Spatial-Temporal Characteristics and Climatic Responses of Water Level Fluctuations of Global Major Lakes from 2002 to 2010
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lake Level Data
2.2. Watershed Data
2.3. Meteorological Data
3. Results
3.1. Temporal and Spatial Characteristics of Major Global Lakes
3.1.1. Time Characteristics of the Lake Water Level Changes
3.1.2. Spatial Characteristics of Lake Water Level Change
3.2. Global Climate Fluctuations
3.2.1. Temperature
3.2.2. Precipitation
3.3. Responses of the Lake Water Level Variation to Climate Fluctuation
3.3.1. Response of the Lake Water Level Variation to Climate Fluctuation
3.3.2. Response of Natural Lakes to Climate
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Sequence | Lake | Change Rate (m/a) | Sequence | Lake | Change Rate (m/a) |
---|---|---|---|---|---|
1 | Angostura * | 1.867 | 103 | Khanka * | 0.036 |
2 | Oahe | 1.03 | 104 | Nicaragua * | 0.036 |
3 | Tres Marias | 1.022 | 105 | Baikal * | 0.031 |
4 | Guri | 0.982 | 106 | Issykkul * | 0.03 |
5 | Tucurui | 0.802 | 107 | Great Bear * | 0.029 |
6 | Dogen-co * | 0.758 | 108 | Montreal * | 0.029 |
7 | Volta * | 0.68 | 109 | Vanerm * | 0.027 |
8 | Zeyskoye | 0.667 | 110 | Har Us * | 0.027 |
9 | Ziling * | 0.606 | 111 | Kainji | 0.026 |
10 | Sakakawea * | 0.604 | 112 | Tchad * | 0.019 |
11 | Dorsoidong-co * | 0.583 | 113 | Izabal * | 0.015 |
12 | Xuelian-hu * | 0.569 | 114 | Aru-co * | 0.015 |
13 | Sobradino | 0.554 | 115 | Hovsgol * | 0.013 |
14 | Dagze-co * | 0.552 | 116 | Huron * | 0.012 |
15 | Posadas | 0.505 | 117 | Kapchagayskoye | 0.01 |
16 | Cahora Bassa * | 0.482 | 118 | Dubawnt | 0.009 |
17 | Memar-co * | 0.474 | 119 | Erie * | 0.009 |
18 | Yanghu-co * | 0.467 | 120 | Balkhash * | 0.007 |
19 | Chapala * | 0.453 | 121 | Maracaibo | 0.007 |
20 | Krasnoyarskoye | 0.435 | 122 | Tana * | 0.006 |
21 | Hoh-xil-hu * | 0.434 | 123 | Kivu * | 0.004 |
22 | Kyeb * | 0.414 | 124 | Lesser Slave | 0.003 |
23 | Lumojangdong-co * | 0.364 | 125 | Ontario * | −0.001 |
24 | Xiangyang-hu * | 0.364 | 126 | Michigan * | −0.002 |
25 | Sevana * | 0.352 | 127 | Amadjuak | −0.004 |
26 | Caniapiscau | 0.345 | 128 | Athabasca * | −0.0077 |
27 | Xijir-hulan-hu * | 0.345 | 129 | Rinihue * | −0.008 |
28 | Saksak | 0.343 | 130 | Baker | −0.011 |
29 | Grande Trois | 0.343 | 131 | Logoa dos Patos * | −0.011 |
30 | Lisioidain-co * | 0.337 | 132 | Saint-Jean * | −0.014 |
31 | Ngoring-co * | 0.326 | 133 | Tanganika * | −0.015 |
32 | Aksayqin * | 0.325 | 134 | Logoa Gen Carrera * | −0.015 |
33 | Migruggwangkum * | 0.324 | 135 | Dabsan-hu * | −0.017 |
34 | Serbug-co * | 0.318 | 136 | Votkinskoye | −0.018 |
35 | Ulan-ul * | 0.314 | 137 | Superior * | −0.018 |
36 | Ayakkum * | 0.312 | 138 | Caspian Sea * | −0.019 |
37 | Bul-co * | 0.312 | 139 | Kyyvske | −0.021 |
38 | Gyeze-caka * | 0.307 | 140 | Tai * | −0.023 |
39 | Luotuo-hu * | 0.306 | 141 | Uvs * | −0.024 |
40 | Taro-co * | 0.297 | 142 | Nettiling | −0.024 |
41 | Sarykamish * | 0.291 | 143 | Chardarya | −0.026 |
42 | Ngangze * | 0.283 | 144 | Orba-co * | −0.026 |
43 | Zige-tangco * | 0.282 | 145 | Kremenchutska | −0.028 |
44 | Co-nyi * | 0.28 | 146 | Argentino * | −0.028 |
45 | Dawa-co * | 0.28 | 147 | Malawi * | −0.031 |
46 | Heishi-beihu * | 0.276 | 148 | Great Slave * | −0.032 |
47 | Aral(Nord) * | 0.243 | 149 | Todos los Santos * | −0.033 |
48 | Dogaicoring * | 0.23 | 150 | Hongze * | −0.034 |
49 | Kushuihuan * | 0.229 | 151 | Kara Bogaz Gol * | −0.037 |
50 | Tangra-yumco * | 0.216 | 152 | Edouard * | −0.038 |
51 | Iguazu | 0.215 | 153 | Uru-co * | −0.038 |
52 | Deschambault * | 0.21 | 154 | Great Salt | −0.04 |
53 | Bratskoye | 0.192 | 155 | Shala * | −0.043 |
54 | Namco * | 0.182 | 156 | Aylmer | −0.046 |
55 | Lagor-co * | 0.17 | 157 | Tchany * | −0.05 |
56 | Managua * | 0.166 | 158 | Har * | −0.055 |
57 | Yaggain-canco * | 0.155 | 159 | Llanquihue * | −0.056 |
58 | Aydarkul | 0.154 | 160 | Ulungur * | −0.057 |
59 | Winnipegosis * | 0.154 | 161 | Flathead | −0.062 |
60 | Caribou * | 0.148 | 162 | Beysehir * | −0.064 |
61 | Har-hu * | 0.147 | 163 | Victoria * | −0.066 |
62 | Chem-co * | 0.146 | 164 | Puma-yumco * | −0.072 |
63 | San Martin * | 0.145 | 165 | Kuybyshevskoye | −0.084 |
64 | Illmen * | 0.136 | 166 | Mapam-yamco * | −0.085 |
65 | Gozha-co * | 0.128 | 167 | Nahuelhuapi * | −0.121 |
66 | Balbina | 0.121 | 168 | Tsimlyanskoye | −0.124 |
67 | Tshchikskoye | 0.118 | 169 | Nasser | −0.128 |
68 | Zhari-namco * | 0.114 | 170 | Churumuco | −0.128 |
69 | Aong-co * | 0.109 | 171 | Okeechobee * | −0.128 |
70 | Kariba * | 0.106 | 172 | Aberdeen | −0.129 |
71 | pangong-co * | 0.101 | 173 | Khantaiskoye * | −0.145 |
72 | Nezahualcoyoti * | 0.1 | 174 | Asad | −0.146 |
73 | Ladoga * | 0.094 | 175 | Poopo * | −0.15 |
74 | Winnipeg * | 0.094 | 176 | Ranco * | −0.159 |
75 | Furnas | 0.089 | 177 | Pelkhu-co * | −0.168 |
76 | Cedar | 0.085 | 178 | Titicaca * | −0.189 |
77 | Opinaca | 0.083 | 179 | Albert * | −0.19 |
78 | Rybinskoye | 0.082 | 180 | Rukwa | −0.203 |
79 | Qinghai * | 0.078 | 181 | Kyoga * | −0.216 |
80 | Dore * | 0.073 | 182 | Viedma * | −0.22 |
81 | Manitoba * | 0.073 | 183 | Old Wives * | −0.232 |
82 | Vatern * | 0.072 | 184 | Hyargas * | −0.29 |
83 | Bangweulu * | 0.067 | 185 | Bosten * | −0.3 |
84 | Itaparica | 0.065 | 186 | Saysan * | −0.32 |
85 | Mweru * | 0.0625 | 187 | Williston | −0.333 |
86 | Nueltin | 0.062 | 188 | Hulun * | −0.338 |
87 | Des Bois | 0.061 | 189 | Cardiel * | −0.344 |
88 | Kasba | 0.06 | 190 | Chiquita * | −0.347 |
89 | Peipus * | 0.058 | 191 | Urmia * | −0.394 |
90 | Smallwood * | 0.058 | 192 | Hinojo * | −0.418 |
91 | Onega * | 0.056 | 193 | Razazah | −0.422 |
92 | Dongting * | 0.055 | 194 | Tharthar | −0.464 |
93 | Turkana * | 0.055 | 195 | Saravor * | −0.516 |
94 | Van * | 0.053 | 196 | Roseires * | −0.533 |
95 | Rinqiyubu-co * | 0.052 | 197 | Aral(Sud) * | −0.569 |
96 | Poyang * | 0.047 | 198 | Yamzho-yumco * | −0.599 |
97 | Powell | 0.0456 | 199 | Strobel * | −0.84 |
98 | Champlain * | 0.044 | 200 | Buyo | −0.954 |
99 | Nganga-ringko * | 0.042 | 201 | Qadisiyah | −1.608 |
100 | Sasykkol * | 0.04 | 202 | Mossoul | −1.8 |
101 | Yellowstone * | 0.039 | 203 | Mead | −2.356 |
102 | Ilha Solteira | 0.038 | 204 | Toktogul | −5.844 |
References
- Lv, X.; Wu, S.; Yang, Q. An assessment of global environmental change and its impacts on the regional development in China. Prog. Geogr. 2003, 22, 160–169. [Google Scholar]
- Jiang, Y.; Li, S.; Shen, D.; Chen, W.; Jin, C. Climate Change and its impact on the lake environment in the Tibetan Plateau in 1971–2008. Sci. Geogr. Sin. 2012, 32, 1503–1512. [Google Scholar]
- Ma, M.; Wang, X.; Veroustraete, F. Change in area of Ebinur Lake during the 1998–2005 period. Int. J. Remote Sens. 2007, 28, 5523–5533. [Google Scholar] [CrossRef]
- Micklin, P. The future Aral Sea: Hope and despair. Environ. Earth Sci. 2016. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, N.; Wu, Y.; Shen, S.; Zhang, X.; Chang, J. Remote sensing on spatial changes of lake area in Badain Jaran Desert hinterland during 1973–2010. J. Lake Sci. 2013, 25, 514–520. [Google Scholar]
- Zhu, W.; Jia, S.; Aifeng, L.V. Monitoring the fluctuation of Lake Qinghai using multi-source remote sensing data. Remote Sens. 2014, 6, 10457–10482. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L. Changes of inland lake area in arid Central Asia during 1975–2007: Remote sensing analysis. J. Lake Sci. 2011, 23, 80–88. [Google Scholar]
- Zhang, X.; Wu, Y.; Zhang, X. Water level variation of inland lakes on the south-central Tibetan Plateau in 1972–2012. Acta Geogr. Sin. 2014, 69, 993–1001. [Google Scholar]
- Li, J.; Chen, X.; Bao, A. Spatial-temporal Characteristics of Lake Level Changes in Central Asia during 2003–2009. Acta Geogr. Sin. 2011, 66, 1219–1229. [Google Scholar]
- Duan, Z.; Bastiaanssen, W.G.M. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens. Environ. 2013, 134, 403–416. [Google Scholar] [CrossRef]
- Muala, E.; Mohamed, Y.A.; Duan, Z.; Zaag, P.V.D. Estimation of Reservoir discharges from Lake Nasser and Roseires Reservoir in the Nile Basin using satellite altimetry and imagery data. Remote Sens. 2014, 6, 7522–7545. [Google Scholar] [CrossRef]
- Medina, C.; Gomez-Enri, J.; Alonso, J.J.; Villares, P. Water volume variations in Lake Izabal (Guatemala) from in situ measurements and ENVISAT Radar Altimeter (RA-2) and Advanced Synthetic Aperture Radar (ASAR) data products. J. Hydrol. 2010, 382, 34–48. [Google Scholar] [CrossRef]
- Frappart, F.; Do Minh, K.; L’hermitte, K.; Cazenave, A.; Ramillien, G.; Le Toan, T.; Mognard-Campbell, N. Water volume change in the lower Mekong from satellite altimetry and imagery data. Geophys. J. Int. 2006, 167, 570–584. [Google Scholar] [CrossRef]
- Silva, J.S.D.; Calmant, S.; Seyler, F. Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens. Environ. 2010, 114, 2160–2181. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Lindenbergh, R.C.; Ditmar, P.G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 2015, 521, 119–131. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Duan, S.; Tian, M.; Yi, D. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. J. Appl. Remote Sens. 2011, 5, 053532. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Wang, X.; Gong, P.; Zhao, Y.; Xu, Y.; Cheng, X. Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sens. Environ. 2013, 132, 131–144. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Wang, P. Assessing Applicability of GLDAS Monthly Temperature Data in China. Water Resour. Power 2014, 25, 769–778. [Google Scholar]
- Wang, W.; Wang, X.; Wang, P. Assessing the applicability of GLDAS monthly precipitation data in China. Adv. Water Sci. 2014, 25, 769–778. [Google Scholar]
- Hou, Y.; Nan, Z.; Pan, X. Comparative evaluation of WRF and GLDAS precipitation data over the upper Heihe River basin. J. Lanzhou Univ. 2013, 49, 437–447. [Google Scholar]
- Wang, A.; Zeng, X. Evaluation of multire analysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Wang, W.; Lan, Y.; Xu, J.; Li, K. Climate change and applicability of GLDAS in the headwater of the Yellow River Basin. Adv. Earth Sci. 2014, 4, 531–540. [Google Scholar]
- Crétaux, J.-F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Koike, T.; Zhou, H.; Yang, K.; Wang, A.; Li, W. Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K.S. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. J. Hydrol. 2014, 514, 131–144. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Hydroweb. Available online: http://www.legos.obs–mip.fr/fr/soa/hydrologie/hydroweb/ (accessed on 13 February 2017).
- Yan, L.; Zheng, M.; Wei, L. Change of the lakes in Tibetan Plateau and it’s response to climate in the past forty years. Earth Sci. Front. 2016, 23, 310–323. [Google Scholar]
- Hydrology from Space. Lakes, Rivers and Wetlands Water Levels from Satellite Altimetry. Available online: http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/ (accessed on 8 January 2014).
- Crétaux, J.-F.; Calmant, S.; Abarca Del Rio, R.; Kouraev, A. Lakes studies from satellite altimetry. In Handbook on Coastal Altimetry; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Shum, C.; Yi, Y.; Cheng, K.; Kuo, C. Calibration of Jason-1 Altimeter over Lake Erie. Mar. Geod. 2003, 26, 335–354. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Birkett, C. Lake studies from satellite altimetry. C. R. Geosci. 2006, 338, 1098–1112. [Google Scholar] [CrossRef]
- Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys. Res. Lett. 2012, 39, L08403. [Google Scholar] [CrossRef]
- The USGS HydroSHEDS. Available online: http://hydrosheds.cr.usgs.gov/dataavail.php (accessed on 13 February 2017).
- Global Land Assimilation System (GLDAS). Available online: http://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=GLDAS (accessed on 13 February 2017).
- Bian, D.; Du, J.; Hu, J.; Li, C.; Li, L. Response of the Water Level of the Yamzho Yumco to Climate Change during 1975–2006. J. Glaciol. Geocryol. 2009, 31, 404–409. [Google Scholar]
- Chu, D.; Pu, Q.; Laba, Z.; Zhu, L.; Zhang, X.; Pubu, C.; Deji, Y.; Sun, R. Remote sensing analysis on lake area variations of Yamzho Yumco in Tibetan Plateau over the past 40 a. J. Lake Sci. 2012, 24, 494–502. [Google Scholar]
- Deng, H.; Chen, Y.; Shi, X. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos. Res. 2014, 138, 346–355. [Google Scholar] [CrossRef]
- Insaf, T.Z.; Lin, S.; Sheridan, S.C. Climate trend in indices for temperature and precipitation across New York State, 1948–2008. Air Qual. Atmos. Health 2012, 6, 247–257. [Google Scholar] [CrossRef]
- Stone, R. Saving Iran’s Great Salt Lake. Science 2015, 349, 1044–1047. [Google Scholar]
- Song, C.; Huang, B.; Ke, L.-H. Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multi-mission satellite altimetry. Hydrol. Process. 2015, 29, 2769–2781. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, S.; Ye, B.; Zhao, L. Climatic Implications on Variations of Lakes in the Cold and Arid Regions of China during the Recent 50 Years. J. Glaciol. Geocryol. 2006, 28, 623–632. [Google Scholar]
The Change Rate of Lake Level | Accumulated Precipitation | Accumulated Temperature | ||
---|---|---|---|---|
the change rate of lake level | Pearson Correlation | 1 | 0.258 ** | −0.238 * |
Sig. (2-tailed) | 0.009 | 0.016 | ||
N | 103 | 103 | 103 | |
accumulated precipitation | Pearson Correlation | 0.258 ** | 1 | −0.201 * |
Sig. (2-tailed) | 0.009 | 0.042 | ||
N | 103 | 103 | 103 | |
accumulated temperature | Pearson Correlation | −0.238 * | −0.201 * | 1 |
Sig. (2-tailed) | 0.016 | 0.042 | ||
N | 103 | 103 | 103 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.; Ma, M.; Kuang, H. Spatial-Temporal Characteristics and Climatic Responses of Water Level Fluctuations of Global Major Lakes from 2002 to 2010. Remote Sens. 2017, 9, 150. https://doi.org/10.3390/rs9020150
Tan C, Ma M, Kuang H. Spatial-Temporal Characteristics and Climatic Responses of Water Level Fluctuations of Global Major Lakes from 2002 to 2010. Remote Sensing. 2017; 9(2):150. https://doi.org/10.3390/rs9020150
Chicago/Turabian StyleTan, Chao, Mingguo Ma, and Honghai Kuang. 2017. "Spatial-Temporal Characteristics and Climatic Responses of Water Level Fluctuations of Global Major Lakes from 2002 to 2010" Remote Sensing 9, no. 2: 150. https://doi.org/10.3390/rs9020150