streams.
Outflows include the river Würm, located at the northern end of the lake which also has a slow
discharge. Low inflow (3.6 m3·s−1 [49]) and low discharge (4.5 m3·s−1 [49]) result in a long residence
time of water (21 years) [48]. After showing rising levels of eutrophication, a drainage system was
introduced in the 1970s. Since then, the water quality steadily increased and the lake turned into a
popular recreation area. Between 2004 and 2014, the average total phosphorous concentration was
around 6 ± 2 mg·m−3, nitrogen concentration around 0.3 ± 0.1 g·m−3, average chlorophyll-a (chl-a)
concentration in 2 m water depth was 2.3 ± 1.0 mg·m−3; Secchi disk depth was on average 9 ± 2 m
during winter and 6 ± 2 m during summer season [50]. Sandy sediments are the predominating
substrate, gravel forms the substrate in the very shallow water (<0.5 m water depth). A variety
of submerged macrophytes colonise shallow waters; Chara sp. are the predominating macrophyte
species with interspersed patches of Potamogeton sp. In the northern and western parts of the lake
(Elodea nuttallii, Elodea canadensis) and south-western parts (Najas marina), invasive macrophyte species
are present. Recently, the monomictic lake has been classified as oligotrophic—equal to its natural
state [40].

To evaluate S2-A ability to retrieve information on lake ecology indicators, such as SPM,
aCDOM(440) or bottom substrates [10], we conducted a measurement campaign on 12–13 August 2015.
We compiled field data which allow us to assess performance of atmospheric correction procedures,
to adapt and regionalise a bio-optical model, and to validate resulting S2-A derived products.
We focused on the southern lake area with moderately sloping regions (Figure 1). At the end of
the text, a list of all used abbreviations is provided. Figure 2 provides a schematic illustration of the
methodological workflow.
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Close to the satellite overpass, we measured aerosol optical thickness (AOT) with Microtops sun
photometers (AOT = 0.151 at 550 nm, 12:17 UTC + 2). AOT data from a nearby (23 km) Aeronet station
“Hohenpeißenberg” (989 m AMSL, AOT = 0.168 at 550 nm, 12:22 UTC + 2) were extrapolated to lake
elevation (AOT = 0.179 at 550 nm) [51]. Using an Ibsen FREEDOM VIS FSV-305 spectroradiometer
(390–850 nm, 0.5 nm sampling interval) and a Labsphere reflectance standard with ~10% diffuse
reflectance [52], we measured radiance reflectance spectra nadir-looking approx. 0.5 m above the water
surface RBOA

rs−FREEDOM (0+, λ) at all seven measurement sites concurrently (−1 to +2 h) to the S2-A
overpass on 13 August 2015 (12:16 UTC + 2). The location and number of measurement sites was a
trade-off between covering different water depths, bottom substrates, deep and shallow water within
a narrow time window. Measurement sites A to E were located in optically shallow water where the
ground was visible; F and G were located in optically deep water with a measured mean Secchi disk
depth of 4.2± 0.3 m. Sediment samples were collected with a Ekman-Birge type bottom sampler at each
measurement site and RBOA

rs−FREEDOM (0+, λ) recorded ex situ using the FREEDOM spectroradiometer.
We measured downwelling spectral irradiance Ed (z, λ) using a TriOS RAMSES ACC-VIS sensor, and
upwelling spectral radiance Lu (z, λ) with a TriOS RAMSES ARC-VIS sensor (320–950 nm, 3.3 nm
sampling interval). These radiometers and a Tritech PA500 altimeter were mounted on a custom built
frame ensuring that the entrance optics of each instrument were at the same depth (z). This setup
allowed for simultaneous measurements of all instruments at varying sensor depths (z) below (z < 0,
measurement site A–E, G) and above water (z = 0+ at F and G). The depth of the sensor level was
determined using a step counter for measuring the cable length (uncertainty for levelling the sensor:
Approx. ± 2 cm at calm conditions ); the distance to the ground was measured in a range from 0 to
10 m at a resolution of 1 mm with the Tritech PA500 altimeter. Radiance reflectance was calculated
simultaneously for each recorded pair of measurements as Rrs−RAMSES (z, λ) = Lu (z, λ) /Ed (z, λ).
To account for the spectral differences of the Lu and Ed sensors, we resampled the spectra to a uniform
1 nm grid using cubic interpolation.
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A second data set was collected on the previous day at the same seven locations. Geolocation
uncertainties (5–20 m, at D: 50m) due to boat drift and GPS positional inaccuracies were considered in
the validation process as described in Section 2.2. During this campaign, we measured Ed (z, λ) and
Lu (z, λ) in several depths with a second set of identical RAMSES radiometers [53]. Furthermore, we
collected water samples from the top (0.3 m) water layer for further laboratory analysis. The temporal
offset between water sampling and S2-A overpass is noticeable. Lakes are dynamic systems requiring
sampling temporally close to image acquisition. Water body conditions can change between sampling
dates, causing discrepancies and incorrect validation. The weather conditions were stable and did not
indicate changing water constituent concentrations between both days [54]. RAMSES data of both
campaign dates showed similar reflectances and indicated stable water conditions. Therefore, the
water samples taken the day before seem to be comparable. We determined SPM concentration
gravimetrically according to Strömbeck and Pierson [55]; a 1 L water sample was filtered through
pre-weighed cellulose-acetate filters (pore size: 0.45 µm). The filters were then dried at 105 ◦C and
weighed again. To retrieve concentration of chl-a, we filtered a 1 L water sample through a GF/F filter
(pore size: 0.7 µm). Pigments were removed from filter using 99.9% acetone. Pigment concentration
was measured using high performance liquid chromatography.

For assessing the accuracy of retrieved water depths, we used echo sounding data (BioSonics MX
aquatic habitat echosounder) acquired in June 2012 in the southern part of the lake (near Seeshaupt).
Water level measurements on 13 August (584.3 m AMSL, [56]) were close to mean water level measured
during June 2012 (584.4 m AMSL, [56]). The data therefore seem to be comparable. We distinguished
optically deep and shallow water with the 8 m water depth line in reference to the official bathymetry
map (Figure 1, [57]).

2.2. Preprocessing of S2-A Data

S2-A acquired an image over Lake Starnberg on 13 August at 12:16 (UTC+2). We conducted
atmospheric correction procedures on reprocessed L1C data (processing baseline: 02.01) using three
different algorithms, i.e., Sen2Cor (Version 2.2.1, [58]), ACOLITE (Version 20160520.1, [59,60]) and MIP
(Modular Inversion and Processing System, [61–63]).

Prior to atmospheric correction, Sen2Cor classifies the scene roughly into cloud and land cover
classes. The atmospheric correction is based on 24 look-up table sets modelled with libRadtran [58].
Sen2Cor applied a dense, dark vegetation approach to determine AOT using bands B12 (2190 nm),
B04 (665 nm) and B03 (560 nm). For assessing water vapour column height, the bands B8A (865 nm)
and B09 (945 nm) were used [58]. We configured Sen2Cor for processing with default settings including
correction for adjacency effects with an adjacency range of 1000 m. We used the rural aerosol model,
a SRTM-digital elevation model and selected ozone concentration calculation based on the value
provided in the metadata. We calculated Sen2Cor products on the 10 m pixel size; bands with a
spatially lower resolution were only resampled rather than interpolated. Since Sen2Cor has been
developed for land surfaces it lacks a correction of water surface effects and provides the corrected data
in units of bottom of atmosphere irradiance reflectance RBOA (0+, λ). For analysing the water body, we
used bottom of atmosphere radiance reflectance RBOA

rs (0+, λ) as the sum of remote sensing reflectance
and water surface reflectance; we therefore converted RBOA (0+, λ) to RBOA

rs (0+, λ) according to
Equation (1) [64]:

RBOA
rs

(
0+, λ

) [
sr−1

]
=

RBOA (0+, λ)

π
(1)

ACOLITE is an atmospheric correction tool specifically developed for water bodies, currently
available for Landsat 8 and Sentinel-2 [59,60,65]. ACOLITE amended atmospheric Rayleigh reflectance
using a Second Simulation of the Satellite Signal in the Solar Spectrum (6S)-V look-up table which
considers sensor and sun geometry as well as sun and sky glint (modelled for a wind speed of
1 m·s−1) [60]. Atmospheric pressure correction was conducted for the site elevation of 595 m AMSL.
Pixels having a Rayleigh corrected irradiance reflectance above 0.03 (0.0215 by default) in band B09



Remote Sens. 2016, 8, 941 6 of 25

(1610 nm) were masked as non-water. Using the ratio between shortwave infrared (SWIR) bands B09
(1610 nm) and B10 (2190 nm) ACOLITE estimated the aerosol type over water pixels. The reflectance in
SWIR bands above water bodies was assumed to be zero, observed reflectance was assumed to result
solely from aerosol. Aerosol reflectance was then extrapolated exponentially to VNIR wavelengths [60].
We chose the option “estimating aerosol type on a per pixel basis”, but also followed the suggestion
by Vanhellemont and Ruddick [59] to conduct the estimation on spatially binned (320 × 320 m2)
SWIR bands to reduce noise effects from low signal-to-noise ratio and low reflectances in these bands.
The resulting RBOA

rs (0+, λ) dataset was resampled to 10 m pixel size, whereas bands with 20 m and
60 m spatial resolution were replicated.

MIP is a physics-based, sensor-independent, atmospheric correction software developed for
coastal and inland waters [61–63]. Atmospheric scattering and absorption is calculated based
on radiative transfer modelling considering bidirectional properties. Vertical characterisation of
atmospheric layers follows MODTRAN, and considers different seasons, aerosol types and AOT.
Furthermore, MIP analytically calculates, and subtracts the contribution of adjacent pixels on the
reflectance [61]. Currently, MIP does not correct sun glint for sensors such as S2-A. Land and cloud
masking is conducted automatically during processing. The resulting RBOA

rs (0+, λ) dataset was
interpolated to 10 m pixel size using a regression based filtering approach. Additionally, MIP calculated
a quality indicator for each pixel which documents fit performance and sun glint [61]. EOMAP GmbH
& Co.KG holds MIP, distributes atmospherically corrected products and conducted data processing.

For evaluating the performance of the three different atmospheric correction algorithms,
we resampled the FREEDOM RBOA

rs−FREEDOM (0+, λ) measurements to the S2-A spectral response
curves [66] according to Equation (2):

RBOA
rs−FREEDOM

(
0+, λX

)
=

∑λmax
i=λmin

r (λi) ·RBOA
rs−FREEDOM (0+, λi)

∑λmax
i=λmin

r (λi)
(2)

where RBOA
rs−FREEDOM (0+, λX) is the band equivalent reflectance for band X, λmin and λmax represent

start and end wavelengths of the filter function for band X, r (λi) is the relative response for band X at
wavelength λi, RBOA

rs−FREEDOM (0+, λi) is the reflectance measured by the FREEDOM spectroradiometer
at band i centred at wavelength λi.

In cases with more than 1 resp. 2 measurements at a measurement site, we calculated the mean
and standard deviation of in situ measured reflectance. In the 10 × 10 m2 pixel size S2-A data,
we located the pixel corresponding to the GPS location of a measurement site. To address GPS
positional inaccuracies, potential boat drifting and water masses, we calculated the mean spectrum
and standard deviation of the S2-A RBOA

rs−S2−A (0+, λ) spectra based on a 7 × 7 pixel environment for
deep water measurement sites (F and G). To reduce the effect of bottom heterogeneity we chose a
3 × 3 pixel environment in shallow water (site A to E). We then compared resampled mean in situ
RBOA

rs−FREEDOM (0+, λ) and mean S2-A RBOA
rs−S2−A (0+, λ) spectra, and calculated Pearson’s correlation

coefficient (r, Equation (3)) to evaluate the correspondence in shape.

r =
∑n

X=1

(
RBOA

rs−FREEDOM(0+ ,λX)−RBOA
rs−FREEDOM(0+)

)
·
(

RBOA
rs−S2−A(0+ ,λX)−RBOA

rs−S2−A(0
+)
)

√
∑n

X=1

(
RBOA

rs−FREEDOM(0+ ,λX)−RBOA
rs−FREEDOM(0+)

)2
·
√

∑7
i=1

(
RBOA

rs−S2−A(0
+ ,λX)−RBOA

rs−S2−A(0
+)
)2

(3)

with RBOA
rs−FREEDOM (0+, λX) and RBOA

rs−S2−A (0+, λX) being the reflectance at band λX (band B01- B07) of

resampled in situ respectively S2-A data; RBOA
rs−FREEDOM (0+) respectively RBOA

rs−S2−A (0+) are the mean
reflectance values calculated from band B01–B07 (n = 7).
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The second calculated performance indicator was Root Mean Square Error (RMSE, Equation (4))
which expressed the absolute difference between both reflectance spectra [67].

RMSE =

√√√√∑n
X=1

(
RBOA

rs−FREEDOM (0+, λX)− RBOA
rs−S2−A (0+, λX)

)2

n
(4)

We further calculated the Chi-square (X2, Equation (5)) which incorporates both shape and
intensity of spectra, and the mean absolute percentage error (MAPE, Equation (6)) which usually is
easier to comprehend due to the percentage statement.

X2 =
n

∑
X=1

(
RBOA

rs−S2−A (0+, λX)− RBOA
rs−FREEDOM (0+, λX)

)2

RBOA
rs−FREEDOM (0+, λX)

(5)

MAPE =
1
n
·

n

∑
X=1

∣∣∣∣∣RBOA
rs−FREEDOM (0+, λX)− RBOA

rs−S2−A (0+, λX)

RBOA
rs−FREEDOM (0+, λX)

∣∣∣∣∣ ·100 (6)

MIP showed best performance (cf. Section 3.1); we therefore used the MIP corrected dataset for
further processing and analysis. The MIP RBOA

rs (0+, λ) product with 10 m pixel size was resampled
to 20 m and 60 m using nearest neighbour approach. For each data set (10 m, 20 m, and 60 m),
we calculated the noise-equivalent remote sensing reflectance difference, NE∆RrsE, as the standard
deviation of MIP RBOA

rs (0+, λ) spectra within a relatively homogenous area in optically deep water [68].
It is an indicator for the suitability of the data for analysing water constituents concerning random
noise. We chose an area of 320 × 320 m2 which corresponds to 32 × 32 pixels in the 10 m product,
9 × 9 in the 20 m, and 3 × 3 in the 60 m product. Apart from the signal-to-noise ratio, the applied
atmospheric correction and environmental conditions during image acquisition, such as water surface
or downwelling irradiance, influence the NE∆RrsE. For analysing water constituents from remote
sensing data, NE∆RrsE < 0.00025 sr−1 is optimal ([27], see black line in Figure 3). Figure 3 shows
the resulting band and pixel size dependence of NE∆RrsE. Mean values of bands B01–B07 were
0.00014 sr−1, 0.00014 sr−1 and 0.00012 sr−1 for 10 m, 20 m and 60 m pixel size, respectively. Referring to
Figure 3 and mean values, spatial binning from 10 m to 20 m barely improved NE∆RrsE; spatial binning
to 60 m reduced NE∆RrsE in bands B01–B04, but slightly increased it in bands B05–B07. Except for
band B01 (10 m and 20 m), all bands achieved values <0.00025 sr−1; concerning noise, we therefore
considered the MIP corrected scene appropriate for further analyses.
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2.3. Inverse Modelling with WASI-2D

WASI-2D is a freely available software tool (http://www.ioccg.org/data/software.html) for
analysing atmospherically corrected multispectral and hyperspectral imagery in both optically deep
and shallow water [46]. In optically deep water, absorption and scattering by optically active water
constituents such as chl-a, SPM, CDOM and water itself, shape water reflectance. In optically shallow
water, bottom reflectance and water depth additionally influence reflectance [10,14]. Satellite sensors,
such as S2-A, measure top-of-atmosphere spectral radiances; the atmospheric correction algorithm
then converts them to bottom-of-atmosphere reflectances. Such algorithms often lack a correction of
specular reflectance of sun and sky at the surface, which can be quite significant for water. WASI-2D
therefore includes a sky radiance model for correcting sun and sky glint.

To derive information on water constituents, bottom substrate and water depth from RBOA
rs (0+, λ)

spectra, WASI-2D includes several analytic models to analyse measured spectra using an optimisation
approach. The optimisation procedure inversely models the RBOA

rs (0+, λ) spectrum of each pixel
adjusting a number of model parameters, called fit parameters, until the calculated spectrum matches
RBOA

rs (0+, λ) as close as possible. Fit parameters vary within a predefined range, depending on the
study area’s characteristics. Curve fitting terminates when measured and inversely modelled spectra
correspond best (residuum < 1.0 × 10−4, least squares). If the residuum criterion is not met, the fit
routine stops after a pre-defined number of iterations. WASI-2D writes the final values of fit parameters
for each pixel to file, resulting in a multi-band raster image where each band corresponds to a fit
parameter. For modelling RBOA

rs (0+, λ) in optically deep and shallow water, we applied the analytic
equation of Albert and Mobley [69]. In the WASI implementation of this model, SPM and water
comprise the backscattering properties; water, different classes of phytoplankton, CDOM and detritus
can be selected as the absorbing components. In optically shallow water, water depth is additionally
included in calculating reflectance of water; WASI-2D further considers contributions of up to six
linearly mixed bottom types. To address surface reflectance, we applied the implemented model of sky
radiance which is based on the downwelling irradiance model by Gregg and Carder [70]. In our data
processing, WASI-2D accounted for reflected solar irradiance (sun glint) during inverse modelling.
We omitted considerations to diffuse reflectance (sky glint) as it was included in MIP. A detailed
description of the models can be found in Gege [46].

Inverse modelling was conducted using the MIP atmospherically corrected RBOA
rs (0+, λ) dataset

and bands B01 (443 nm) to B07 (783 nm). We therefore resampled the WASI-2D spectral database
to the S2-A spectral response curves [66] adopting Equation (2). According to a previous study at
Lake Starnberg dinoflagellates were chosen as phytoplankton type [45]. Based on results of the water
sample analysis, the chl-a concentration was fixed to 1 mg·m−3. The CDOM absorption coefficient
was modelled according to Equation (7),

aCDOM (λ) = aCDOM (440) ·e−SCDOM ·(λ−440) (7)

where aCDOM (440) (m−1) was treated as fit parameter while the slope factor SCDOM was set as constant
(0.0155 nm−1, mean of in situ S). Backscattering of suspended matter was calculated according to
Equation (8),

bb,SPM (550) = SPM·b∗b,SPM (550) (8)

with SPM (g·m−3) treated as fit parameter in optically deep water, and set constant in shallow water
(1.8 g·m−3, mean SPM of deep water result). When considering bottom reflectance in modelling
shallow water, WASI-2D requires irradiance reflectance spectra representing the bottom types at the
test site. WASI-2D allows for up to six different bottom types. Giardino et al. [34] advised using not
more than two bottom types for multispectral imagery. We used a sandy sediment spectrum acquired
ex situ with the FREEDOM radiometer on 13 August 2015 (Section 2.1), and a macrophyte spectrum
of the predominating species (Chara sp., WASI-2D database) growing at the southern part of Lake
Starnberg (Figure 4). The sum of fractional area (fA[sediment] and fA[macrophyte]) was allowed to

http://www.ioccg.org/data/software.html
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range between 1.0 and 1.2. Since MIP lacked a correction of sun glint, the fraction of sun glint per pixel
area (gdd) was chosen as a fit parameter in both optically shallow and deep water.
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2.4. Retrieval of Inherent Optical Properties from In Situ Measurements

The downwelling irradiance in water, Ed(z < 0, λ), can be used for determining the concentration
of phytoplankton [71] and CDOM [72] if sensor depth z is large enough to capture the impact of
absorption by water constituents on the spectral signature of Ed(z < 0, λ). For lakes with chl-a and
CDOM concentrations similar to Lake Starnberg, this critical depth is in the order of 1.0–1.5 m [71,72].
Following this principle, we estimated the CDOM parameters aCDOM(440) and S from RAMSES
Ed(z < 0, λ) measurements in water.

First, we fitted the above water RAMSES measurements of downwelling irradiance Ed (0+, λ) in
WASI-2D using the Gregg and Carder model [70] to derive the atmospheric parameters required as
input for modelling the under-water Ed(z < 0, λ) spectra. The turbiditiy coefficient and water vapour
concentration were treated as fit parameters, the Angström exponent of aerosol scattering (1.32) and
the scale height of ozone (0.45 cm) were kept constant. Second, we retrieved aCDOM(440) and S from
Ed(z < 0, λ) measurements with z < −1 m by inverse modelling. The atmospheric parameters were
kept constant at the results of step 1 for the actual site; phytoplankton was kept constant at 1 mg·m−3.
The fractions of the direct and diffuse components of Ed(λ) and sensor depth were fitted along with
aCDOM(440) and S.

Above water measurements of RBOA
rs (0+, λ) from the RAMSES and FREEDOM sensors were used

to estimate the backscattering coefficient of SPM, bb,SPM(550). Using WASI, we inversely modelled
RBOA

rs−FREEDOM (0+, λ) and RBOA
rs−RAMSES (0

+, λ) spectra which were measured at the optically deep
sites F and G.

3. Results and Discussion

3.1. Comparison of Atmospheric Correction Approaches

We compared three approaches for atmospheric correction from which two were specifically
developed for water surfaces. Figure 5a–g show resampled in situ spectra and atmospherically
corrected spectra of the corresponding pixel environment. The common feature of the seven
measurement sites is that all approaches retrieved different RBOA

rs (0+, λ) spectra. Table 1 summarises
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performance indicators for evaluating the results of the three different atmospheric correction
algorithms. MIP outperformed Sen2Cor and ACOLITE at most measurement sites (Table 1).

Table 1. Performance indicators of resampled in situ and atmospherically corrected spectra at
measurement sites in optically shallow (A–E) and deep (F–G) water. Green colour highlights the
atmospheric correction algorithm with the best performance.

A B C D E F G Mean

Shallow Water Deep Water

Measurement time (UTC) 11:54 11:44 11:20 11:07 12:23 10:50 09:52
MIP (r) 0.990 0.993 0.993 0.985 0.976 0.986 0.984 0.987

RMSE (sr−1) 0.002 0.002 0.001 0.004 0.003 0.002 0.003 0.002
MAPE (%) 46.8 17.7 45.0 98.9 83.6 60.8 72.4 60.7
X2 (sr−1) 0.005 0.001 0.004 0.021 0.016 0.007 0.010 0.009

Sen2Cor (r) 0.953 0.953 0.940 0.846 0.757 0.795 0.838 0.869
RMSE (sr−1) 0.002 0.005 0.003 0.002 0.002 0.003 0.002 0.003

MAPE 120.1 96.5 61.6 83.9 95.4 78.6 83.8 88.6
X2 (sr−1) 0.021 0.023 0.010 0.010 0.015 0.012 0.012 0.015

ACOLITE (r) 0.979 0.980 0.978 0.960 0.853 0.953 0.953 0.951
RMSE (sr−1) 0.003 0.006 0.003 0.001 0.002 0.002 0.002 0.003

MAPE 131.4 110.2 67.4 76.4 97.4 73.8 77.3 90.6
X2 (sr−1) 0.026 0.032 0.011 0.010 0.017 0.011 0.011 0.017

At all measurement sites, Sen2Cor obtained RBOA
rs (0+, λ) values at band B01 (443 nm) and B02

(490 nm) significantly lower than the in situ data. This observation presumably resulted from an
erroneous aerosol parameterisation. Sen2Cor obtained an AOT value of 0.185 ± 0.002 (550 nm) for
southern Lake Starnberg pixels which was higher compared to measurements with sun photometers
(0.151) and at the Aeronet Station (0.179). Thus, Sen2Cor overestimated aerosol reflectance resulting in
overcorrected RBOA

rs (0+, λ) spectra. Both, ACOLITE and Sen2Cor calculated RBOA
rs (0+, λ) values in

bands B06 (740 nm) and B07 (783 nm) higher than in situ measurements. ACOLITE lacks a correction
of adjacency effects, and reflectance from neighbouring land pixels therefore contributes to the signal
and accounted for higher reflectance values above 705 nm. Extrapolating aerosol reflectance from the
SWIR bands to the shorter wavelengths thus may result in overcorrected spectra. Similar to Sen2Cor,
ACOLITE tended to lower reflectance values compared to in situ measurements, though inconsistently.
Sen2Cor includes a correction for adjacency effects based on a range-independent reflectance in a large
neighbourhood of each pixel, which performs insufficiently for water pixels close to the shoreline.
At wavelengths above 700 nm, the impact of adjacency effects is particularly strong since neighbouring
land pixels show distinctly higher reflectance [67]. The distance between measurement sites and land
varied between 40 m (B) and 600 m (F); consequently, adjacency effects altered all pixel environments
(Figure 5). The same applies for all lake pixels due to the lake’s width ranging from 1 km to 4.5 km.
Sterckx et al. [73] illustrated that adjacency effects occur even for pixels several hundred metres away
from the shoreline. Santer and Schmechting [74] indicated that for similar solar elevation, adjacency
effects become negligible (less than 0.1%) only for a distance greater than 5 km from the shoreline.
Thus, a correction of adjacency effects appropriate for the water/land environment is essential for
reliable spectra. At all measurement sites, MIP retrieved reflectances in bands B06 and B07 slightly
above zero, similar to the in situ measurements. MIP calculated zero values for 1.2% of lake pixels in
B06 (740 nm) and for 19.0% in B07 (783 nm), which may result from sky glint overcorrection. At A-C,
MIP performed well in retrieving both shape and intensity (high r, low RMSE, low X2, cf. Table 1);
at other sites, MIP obtained comparable shapes, but showed higher intensities compared to in situ
measurements and spectra from ACOLITE and Sen2Cor. In the validation area, MIP calculated an AOT
of 0.160 (550 nm) which was close to Microtops measurement values; MIP AOT was lower than AOT
calculated by Sen2Cor which partly explains the significantly higher spectra compared to Sen2Cor.
Different treatment of adjacency effects, sky glint correction and the used aerosol model for calculating
atmospheric scattering may further account for differences in spectral shape.
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Apart from temporal differences, one has to bear in mind the problem of upscaling while
comparing in situ measured reflectance over a small area of water (<1 m) compared to the spatial
measurement of S2-A (10 m, 20 m and 60 m). Measurement sites A–E were located in optically
shallow water, where varying bottom characteristics (i.e., different macrophytes or sediments),
and water depths, influence water reflectance. The satellite sensor records a mixed signal from
this variance. Statistical approaches to overcome upscaling problems from point to pixel scale were
developed for ocean-colour sensors [75]. Furthermore, in situ measurements also underlie a number of
uncertainties such as shading by instrument, boat and changes in incident radiation due to atmospheric
variability [76]. Larger error bars (standard deviation) of both in situ and atmospherically corrected
spectra in Figure 5b indicate the resulting higher standard deviations.

For case-1 open ocean water algorithms, the required accuracy of water-leaving radiances
is 5% to achieve a Chl-a product with ~30% accuracy, for instance [77]. To our knowledge, a
comparable accuracy target is not yet defined for atmospheric correction algorithms over inland
waters. The evaluated atmospheric corrections showed MAPE values between 61% and 91% on
average and underpin that atmospheric correction over inland waters still is an unresolved problem.
The large differences of atmospheric corrections are another critical point. Each atmospheric correction
model resulted in a different RBOA

rs (0+, λ) spectrum from the same S2-A at-sensor radiance. An EU-FP7
GLaSS project report also compared different atmospheric correction algorithms retrieving highly
varying results [78]. Caused by the low reflectance of water, small absolute differences in reflectance
rapidly result in large relative differences. These differences may propagate to the subsequent retrieval
of lake ecology indicators when using (analytic) approaches that rely on both shape and intensity of
spectra. Assessing this issue, however, is beyond the scope of this study and may be expanded to other
sensors as well.

3.2. Optically Deep Water

Fit parameters in optically deep water were aCDOM(440) and SPM concentration. Since the
RBOA

rs (0+, λ) data used during inverse modelling (bands B01–B07) were not corrected for sun glint,
we also selected the fraction of sun glint per pixel area, gdd, as a fit parameter. Table 2 summarises
in situ and S2-A derived values at the measurement sites. Variations due to spatial resampling were
minor. Absence of processing artefacts, such as stripping, in the resulting parameter maps (Figure 6)
shows that processing performed well. Low residuals (mean: 3.96 × 10−4 ± 3.82 × 10−5) between
S2-A and inversely modelled spectra underpinned a good modelling performance. The gdd map
(Figure 6c) indicates higher sun glint in the northern part of the lake, while the southern region
including our measurement sites was only slightly affected. Retrieved aCDOM(440) ranged between
0.10 and 0.74 m−1 (mean: 0.14 ± 0.02 m−1), SPM between 1.1 and 5.1 g·m−3 (mean: 1.8 ± 0.2 g·m−3).
These ranges correspond well with concentrations obtained from hyperspectral imagery in other
studies at Lake Starnberg [43,45]. Referring to the different spatial resolutions, WASI-2D retrieved
similar concentration values (Table 2). Reducing the pixel size of S2-A data must not necessarily result
in a significant improvement which might be interesting for analysing small lakes.

Both SPM concentrations and aCDOM(440) showed little variations indicating homogenous and
clear lake conditions (Figure 6). SPM in the water column may result from resuspension [79]
or from catchment erosion [80]. The lowest SPM concentrations around 1.4 g·m−3 occurred in
the northern part of the lake; slightly higher concentrations around 2.0 g·m−3 were retrieved
in the southern part. CDOM originates from allochthonous sources from rotting plants in the
catchment, or from autochthonous sources such as decomposing phytoplankton or macrophytes [81].
In the S2-A data, aCDOM(440) values were slightly higher in the southern regions compared to the
northern part. External input from catchment of both SPM and aCDOM(440) was presumably low
since no rainfall occurred the week prior to image acquisition [54]. Furthermore, Lake Starnberg
receives mainly groundwater inflows [48], thus, the low values of both SPM concentration and
aCDOM(440) are reasonable. Chl-a was considered as a constant parameter during inverse modelling.
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Water sample analyses also revealed low concentrations of chl-a (~1 mg·m−3) causing water absorption
to be predominated by CDOM. Both chl-a and CDOM absorb in the blue wavelength region [13].
Compared to Landsat 8 OLI, S2-A offers an additional band at 705 nm (B06) which may support
chl-a assessment [59]. Under low chl-a concentrations, however, other optically active constituents
may superimpose the absorption feature. Empirical NIR-red algorithms based on the feature, for
instance, perform more reliable at chl-a concentrations >10 mg·m−3 [14,82]. At Lake Starnberg, chl-a
concentrations were too low for a retrieval along with aCDOM(440) and SPM.

Table 2. Comparison of in situ and S2-A (WASI-2D) results in optically deep water. Term in parentheses
indicates in situ data source. SPM values originate from water samples taken the day before image
acquisition. Mean and standard deviation of 5× 5 respectively 3× 3 pixel environment were calculated
for 10 m and 20 m pixel size, respectively, and reflect spatial variability. The values of the 60 m pixels
correspond to GPS coordinates. Errors for in situ (RAMSES) are derived from inversion and reflect
variability during a measurements series.

Point Pixel
Size SPM (g·m−3) bb,SPM(550) (m−1) aCDOM(440) (m−1)

In Situ
(Sample) S2-A_WASI-2D In Situ

(RAMSES)
In Situ

(FREEDOM) S2-A_WASI-2D In Situ
(RAMSES) S2-A_WASI-2D

F
10

1.9
1.44 ± 0.65 no

measurement 0.015; 0.020 *
0.0216 ± 0.0098

0.436 ± 0.003
0.14 ± 0.06

20 1.72 ± 0.04 0.0258 ± 0.0006 0.16 ± 0.01
60 1.71 0.0257 0.16

G
10

0.4
1.80 ± 0.04

0.021 ± 0.001 0.021 *
0.0270 ± 0.0006

0.418 ± 0.003
0.17 ± 0.04

20 1.77 ± 0.03 0.0266 ± 0.0005 0.16 ± 0.01
60 1.76 0.0264 0.16

* only one or two measurements.

Spatial patterns of gdd (Figure 6c) revealed high sun glint influence in the northern and western
lake regions, whereas the southern and eastern regions were only slightly affected by sun glint.
Sun glint occurs on water surfaces where radiation is directly reflected to the sensor as a combination
of surface roughness, sun position and sensor viewing angle [83]. The statistical model for predicting
sun glint probability by Cox and Munk [84] is widely used in ocean colour remote sensing; it shows
that increasing wind speed increases the probability of the water surface being oriented to cause
sun glint. Wind direction was from east-southeast (120◦, wind speed: 3.0 m·s−1 [54]) close to image
acquisition (12:00 UTC+2). Due to a lateral moraine extending from north to south the eastern parts
of the lake were less exposed to wind. The southern part was even more sheltered since the ridge
becomes broader and is covered by forest. Thus, the smoother water surface resulted in less sun
glint in sheltered regions; the probably roughened surface caused higher sun glint in the more wind
exposed northern part. Integrating wind maps, if available, into remote sensing analyses of lakes may
further help to understand these patterns. The spatial variability of retrieved sun glint underpins
the need for considering the spatial variability of these parameters. Kay et al. [83] reviewed existing
correction approaches: the statistical model by Cox and Munk performed insufficiently for sensors
with spatial resolutions <100 m; furthermore, at inland waters local wind fields can hardly be predicted.
Approaches based on zero water reflectance in the NIR often assume spatially constant sun glint and
are inapplicable in shallow or turbid waters [83]. The spectral model of sun glint implemented in
WASI-2D addresses both spatial variability and spectral dependency. Gege and Groetsch [85] provide
a detailed description and analysis of this topic.
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To assess the performance of SPM and aCDOM(440) retrieval, we compared WASI-2D values with
concentrations and backscattering or absorption coefficients from in situ measurements (Table 2).
A common approach is to compare SPM mass concentrations derived from water samples with
concentrations derived from remote sensing algorithms [10]. WASI-2D derived SPM concentrations
fell within the range of measured concentrations; on average, they were slightly higher than measured
SPM. Arriving at an identical match, however, would be credited to mere coincidence rather than a
flawless model. We compared two different methods of SPM estimation: in situ data from a gravimetric
measurement of a 1 L water sample, and SPM from S2-A radiance values of selected pixels at varying
spatial resolutions, i.e., 10–60 m. Gravimetric analyses of SPM contain a variety of uncertainties,
such as loss of filter or sample material [86]. Thus, SPM concentrations retrieved from water
samples should not be considered absolute. Moreover, the term b*b,SPM(550) (Equation (8)) introduces
additional uncertainties while comparing SPM concentrations retrieved from water samples and S2-A
data. b*b,SPM(550) is used to convert bb,SPM(λ) to SPM concentrations (Equation (8)). b*b,SPM(550)
depends on mineral composition, size, and shape of particles [87,88] and therefore is lake specific,
but also temporally and spatially variable within a particular lake. We adapted b*b,SPM(550) to the
study area by inverse modelling of in situ measured RAMSES reflectance data considering SPM
concentrations from water samples as correct. To further assess the suitability of S2-A for analysing
water bodies, we considered an evaluation of a parameter directly retrieved from S2-A RBOA

rs (0+, λ)

spectra, i.e., bb,SPM(550). At measurement site F and G, we retrieved bb,SPM(550) from in situ measured
RBOA

rs−FREEDOM (0+, λ) and RBOA
rs−RAMSES (0

+, λ) using FREEDOM and RAMSES (only G) radiometers.
Values of bb,SPM(550) from in situ and S2-A data matched well; on the contrary, modelled and in
situ SPM concentrations differed notably. SPM concentration is often measured in lake ecology or
hydrology and is easier to grasp than bb,SPM(550); retrieval of the latter, however, is more accurate
since it is directly assessed from remote sensing data. Thus, bb,SPM(550) represents the parameter most
relevant for assessing quality of remote sensing products.
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Table 2 compares the S2-A derived aCDOM(440) values with aCDOM(440) obtained from
under-water RAMSES Ed (z < 0, λ) measurements. The S2-A derived aCDOM(440) values were lower
compared to the values retrieved from Ed (z < 0, λ) measurements.

Bearing in mind that we only have two measurement sites in optically deep water, our results
are a first evaluation. Further assessments are required. Our results show that it was possible to
distinguish small differences in water constituents even for low concentrations—at least for SPM
and CDOM. The spatially synoptic view of S2-A across the entire lake showed a relatively clear and
homogenous water surface of optically deep water during image acquisition.

3.3. Optically Shallow Water

In optically shallow water, we conducted inverse modelling on the datasets with pixel sizes of
10 m and 20 m. In some parts of the lake, the shallow zone has a width of less than 100 m; water
depth and bottom substrates may also change, even within 10 m pixels. gdd, aCDOM(440), water depth
and the aerial fraction (fA) of two bottom types (macrophyte and sandy sediment) were chosen as
fit parameters. SPM was kept constant (SPM = 1.8 g·m−3) to avoid excess fit parameters. Figure 7
illustrates the resulting maps of aCDOM(440) and gdd. Figure 8 presents the retrieved bottom types
and Figure 9 the water depth map. Higher reflectances caused slightly higher residuals on average
(4.0 × 10−4 ± 2.8 × 10−4) compared to optically deep water. Similar to deep water, no processing
artefacts such as striping occurred.

The parameter aCDOM(440) varied between 0.1 and 1.5 m−1 (mean: 0.15 ± 0.11 m−1) in calculated
water depths above 1 m. Table 3 summarises modelled and aCDOM(440) values derived from
Ed (z < 0, λ) and water depths. As in deep water, S2-A derived aCDOM(440) was lower compared
to aCDOM(440) values from in situ measurements. The parameter gdd showed a consistent spatial
distribution as in deep water: higher values in the northern lake area than in the southern part.
The speckled results (zoomed parts in Figure 7b,c) indicate that gdd alleviates sun glint induced
irregularities; thus, the other parameters retrieved in optically shallow water appeared less noisy.Remote Sens. 2016, 8, 941 16 of 25 
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Table 3. Comparison between in situ measured and S2-A (WASI-2D) results in optically shallow water.
Term in parentheses indicates in situ data source. Mean and standard deviation of 5 × 5 respectively
3 × 3 pixel environment were calculated for 10 m respectively 20 m pixel size and reflect spatial
variability. Errors for in situ data (RAMSES) are derived from inversion and reflect variability during a
measurement series.

Point Pixel Size aCDOM(440) (m−1)
In Situ (RAMSES)

aCDOM(440) (m−1)
S2-A_WASI-2D

Water Depth (m)
In Situ (Measured)

Water Depth (m)
S2-A_WASI-2D

A
10

0.46 ± 0.06
0.28 ± 0.06

1.65
1.11 ± 0.07

20 0.25 ± 0.07 1.11 ± 0.08

B
10

0.73 ± 0.18
0.17 ± 0.12

0.86
0.58 ± 0.07

20 0.16 ± 0.11 0.65 ± 0.09

C
10

0.52 ± 0.09
0.19 ± 0.07

2.75
1.58 ± 0.18

20 0.17 ± 0.07 1.50 ± 0.16

D
10

0.49 ± 0.06
0.15 ± 0.01

3.85
1.59 ± 0.05

20 0.14 ± 0.02 1.59 ± 0.04

E
10

no measurements
0.13 ± 0.03

1.59
0.92 ± 0.05

20 0.14 ± 0.03 0.96 ± 0.04Remote Sens. 2016, 8, 941 17 of 25 
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reasonably increased from the shore line towards the deep water mask, remained, however, in most 
parts of the lake below 2.0 m. At the northern end of the lake, calculated water depths rarely exceeded 
1.5 m which is a clear underestimation of the actual water depths. The shallow water mask was 
oriented at the 8 m depth line (Figure 1) of the official bathymetry map. A reason could be that bottom 
type spectra were inappropriate for this area. In situ measurements were conducted at the southern 
end. At measurement sites, S2-A-derived water depths underestimated measured water depths about 
0.5 m (Table 3). At measurement site D, water depths differed more than 2.5 m. This measurement 
site is located close to a ledge; minor GPS variations and positioning inaccuracy may therefore result 
in contradicting values; nevertheless, geolocation uncertainties exclusively hardly explain such a 
strong deviation (next paragraph). 

Figure 8. Results of bottom substrate unmixing using the MIP 10 m dataset (a); Zoomed areas are
Roseninsel (b); Karpfenwinkel (c) and Seeshaupt (d). Low shares of sediment are illustrated as high
macrophyte coverage. Background is gray scaled S2-A band B05 (705 nm).

Accurate information of bottom substrate and water depths is crucial in optically shallow
water. Following the suggestions in Giardino et al. [34], we differentiated only two substrate types,
i.e., macrophytes and sandy sediment. The resulting map revealed reasonable spatial patterns with
sandy sediment predominating along the south-eastern shoreline close to ”Seeshaup” (Figure 8d).
High macrophytes coverage towards deeper water at Seeshaupt, however, appears unreasonable.
Unfortunately, no bottom substrate mappings exist for 2015. Nevertheless, to check the plausibility,
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we compared our results with those of previous studies at Lake Starnberg conducted in 2011.
In accordance to Rößler et al. [41], the bottom north of the “Roseninsel” (Figure 8b) was identified
as sandy sediment. At “Karpfenwinkel” (Figure 8c), WASI-2D retrieved an oval shaped structure
of sediment; dense macrophytes occurred south-east of it. Rößler et al. [43] also described these
patterns using airborne hyperspectral data. Nevertheless, bottom characteristics are highly variable at
Lake Starnberg; a variety of macrophyte species are present and also bare substrate varies between
stony, sandy and dark or light coloured. Neither the in situ measured sandy sediment spectrum
nor the spectrum of one single macrophyte species is able to cover the spectral variability of the
entire lake’s bottom. Parameterising classification algorithms or bio-optical models with appropriate
spectra therefore remains challenging. Currently, several approaches are available such as ex situ
measurements ([27,34], this study), image based derivation [45] or seasonal dependent reflectance
models based on empiric measurements [89]. Assessing the suitability of S2-A for distinguishing
bottom types in detail may therefore be of interest for subsequent studies.
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Figure 9. Results of water depths retrieval during shallow water inversion using the MIP 10 m pixel
size dataset (a); Zoomed areas are Karpfenwinkel (b); validation area Seeshaupt (c) and Roseninsel (d).
Background is gray scaled S2-A band B05 (705 nm).

Bottom substrate unmixing is accompanied by fitting water depths. Figure 9a depicts water
depths around the entire lake and for regions with extensive shallow water areas. Water depths
reasonably increased from the shore line towards the deep water mask, remained, however, in most
parts of the lake below 2.0 m. At the northern end of the lake, calculated water depths rarely exceeded
1.5 m which is a clear underestimation of the actual water depths. The shallow water mask was
oriented at the 8 m depth line (Figure 1) of the official bathymetry map. A reason could be that bottom
type spectra were inappropriate for this area. In situ measurements were conducted at the southern
end. At measurement sites, S2-A-derived water depths underestimated measured water depths about
0.5 m (Table 3). At measurement site D, water depths differed more than 2.5 m. This measurement site
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is located close to a ledge; minor GPS variations and positioning inaccuracy may therefore result in
contradicting values; nevertheless, geolocation uncertainties exclusively hardly explain such a strong
deviation (next paragraph).

To quantitatively evaluate the capability of S2-A 10 m data for water depth retrieval, we used
echo sounding data (Figure 1b, [45]) as a validation source (Figure 10). Echo sounding and S2-A
derived water depths are highly correlated (r = 0.95, residual standard deviation = 0.12 m) up to
2.5 m (echo sounding). Nevertheless, the RMSE (0.56 m) and offset from the 1:1 line (Figure 10a)
indicate that WASI-2D underestimated water depths. In water depths ranging between 0 and 4 m
(measured Secchi disk depth), RMSE was 0.95 m which was higher than RMSE values obtained by
Gege [45] (mean (0–4 m) = 0.29 m) using airborne hyperspectral data. In water depths deeper than
2.5 m, WASI-2D modelled water depths at around 1.8 m (Figure 10a). For these pixels, WASI-2D
retrieved lower shares of sediment, and consequently higher macrophyte coverages, which is also
indicated by a greenish colour in Figure 10a; WASI-2D therefore considered a dark bottom type
(low reflectance values due to high macrophytes coverage) accompanied by lower water depths
instead of a bottom covered by sediment (high reflectance) and high water depths. Thus, WASI-2D
achieved a low residuum between S2-A and modelled spectrum, correct spectral unmixing, however,
failed; at water depths deeper than 2.5 m, the spectral signatures of both bottom types were too similar
for a correct differentiation. At the points which scattered around the 1:1 line above 4 m, WASI-2D
correctly fitted pure macrophyte coverage (dark green colour) and consequently retrieved correct water
depths. To check these presumptions, we repeated modelling in shallow water and fixed the bottom
type as sediment (fA[Sediment] = 1). Indeed, WASI-2D retrieved higher water depths, though still
underestimating absolute values, with a high correlation up to 4 m (r = 0.96, residual standard deviation
= 0.15 m) which was slightly below Secchi disk depth measured on 13 August (4.2 m± 0.3 m). The MIP
retrieved RBOA

rs (0+, λ) spectra in shallow water were higher (except B) compared to in situ measured
spectra. Assuming the same bottom type, higher reflectance means lower water depth which may
partly explain the systematic underestimation of around 0.6 m. Furthermore, sedimentation processes
may have altered bottom conditions slightly within the time difference being four years between echo
sounding and image acquisition. Using sediment as fixed bottom type, WASI-2D overestimated or
reached maximum value for water depths above 4 m (Figure 10b). The previous setting indicated
pure macrophyte coverage at these echo sounding points. Modelling with fixed sediment coverage,
consequently, caused miscalculations.

Small scale variance, however, may not be captured even with using the 10 m data set.
Furthermore, echo sounding data also may include measurement uncertainties, especially at ledges.
S2-A geolocation uncertainty, which was 12.36 m for processing baseline 02.01 [90], may also result in
misalignments between echo sounding and satellite data.

Overall, the water depths retrieval performed better with fixed bottom coverage. We therefore
conclude that S2-A spectral information was insufficient to accurately separate mixed coverages of
macrophytes and sediment in water depths deeper than 2.5 m. This conclusion certainly is restricted to
the specific lake conditions during image acquisition date, atmospheric correction algorithm (MIP) and
bio-optical model applied (WASI-2D). The atmospheric correction algorithm is crucial, in particular
for the application of bio-optical models which need high accuracies of both shape and intensity of
RBOA

rs (0+, λ) spectra. MIP retrieved the best RBOA
rs (0+, λ) spectra compared to the available in situ

spectra; however, they also showed deviations. Furthermore, MIP lacks a sun glint correction for
S2-A data. For this reason, we included sun glint assessment in the bio-optical modelling process.
Improvements towards sun glint correction during atmospheric correction procedures may therefore
also improve bio-optical analyses of lakes.
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bottom type (a). Scatterplot (b) results from modelling water depths with fixed sediment coverage
(fA[Sediment] = 1.0).

4. Conclusions

This study used a physically based processing chain to test the suitability of S2-A for retrieving
lake ecology indicators, i.e., SPM, aCDOM(440), water depths and bottom substrates. To this end,
we conducted a measurement campaign at Lake Starnberg (Germany) concurrently to a S2-A overpass.
Analysing the results of three different atmospheric correction algorithms (Sen2Cor [58], ACOLITE [59]
and MIP [61]) revealed different spectra for each algorithm. By comparing RBOA

rs (0+, λ) spectra with in
situ measured reflectance, MIP performed best and therefore was used for further processing. We then
applied the bio-optical modelling software WASI-2D [46]. S2-A band positions and calibration as
well as low NE∆RrsE of the scene (mean: 0.00014 sr−1 for the 10 m data set) allowed retrieval of
SPM and aCDOM(440), even at low concentrations. Absorption by chl-a, however, was too low for
assessment along with the other constituents. Modelled aCDOM(440) was lower than in situ values
(in situ: 0.42–0.44 m−1, S2-A: 0.1–0.74 m−1, mean: 0.14 ± 0.02 m−1). Resulting SPM concentrations
(in situ: 0.4–1.9 g·m−3, S2-A: 1.1–5.1 g·m−3, mean: 1.8 ± 0.2 g·m−3) were within the range of analysed
water samples. A comparison with backscattering coefficients of SPM (in situ: 0.015–0.021 m−1,
S2-A: 0.018–0.077 m−1) approved even better performance. Spatial resampling of the S2-A data to
20 m or 60 m showed negligibly different results. In optically shallow water, parameters of interest
were bottom substrate and water depths. We obtained reasonable patterns of macrophytes and
sandy sediment in most parts of the lake. Modelled water depths also showed reasonable patterns.
Quantitative evaluation approved a good correlation, but underestimation occurred between 0 and
2.5 m (RMSE: 0.56 m, r: 0.95). With water deeper than 2.5 m, S2-A spectral information was inadequate
to differentiate mixed coverages of macrophytes and sediment. Furthermore, the time difference
between echo sounding and image acquisition and the challenging measurement of representative
bottom spectra contributes to inaccurate bottom coverage and water depth retrieval.

This study points out that S2-A has great potential to assist lake ecology in retrieving indicators
on a spatially synoptic scale. The study was conducted under conditions with low water constituent
concentrations and low spatial variability. Studies of lakes with different optical properties and trophic
characteristics may further advance knowledge of S2-A’s suitability for lake monitoring. Shape and
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intensity of spectra strongly depend on the applied atmospheric correction algorithm; further research
and improvements in this field are required.
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Abbreviations

The following abbreviations are used in this manuscript:

aCDOM(440) absorption of coloured dissolved organic matter at reference wavelength 440 nm
AOT aerosol optical thickness
b*b,SPM(550) mass-specific backscattering coefficient of SPM at reference wavelength 550 nm
bb,SPM(λ) backscattering coefficient of SPM at reference wavelength 550 nm
CDOM coloured dissolved organic matter
Chl-a chlorophyll-a
Ed(z,λ) downwelling spectral irradiance
gdd fraction of sun glint per pixel area
Lu(z,λ) upwelling spectral radiance
MAPE Mean absolute percentage error
MIP Modular Inverse Processing System
NE∆RrsE Noise-equivalent remote sensing reflectance difference
S2-A Sentinel-2A
r Pearson’s correlation coefficient
RMSE Root Mean Square Error
RBOA

rs (0+, λ) radiance reflectance above water
RBOA

rs−FREEDOM (0+, λ) radiance reflectance above water derived from FREEDOM measurements
RBOA

rs−RAMSES (0+, λ) radiance reflectance above water derived from RAMSES measurements
SPM suspended particulate matter
SWIR shortwave infrared
VNIR visible near-infrared
X2 Chi-Square
z sensor depth
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