Corn Response to Climate Stress Detected with Satellite-Based NDVI Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Land Cover and Crop Progress Data
2.2.2. Remote Sensing Observations
2.3. Data Processing
2.3.1. NDVI Calculation for Corn Pixels
2.3.2. Normal Curve Generalization and NDVI Residual Calculation
2.3.3. Growth Stress Metrics
3. Results
3.1. Normalized Difference Vegetative Index with Time
3.2. Normal Growth Condition
3.3. Yield-NDVI Residual Relationship
3.4. Stress-NDVI Residual Relationship
3.5. Risky Pixel Rate-Stress Realtionship
4. Discussion
- (1)
- The vegetation index, NDVI, used in this research has a potential to saturate when the leaf area index is high, thus limiting its ability to quantify LAI late in the growing season. This is one potential reason that no significant relationship is found between peak NDVI (high leaf area index) and crop yield. Applying other indices, such as EVI2 and MTVI2 [6] could overcome the saturation problem, and should be evaluated in future studies. Since our future focus is to improve crop growth model responses to climate stresses, and since most crop models apply LAI to represent seasonal growth, we still use NDVI in this study because of its well-established relationship with LAI.
- (2)
- Although detailed spatial information could be attained due to the fine resolution of Landsat images (30 m), the temporal coverage (16 days) is too infrequent to capture the rapid changes in biophysical processes during the early growth stages. Therefore, we have to overlay multiple years’ data to describe of the whole corn growth cycle in this study. Applying a fused MODIS/Landsat approach [51] could be an appropriate way to extend the temporal coverage for current mid-resolution images. Though new errors and uncertainties may still be introduced by such a fused approach due to differences in spatial and spectral band resolution, for example.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BT | Brightness Temperature |
CDL | Cropland Data Layer |
GDD | Growing Degree Days |
LAI | Leaf Area Index |
LEDAPS | Landsat Ecosystem Disturbance Adaptive Processing System |
LOESS | Locally-weighted scatter plot smoothing. |
NASS | National Agricultural Statistics Service |
NDVI | Normalized Difference Vegetative Index |
PHU | Potential Heat Units |
QUAC | Quick Atmospheric Correction |
SWAT | Soil and Water Assessment Tool |
ts | Temperature stress |
TM | Thematic Mapper |
TOA | Top of Atmosphere |
ws | Water stress |
References
- Thompson, L.M. Effects of change in climate and weather variability on the yields of corn and soybeans. J. Prod. Agric. 1988, 1, 20–27. [Google Scholar] [CrossRef]
- Llano, M.P.; Vargas, W.; Naumann, G. Climate variability in areas of the world with high production of soybeans and corn: Its relationship to crop yields. Meteorol. Appl. 2012, 19, 385–396. [Google Scholar] [CrossRef]
- Mishra, V.; Cherkauer, K.A. Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agric. For. Meteorol. 2010, 150, 1030–1045. [Google Scholar] [CrossRef]
- Kang, S.; Liang, Z.; Hu, W.; Zhang, J. Water use efficiency of controlled alternate irrigation on root-divided maize plants. Agric. Water Manag. 1998, 38, 69–76. [Google Scholar] [CrossRef]
- Saseendran, S.A.; Trout, T.J.; Ahuja, L.R.; Ma, L.; McMaster, G.S.; Nielsen, D.C.; Andales, A.A.; Chavez, J.L.; Ham, J. Quantifying crop water stress factors from soil water measurements in a limited irrigation experiment. Agric. Syst. 2015, 137, 191–205. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E.; Jego, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Bhattarai, N.; Quackenbush, L.J.; Dougherty, M.; Marzen, L.J. A simple Landsat–MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution. Int. J. Remote Sens. 2015, 36, 115–143. [Google Scholar] [CrossRef]
- Ines, A.V.M.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ. 2013, 138, 149–164. [Google Scholar] [CrossRef]
- De Wit, A.J.W.; Van Diepen, C.A. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agric. Forest Meteorol. 2007, 146, 38–56. [Google Scholar] [CrossRef]
- You, X.; Meng, J.; Zhang, M.; Dong, T. Remote sensing based detection of crop phenology for agricultural zones in China using a new threshold method. Remote Sens. 2013, 5, 3190–3211. [Google Scholar] [CrossRef]
- Knipling, E.B. Physical and physiological basis for the reflectance of visble and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Vina, A.; Arkebauer, T.; Rundquist, D. Green Leaf Area Index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agrigultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef]
- Huang, N.; Niu, Z.; Zhan, Y.; Xu, S.; Tappert, M.C.; Wu, C.; Huang, W.; Gao, S.; Hou, X.; Cai, D. Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Agric. For. Meterol. 2012, 160, 80–89. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Holland, K.H.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R.; Caldwell, R. Use of a crop canopy reflectance sensor to assess corn leaf chlorophyll content. ASA Spec. Publ. 2003, 66, 135–150. [Google Scholar]
- Ma, B.L.; Morrision, M.H.; Dwyer, L.M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of corn. Agron. J. 1996, 88, 915–920. [Google Scholar] [CrossRef]
- Solari, F.; Shanahan, J.; Ferguson, R.B.; Schepers, J.S.; Gitelson, A.A. Active sensor reflectance measurements to corn nitrogen status and yield potential. Agron. J. 2008, 100, 571–579. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Hoogenboom, G. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. Int. J. Remote Sens. 2001, 32, 1039–1065. [Google Scholar] [CrossRef]
- Casa, R.; Varella, H.; Buis, S.; Guérif, M.; De-Solan, B.; Baret, F. Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach. Eur. J. Agron. 2012, 37, 1–10. [Google Scholar] [CrossRef]
- USDA-NASS. NASS-National Agricultural Statistics Servies. 2012 Census of Agriculture. Available online: http://www.agcensus.usda.gov/Publications/ (accessed on 15 March 2016).
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- USDA-NASS. NASS-National Agricultural Statistics Servies; USDA-NASS: Washington, DC, USA, 2010. [Google Scholar]
- USGS. U.S. Geographic Survey-EarthExplore. Available online: http://earthexplorer.usgs.gov/ (accessed on 17 March 2016).
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meterol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Rasmussen, M.S. Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR. Int. J. Remote Sens. 1992, 13, 3431–3442. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric. For. Meterol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Johnson, D.M. An assessment of pre-and within-season remotely sensed variabels for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- Chipanshi, A.; Zhang, Y.; Kouadio, L.; Newlands, N.; Davidson, A.; Hill, H.; Warren, R.; Qian, B.; Daneshfar, B.; Bedard, F.; et al. Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric. For. Meteorol. 2015, 206, 137–150. [Google Scholar] [CrossRef]
- Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broad-band and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.P.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.; Wolfe, R.; Hall, E.F.; Huemmrich, F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance data set for North America, 1990–2000. Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar]
- Bernstein, L.S.; Adler-Golden, S.M.; Sundberg, R.L.; Levine, R.Y.; Perkins, T.C.; Berk, A.; Ratkowski, A.J.; Felde, G.; Hoke, M.L. Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. SPIE Proc. 2005, 5806, 668–678. [Google Scholar]
- Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development. Iowa State Univ. Extension Publication #PMR-1009. 2011. Available online: https://store.extension.iastate.edu/Product/Corn-Growth-and-Development (accessed on 15 March 2016).
- Kiniry, J.R.; Major, D.J.; Izaurralde, R.C.; Williams, J.R.; Gassman, P.W.; Morrison, M.; Bergentine, R.; Zentner, R.P. EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. Can. J. Plant Sci. 1995, 75, 679–688. [Google Scholar] [CrossRef]
- Neild, R.E.; Newman, J.E. Growing Season Characteristics and Requirements in the Corn Belt. Available online: http://www.extension.purdue.edu/extmedia/nch/nch-40.html (accessed on 15 March 2016).
- Cleveland, W.S. Robust loacally weighted regression and smoothing satterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A. Detecting spatiotemporal changes of corn developmental stages in the US Corn Belt using MODIS WDRVI data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1926–1936. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.F.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool: Theoretical Documentation, Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2009. [Google Scholar]
- Kebede, H.; Sui, R.X.; Fisher, D.K. Corn yield response to reduced water use at different growth stages. Agric. Sci. 2014, 5, 1305–1315. [Google Scholar] [CrossRef]
- Ge, T.; Sui, F.; Bai, L. Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiol. Plant. 2012, 34, 1043–1053. [Google Scholar] [CrossRef]
- Yang, Y.; Timlin, D.J.; Fleisher, D.H.; Kim, S.H.; Quebedeaux, B.; Reddy, V.R. Simulating leaf area of corn plants at contrasting water status. Agric. For. Meterol. 2009, 149, 1161–1167. [Google Scholar] [CrossRef]
- Nielsen, R.L. Grain fill stages in corn. Corny News Network, Purdue University. Available online: http://www.agry.purdue.edu/ext/corn/news/timeless/grainfill.html (accessed on 15 March 2016).
- Martin, K.L.; Girma, K.; Freeman, K.W.; Teal, R.K.; Tubana, B.; Arnall, D.B.; Chung, B.; Walsh, O.; Solie, J.B.; Stone, M.L.; et al. Expression of variability in corn as influenced by growth stage using optical sensor measurements. Agron. J. 2007, 99, 384–389. [Google Scholar] [CrossRef]
- Teal, R.K.; Tubana, B.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-Season Prediction of Corn Grain Yield Potential Using Normalized Difference Vegetation Index. Agron. J. 2006, 98, 1488–1494. [Google Scholar] [CrossRef]
- Srivastave, S.K.; Jayaraman, V.; Nageswara, R.P.P.; Manikiam, B.; Chandrasekehar, G. Interlinkages of NOAA/AVHRR derived integrated NDVI to seasonal precipitation and transpiration in dryland tropics. Int. J. Remote Sens. 1997, 18, 2931–2952. [Google Scholar] [CrossRef]
- Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Turner, D.P. An improved strategy for regression of biophysical variables and Landsat ETM+data. Remote Sens. Environ. 2003, 84, 561–571. [Google Scholar] [CrossRef]
- Anthony, L.; Nguy, R.; Yi, P.; Anatoly, A.G.; Timothy, J.; Arkebauer, A.P.; Ittai, H.; Arnon, K.; Donald, C.R.; David, J.B. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meterol. 2014, 192, 140–148. [Google Scholar]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting Daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
Year | Date | Day of Year | Cloud Coverage (%) | Year | Date | Day of Year | Cloud Coverage (%) |
---|---|---|---|---|---|---|---|
2000 | 27 April * | 118 | 0 | 2005 | 9 April * | 99 | 0 |
13 May | 134 | 0 | 27 May | 147 | 23 | ||
29 May | 150 | 0 | 30 July | 211 | 19 | ||
14 June | 166 | 30 | 18 October | 291 | 0 | ||
30 June | 182 | 10 | 2006 | 28 April * | 118 | 0 | |
2 September | 246 | 20 | 15 June | 166 | 7 | ||
18 September | 262 | 0 | 1 July | 182 | 21 | ||
20 October | 294 | 0 | 17 July | 198 | 0 | ||
2001 | 30 April * | 120 | 0 | 2 August | 214 | 1 | |
17 June | 168 | 0 | 5 October | 278 | 12 | ||
4 August | 216 | 0 | 2007 | 15 April * | 105 | 0 | |
20 August | 232 | 10 | 1 May * | 121 | 49 | ||
5 September | 248 | 0 | 18 June | 169 | 4 | ||
7 October | 280 | 10 | 20 July | 201 | 0 | ||
2002 | 3 May * | 123 | 0 | 22 September | 265 | 0 | |
20 June | 171 | 0 | 2008 | 3 May * | 124 | 22 | |
6 July | 187 | 0 | 20 June | 172 | 37 | ||
22 July | 203 | 30 | 6 July | 188 | 2 | ||
7 August | 219 | 0 | 23 August | 236 | 10 | ||
8 September | 251 | 0 | 24 September | 268 | 0 | ||
24 September | 267 | 0 | 10 October | 284 | 0 | ||
2003 | 6 May | 126 | 30 | 2009 | 4 April * | 94 | 13 |
22 May | 142 | 0 | 22 May* | 142 | 17 | ||
23 June | 174 | 0 | 23 June | 174 | 3 | ||
25 July | 206 | 3 | 9 July | 190 | 7 | ||
11 September | 254 | 0 | 11 September | 254 | 5 | ||
27 September | 270 | 14 | 2010 | 9 May | 129 | 13 | |
13 October | 286 | 0 | 10 June | 161 | 0 | ||
2004 | 26 June | 177 | 23 | ||||
8 May | 129 | 60 | 29 August | 241 | 3 | ||
25 June | 177 | 22 | 14 September | 257 | 0 | ||
13 September | 257 | 4 | 30 September | 273 | 10 |
Crop Status | Year | Day of Year Status Begin | Day of Year Status End | 50% Progress Status |
---|---|---|---|---|
Planted | 2000 | 107 | 156 | 127 |
2001 | 105 | 147 | 124 | |
2002 | 111 | 167 | 145 | |
2003 | 110 | 159 | 122 | |
2004 | 109 | 151 | 119 | |
2005 | 100 | 142 | 122 | |
2006 | 106 | 155 | 123 | |
2007 | 112 | 147 | 130 | |
2008 | 118 | 167 | 130 | |
2009 | 123 | 165 | 143 | |
2010 | 106 | 155 | 126 | |
Silked | 2000 | 184 | 219 | 200 |
2001 | 196 | 217 | 201 | |
2002 | 195 | 223 | 206 | |
2003 | 194 | 229 | 207 | |
2004 | 179 | 221 | 192 | |
2005 | 191 | 219 | 199 | |
2006 | 190 | 218 | 199 | |
2007 | 189 | 217 | 197 | |
2008 | 195 | 230 | 205 | |
2009 | 193 | 228 | 208 | |
2010 | 183 | 218 | 199 | |
Matured | 2000 | 240 | 282 | 263 |
2001 | 238 | 287 | 263 | |
2002 | 244 | 286 | 268 | |
2003 | 250 | 285 | 273 | |
2004 | 242 | 291 | 262 | |
2005 | 233 | 289 | 263 | |
2006 | 239 | 288 | 267 | |
2007 | 245 | 287 | 263 | |
2008 | 251 | 300 | 265 | |
2009 | 256 | 312 | 286 | |
2010 | 239 | 281 | 262 |
Date | Days after Planting | 95% Interval | Median NDVI | CV |
---|---|---|---|---|
17 September 2000 | 133 | 0.4050 | 0.4938 | 0.2207 |
16 June 2001 | 43 | 0.4565 | 0.2833 | 0.3868 |
5 July 2002 | 41 | 0.3561 | 0.4934 | 0.1875 |
26 September 2003 | 147 | 0.4677 | 0.5117 | 0.2605 |
12 September 2004 | 136 | 0.5128 | 0.4591 | 0.2974 |
17 October 2005 | 168 | 0.1535 | 0.2387 | 0.1937 |
30 June 2006 | 58 | 0.3870 | 0.5906 | 0.1728 |
21 September 2007 | 134 | 0.4343 | 0.4588 | 0.2368 |
19 June 2008 | 40 | 0.5690 | 0.2665 | 0.5225 |
22 June 2009 | 30 | 0.5841 | 0.2253 | 0.6017 |
28 August 2010 | 114 | 0.5783 | 0.4930 | 0.3415 |
Days | PHU | GDD | Growing Season Rainfall Amount (mm) | Growing Season Mean Temperature (°C) | ||||
---|---|---|---|---|---|---|---|---|
Year | Rank | Discrep. Score | Rank | Discrep. Score | Rank | Discrep. Score | ||
2000 | 4 | 0.0171 | 6 | 0.0090 | 6 | 0.0041 | 482 | 19.6 |
2001 | 6 | −0.0019 | 4 | 0.0275 | 3 | 0.0301 | 460 | 19.9 |
2002 | 11 | −0.1086 | 11 | −0.0797 | 11 | −0.0667 | 390 | 20.2 |
2003 | 3 | 0.0391 | 3 | 0.0407 | 2 | 0.0317 | 634 | 19.7 |
2004 | 5 | 0.0100 | 7 | 0.0054 | 7 | 0.0034 | 445 | 19.9 |
2005 | 8 | −0.0183 | 5 | 0.0225 | 5 | 0.0262 | 287 | 21.6 |
2006 | 9 | −0.0399 | 9 | 0.0011 | 8 | 0.0026 | 384 | 20.8 |
2007 | 2 | 0.1069 | 2 | 0.0480 | 4 | 0.0282 | 378 | 20.8 |
2008 | 10 | −0.0743 | 10 | −0.0563 | 10 | −0.0573 | 394 | 19.8 |
2009 | 1 | 0.1134 | 1 | 0.0542 | 1 | 0.0450 | 490 | 18.0 |
2010 | 7 | −0.0028 | 8 | 0.0029 | 9 | 0.0008 | 358 | 19.7 |
Day | PHU | GDD | ||||
---|---|---|---|---|---|---|
Mean NDVI departure for pre-silking period images | 0.067 | 0.71 * | 0.76 ** | |||
Mean NDVI departure for pre-maturity period images | 0.16 | 0.58 | 0.62 * | |||
Mean NDVI departure for all images in the growing period | 0.50 | 0.68 * | 0.69 * | |||
Departure for Highest NDVI point for each year | 0.28 | 0.36 | 0.36 |
Day | PHU | GDD | |
---|---|---|---|
NDVI departure for pre-silking period images vs. Normalized accumulated temperature stresses | −0.36 | 0.32 | 0.42 |
NDVI departure for pre-maturity period images vs. Normalized accumulated temperature stresses | −0.18 | 0.32 | 0.35 |
NDVI departure for all images in growing period vs. Normalized accumulated temperature stresses | 0.07 | 0.27 | 0.27 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Cherkauer, K.; Bowling, L. Corn Response to Climate Stress Detected with Satellite-Based NDVI Time Series. Remote Sens. 2016, 8, 269. https://doi.org/10.3390/rs8040269
Wang R, Cherkauer K, Bowling L. Corn Response to Climate Stress Detected with Satellite-Based NDVI Time Series. Remote Sensing. 2016; 8(4):269. https://doi.org/10.3390/rs8040269
Chicago/Turabian StyleWang, Ruoyu, Keith Cherkauer, and Laura Bowling. 2016. "Corn Response to Climate Stress Detected with Satellite-Based NDVI Time Series" Remote Sensing 8, no. 4: 269. https://doi.org/10.3390/rs8040269