A Combination of Feature Tracking and Pattern Matching with Optimal Parametrization for Sea Ice Drift Retrieval from SAR Data
Abstract
:1. Introduction
2. Data
2.1. Sentinel-1A Data
2.2. Sea Ice Drifters
3. Methodology
3.1. Combination of Feature Tracking and Pattern Matching
3.2. Comparison with Sea Ice Drifters’ Data
3.3. Sensitivity Tests
4. Results
4.1. Sensitivity of the Algorithm
4.2. Efficiency of the Combined Algorithm
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vihma, T. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Comiso, J.C.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J.; et al. Observations: Cryosphere. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 317–382. [Google Scholar]
- Parkinson, C.L. Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Yr Trends. J. Clim. 2014, 27, 9377–9382. [Google Scholar] [CrossRef]
- Humpert, M.; Raspotnik, A. The future of Arctic shipping. Port Technol. Int. 2012, 55, 10–11. [Google Scholar]
- Barnhart, K.R.; Miller, C.R.; Overeem, I.; Kay, J.E. Mapping the future expansion of Arctic open water. Nat. Clim. Chang. 2016, 6, 280–285. [Google Scholar] [CrossRef]
- Eicken, H. Ocean science: Arctic sea ice needs better forecasts. Nature 2013, 497, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Gimbert, F.; Jourdain, N.C.; Marsan, D.; Weiss, J.; Barnier, B. Recent mechanical weakening of the Arctic sea ice cover as revealed from larger inertial oscillations. J. Geophys. Res. Oceans 2012. [Google Scholar] [CrossRef]
- Rampal, P.; Weiss, J.; Marsan, D. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979-2007. J. Geophys. Res. Oceans 2009, 114, C05013. [Google Scholar] [CrossRef]
- Bouillon, S.; Rampal, P. Presentation of the dynamical core of neXtSIM, a new sea ice model. Ocean Model. 2015, 91, 23–37. [Google Scholar] [CrossRef]
- Rampal, P.; Bouillon, S.; Ólason, E.; Morlighem, M. neXtSIM: A new Lagrangian sea ice model. Cryosphere 2016, 10, 1055–1073. [Google Scholar] [CrossRef]
- Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H. Scaling properties of sea ice deformation from buoy dispersion analysis. J. Geophys. Res. Oceans 2008, 113, C03002. [Google Scholar] [CrossRef]
- Ninnis, R.M.; Emery, W.J.; Collins, M.J. Automated extraction of pack ice motion from advanced very high resolution radiometer imagery. J. Geophys. Res. Oceans 1986, 91, 10725–10734. [Google Scholar] [CrossRef]
- Lavergne, T.; Eastwood, S.; Teffah, Z.; Schyberg, H.; Breivik, L.A. Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic. J. Geophys. Res. Oceans 2010. [Google Scholar] [CrossRef]
- Girard-Ardhuin, F.; Ezraty, R. Enhanced Arctic Sea Ice Drift Estimation Merging Radiometer and Scatterometer Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2639–2648. [Google Scholar] [CrossRef]
- Thomas, M.; Geiger, C.; Kambhamettu, C. High resolution (400m) motion characterization of sea ice using ERS-1 {SAR} imagery. Cold Reg. Sci. Technol. 2008, 52, 207–223. [Google Scholar] [CrossRef]
- Kwok, R.; Sulsky, D. Arctic Ocean Sea Ice Thickness and Kinematics: Satellite Retrievals and Modeling. Oceanography 2010, 23, 134–143. [Google Scholar] [CrossRef]
- Karvonen, J. Operational SAR-based sea ice drift monitoring over the Baltic Sea. Ocean Science 2012, 8, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Muckenhuber, S.; Korosov, A.A.; Sandven, S. Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery. Cryosphere 2016, 10, 913–925. [Google Scholar] [CrossRef]
- Petrou, Z.I.; Tian, Y. High-Resolution Sea Ice Motion Estimation With Optical Flow Using Satellite Spectroradiometer Data. IEEE Trans. Geosci. Remote Sens. 2016. [Google Scholar] [CrossRef]
- SUN, Y. Automatic ice motion retrieval from ERS-1 SAR images using the optical flow method. Int. J. Remote Sens. 1996, 17, 2059–2087. [Google Scholar] [CrossRef]
- Berg, A.; Eriksson, L.E.B. Investigation of a Hybrid Algorithm for Sea Ice Drift Measurements Using Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5023–5033. [Google Scholar] [CrossRef]
- Komarov, A.S.; Barber, D.G. Sea Ice Motion Tracking From Sequential Dual-Polarization RADARSAT-2 Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 121–136. [Google Scholar] [CrossRef]
- Fletcher, K. Sentinel-1: ESA’s Radar Observatory Mission for GMES Operational Services; ESA Communications: Noordwijk, The Netherlands, 2012. [Google Scholar]
- ESA (European Space Agency). Copernicus Sentinels Scientific Data Hub. 2014. Available online: https://scihub.copernicus.eu/ (accessed on 11 January 2017).
- Sentinel-1 SAR Technical Guide, 2000–2017. Available online: https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar] (accessed on 11 January 2017).
- Miranda, N.; Meadows, P. Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF. Available online: https://sentinel.esa.int/documents/247904/685163/S1-Radiometric-Calibration-V1.0.pdf (accessed on 11 January 2017).
- Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Realtime Computer Vision with OpenCV. Queue 2012, 1. [Google Scholar]
- Bradski, G. Open Computer Vision Library. Available online: http://opencv.org/ (accessed on 11 January 2017).
- Korosov, A.; Hansen, M.; Dagestad, K.F.; Yamakawa, A.; Riechert, A.V.M. Nansat: A Scientist-Orientated Python Package for Geospatial Data Processing. J. Open Res. Softw. 2016, 4. [Google Scholar] [CrossRef]
- Korosov, A.; Hansen, M.W.; Yamakawa, A.; Dagestad, K.F.; Vines, A.; Riechert, M.; Myasoedov, A.; Morozov, E.; Piotrovskaya, N.; Williams, T. Nansat-0.6.14. 2016. Available online: https://doi.org/10.5281/zenodo.59998 (accessed on 11 January 2017).
- Granskog, M.; Assmy, P.; Gerland, S.; Spreen, G.; Steen, H.; Smedsrud, L.H. Arctic research on thin ice: Consequences of Arctic sea ice loss. Eos 2016, 97, 22–26. [Google Scholar] [CrossRef]
- Itkin, P.; Spreen, G.; Hudson, S.R.; Granskog, M.A.; Gerland, S.; Cheng, B.; Doble, M.; Sennechael, N.; Provost, C.; Haapala, J.; et al. N-ICE2015 Buoy Data. Norwegian Polar Institute: Tromsø, Norway, 2015. Available online: https://doi.org/10.21334/npolar.2015.6ed9a8ca (accessed on 10 March 2017).
- Itkin, P.; Spreen, G.; Cheng, B.; Doble, M.; Girard-Ardhuin, F.; Haapala, J.; Hughes, N.; Kaleschke, L.; Nicolaus, M.; Wilkinson, J. Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015. J. Geophys. Res. 2017, in press. [Google Scholar]
- Tonboe, R.; Lavelle, J.; Pfeiffer, R.H.; Howe, E. Product User Manual for OSI SAF Global Sea Ice Concentration, Product OSI-401-b, Version 1.4; Danish Meteorological Institute: Copenhagen, Denmark, 2016. Available online: http://osisaf.met.no/docs/osisaf_cdop2_ss2_pum_ice-conc_v1p4.pdf (accessed on 10 March 2017).
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice; John Wiley & Sons: Paris, France, 2009. [Google Scholar]
- Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open source scientific tools for Python. 2001–. Available online: http://www.scipy.org/ (accessed on 11 January 2017).
- Hansen, M.; Korosov, A.; Olaussen, T.; Vines, A.; Hamre, T. The Nansen-Cloud: a Scientific Platform as a Service for the Nansen Group. In Proceedings of Living Planet Symposium 2016; European Space Agency: Paris, France, 2016. [Google Scholar]
- Hollands, T.; Linow, S.; Dierking, W. Reliability Measures for Sea Ice Motion Retrieval From Synthetic Aperture Radar Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Barton, I.J. Ocean Currents from Successive Satellite Images: The Reciprocal Filtering Technique. J. Atmos. Ocean. Technol. 2002, 19, 1677–1689. [Google Scholar] [CrossRef]
- Johansson, A.M.; Berg, A. Agreement and Complementarity of Sea Ice Drift Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 369–380. [Google Scholar] [CrossRef]
- Korosov, A.; Muckenhuber, S. SeaIceDrift-0.3. 2017. Available online: https://doi.org/10.5281/zenodo.376483 (accessed on 10 March 2017).
- Kalderimis, J.; Meyer, M. Travis Continuous Integration Platform. 2017. Available online: https://travis-ci.org/ (accessed on 11 January 2017).
- COVERALLS. DELIVER BETTER CODE. 2014. Available online: https://coveralls.io/ (accessed on 11 January 2017).
Number of Initial Keypoints | 5000 | 10,000 | 20,000 | 50,000 | 100,000 | 200,000 |
Time, s | 3.5 | 5 | 11 | 50 | 190 | 815 |
D | Template Size (T) | ||
---|---|---|---|
20 | 40 | 80 | |
10 | 4660 | 2699 | 960 |
20 | 4463 | 2072 | 839 |
40 | 2413 | 1677 | 703 |
80 | 974 | 818 | 494 |
Parameter | Value |
---|---|
, dB | −28 |
, dB | −14 |
Initial number of keypoints | 100,000 |
0.5 m/s | |
8 km | |
T | 40 |
D | 80 |
0.3 | |
0.7 |
Use Case | 1. Pan Arctic | 2. Regional | 3. Virtual Drifters |
---|---|---|---|
Grid type | Fixed, Eulerian | Fixed, Eulerian | Lagrangian |
Resolution, km | 6.4 | 2 | Not applicable |
ROI area, km | 15,000,000 | 700,000 | Not applicable |
Required accuracy, m | 500 | 300 | 300 |
Image pairs | 400 | 4 | 10 |
Initial keypoints | 10,000 | 50,000 | 100,000 |
Template size | 80 | 25 | 40 |
Searching distance | 40 | 80 | 100 |
Number of vectors | 350,000 | 175,000 | 10 |
Time spent, s | 2500 | 400 | 1900 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korosov, A.A.; Rampal, P. A Combination of Feature Tracking and Pattern Matching with Optimal Parametrization for Sea Ice Drift Retrieval from SAR Data. Remote Sens. 2017, 9, 258. https://doi.org/10.3390/rs9030258
Korosov AA, Rampal P. A Combination of Feature Tracking and Pattern Matching with Optimal Parametrization for Sea Ice Drift Retrieval from SAR Data. Remote Sensing. 2017; 9(3):258. https://doi.org/10.3390/rs9030258
Chicago/Turabian StyleKorosov, Anton Andreevich, and Pierre Rampal. 2017. "A Combination of Feature Tracking and Pattern Matching with Optimal Parametrization for Sea Ice Drift Retrieval from SAR Data" Remote Sensing 9, no. 3: 258. https://doi.org/10.3390/rs9030258