Association of Antioxidant Diet with Risk of Hyperemesis Gravidarum Among Chinese Pregnant Women: A Population-Based Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Construction of CDAI and DAPS
2.4. Ascertainment of HG
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association Between the CDAI and DAPS and HG
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Food Groups | Weights a | Factor Loadings b |
---|---|---|
Positive associations | ||
Whole grains and mixed legumes | 0.00271 | 0.28615 |
Fruits | 0.00217 | 0.22074 |
Eggs | 0.00173 | 0.04925 |
Fish | 0.00163 | 0.03875 |
Dark green vegetables and white leafy vegetables | 0.00109 | 0.06726 |
Yogurt | 0.00081 | 0.05224 |
Milk | 0.00032 | 0.04542 |
Water | 0.00015 | 0.12943 |
Inverse associations | ||
Edible animal oils | −0.00694 | −0.03727 |
Processed meat | −0.00192 | −0.04321 |
Livestock meat | −0.00191 | −0.13651 |
Poultry | −0.00095 | −0.03594 |
Rice | −0.00047 | −0.02659 |
Beverage | −0.00027 | −0.02617 |
Explained variation in food groups, % | - | 6.92 |
Explained variation in the composite dietary antioxidant index, % | - | 29.51 |
Characteristics | Non-HG (n = 2739) | HG (n = 241) |
---|---|---|
Age (years) | 30.0 (28.0, 33.0) | 30.0 (29.0, 33.0) |
Gestational week (weeks) | 12.0 (9.0, 12.7) | 12.2 (11.3, 12.7) |
Educational level (under college) | 1516 (55.3) | 147 (61.0) |
Employment attainment (no) | 534 (19.5) | 56 (23.2) |
Annual household income (<100,000 CNY) | 1589 (58.0) | 166 (68.9) |
Ethnicity (Han) | 2694 (98.4) | 234 (97.1) |
Primigravida (yes) | 1315 (48.0) | 79 (32.8) |
Pre-pregnancy BMI (kg/m2) | 21.2 (19.5, 23.3) | 21.1 (19.7, 23.1) |
Quality of life in pregnancy | 8.0 (7.0, 9.0) | 7.0 (5.0, 8.0) |
Physical activity (MET-min/week)) | 1188 (738, 1980) | 1086 (654, 1752) |
Menstruation regularity (no) | 463 (16.9) | 33 (13.7) |
Family history of hyperemesis gravidarum (yes) | 719 (26.3) | 94 (39.0) |
Current smoker | 47 (1.7) | 6 (2.5) |
Current alcohol drinker | 97 (3.5) | 10 (4.1) |
Nutritional supplement usage (yes) | 1641 (59.9) | 147 (61.0) |
Total energy intake (kcal/d) | 1696.9 (1322.9, 2158.2) | 1540.7 (1242.2, 1865.0) |
Whole grains and mixed legumes (g/d) | 120.8 (111.7, 147.9) | 113.6 (102.9, 129.0) |
Fruits (g/d) | 171.7 (115.4, 261.2) | 158.0 (100.5, 226.1) |
Eggs (g/d) | 25.5 (9.2, 57.0) | 21.5 (7.2, 44.7) |
Fish (g/d) | 16.4 (9.4, 27.0) | 13.4 (8.4, 21.0) |
Dark green vegetables and white leafy vegetables (g/d) | 251.9 (221.1, 297.3) | 233.5 (209.3, 269.6) |
Yogurt (g/d) | 27.8 (15.1, 79.2) | 25.8 (12.1, 77.2) |
Milk (g/d) | 117.5 (27.0, 208.6) | 107.5 (17.0, 163.6) |
Water (ml/d) | 1350.0 (600.0, 2459.0) | 1250.0 (500.0, 1250.0) |
Edible animal oils (g/d) | 1.1 (0.6, 3.3) | 1.5 (0.6, 4.6) |
Processed meat (g/d) | 1.3 (1.0, 6.3) | 1.7 (1.7, 6.7) |
Livestock meat (g/d) | 60.0 (30.4, 99.2) | 65.6 (37.0, 107.9) |
Poultry (g/d) | 6.7 (6.7, 14.3) | 14.3 (6.7, 25.3) |
Rice (g/d) | 160.0 (120.0, 175.1) | 164.8 (125.0, 175.1) |
Beverage (ml/d) | 80.6 (57.1, 128.2) | 81.4 (57.1, 131.7) |
Vitamin A (RE) | 552.3 (502.2, 593.1) | 528.2 (496.5, 581.9) |
Vitamin C (mg/d) | 65.7 (63.1, 69.3) | 63.0 (58.9, 66.6) |
Vitamin E (mg/d) | 10.4 (8.9, 11.9) | 10.1 (9.2, 11.6) |
Zinc (mg/d) | 10.6 (8.9, 12.6) | 9.7 (8.6, 11.3) |
Selenium (mg/d) | 78.2 (70.3, 86.6) | 76.7 (70.5, 82.8) |
Total carotenoids (mg/d) | 6305.3 (5843.5, 6757.2) | 6169.8 (5494.8, 6595.4) |
CDAI | 0.04 (−0.21, 0.25) | −0.12 (−0.29, 0.07) |
DAPS | 1.39 (1.13, 1.70) | 1.23 (0.98, 1.48) |
Tertile 1 | Tertile 2 | Tertile 3 | p-Trend | Per SD Increase | |
---|---|---|---|---|---|
Residual energy intake-adjusted CDAI | |||||
Model 1 | 1.00 (reference) | 0.75 (0.56, 1.01) | 0.35 (0.23, 0.49) | <0.001 | 0.76 (0.67, 0.86) |
Model 2 | 1.00 (reference) | 0.15 (0.56, 1.01) | 0.34 (0.23, 0.49) | <0.001 | 0.76 (0.67, 0.86) |
Model 3 | 1.00 (reference) | 0.60 (51, 0.94) | 0.34 (0.23. 0.50) | <0.001 | 0.75 (0.66, 0.86) |
Residual energy intake -adjusted DAPS | |||||
Model 1 | 1.00 (reference) | 0.73 (0.54, 0.99) | 0.45 (0.32, 0.64) | <0.001 | 0.64 (0.55, 0.74) |
Model 2 | 1.00 (reference) | 0.73 (0.54, 0.99) | 0.64 (0.55, 0.74) | <0.001 | 0.64 (0.55, 0.74) |
Model 3 | 1.00 (reference) | 0.70 (0.51, 0.96) | 0.46 (0.32. 0.66) | <0.001 | 0.64 (0.54, 0.75) |
Tertile 1 | Tertile 2 | Tertile 3 | p-Trend | Per SD Increase | |
---|---|---|---|---|---|
CDAI 1 (n = 3074) | 1.00 (reference) | 0.74 (0.54, 0.99) | 0.31 (0.21. 0.46) | <0.001 | 0.74 (0.64, 0.85) |
CDAI 2 (n = 3364) | 1.00 (reference) | 0.74 (0.55, 0.99) | 0.34 (0.24. 0.50) | <0.001 | 0.71 (0.62, 0.82) |
DAPS 1 (n = 3074) | 1.00 (reference) | 0.72 (0.53, 0.98) | 0.41 (0.28. 0.59) | <0.001 | 0.56 (0.47, 0.67) |
DAPS 2 (n = 3364) | 1.00 (reference) | 0.78 (0.58,1.04) | 0.44 (0.31. 0.62) | <0.001 | 0.64 (0.56, 0.75) |
References
- Einarson, T.R.; Piwko, C.; Koren, G. Quantifying the global rates of nausea and vomiting of pregnancy: A meta analysis. J. Popul. Ther. Clin. Pharmacol. 2013, 20, e171–e183. [Google Scholar] [PubMed]
- Fejzo, M.S.; Trovik, J.; Grooten, I.J.; Sridharan, K.; Roseboom, T.J.; Vikanes, Å.; Painter, R.C.; Mullin, P.M. Nausea and vomiting of pregnancy and hyperemesis gravidarum. Nat. Rev. Dis. Primers 2019, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Deruelle, P.; Sentilhes, L.; Ghesquière, L.; Desbrière, R.; Ducarme, G.; Attali, L.; Jarnoux, A.; Artzner, F.; Tranchant, A.; Schmitz, T.; et al. Nausea and vomiting in pregnancy. Rev. Prat. 2024, 74, 411–419. [Google Scholar] [PubMed]
- Nijsten, K.; Jansen, L.A.W.; Limpens, J.; Finken, M.J.J.; Koot, M.H.; Grooten, I.J.; Roseboom, T.J.; Painter, R.C. Long-term health outcomes of children born to mothers with hyperemesis gravidarum: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2022, 227, 414–429.e417. [Google Scholar] [CrossRef]
- Fiaschi, L.; Nelson-Piercy, C.; Gibson, J.; Szatkowski, L.; Tata, L.J. Adverse Maternal and Birth Outcomes in Women Admitted to Hospital for Hyperemesis Gravidarum: A Population-Based Cohort Study. Paediatr. Perinat. Epidemiol. 2018, 32, 40–51. [Google Scholar] [CrossRef]
- Şimşek, Y.; Şimşek, G.; Bayar Muluk, N.; Arıkan, O.K. Olfactory dysfunction and oxidative stress in pregnant women with hyperemesis gravidarum. Arch. Gynecol. Obstet. 2021, 304, 657–661. [Google Scholar] [CrossRef]
- Fisher, J.J.; Bartho, L.A.; Perkins, A.V.; Holland, O.J. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin. Exp. Pharmacol. Physiol. 2020, 47, 176–184. [Google Scholar] [CrossRef]
- Ballester, P.; Cerdá, B.; Arcusa, R.; Marhuenda, J.; Yamedjeu, K.; Zafrilla, P. Effect of Ginger on Inflammatory Diseases. Molecules 2022, 27, 7223. [Google Scholar] [CrossRef]
- Tan, P.C.; Ramasandran, G.; Sethi, N.; Razali, N.; Hamdan, M.; Kamarudin, M. Watermelon and dietary advice compared to dietary advice alone following hospitalization for hyperemesis gravidarum: A randomized controlled trial. BMC Pregnancy Childbirth 2023, 23, 450. [Google Scholar] [CrossRef]
- Sharifzadeh, F.; Kashanian, M.; Koohpayehzadeh, J.; Rezaian, F.; Sheikhansari, N.; Eshraghi, N. A comparison between the effects of ginger, pyridoxine (vitamin B6) and placebo for the treatment of the first trimester nausea and vomiting of pregnancy (NVP). J. Matern. Fetal Neonatal Med. 2018, 31, 2509–2514. [Google Scholar] [CrossRef]
- Celik, F.; Guzel, A.I.; Kuyumcuoglu, U.; Celik, Y. Dietary antioxidant levels in hyperemesis gravidarum: A case control study. Ginekol. Pol. 2011, 82, 840–844. [Google Scholar] [PubMed]
- Cheng, W.; Li, L.; Long, Z.; Ma, X.; Chen, F.; Ma, L.; Zhang, S.; Lin, J. Association between Dietary Patterns and the Risk of Hyperemesis Gravidarum. Nutrients 2023, 15, 3300. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.; Zhang, L.; Cheng, W.; Jin, Y.; Long, Z.; Gu, W.; Ma, L.; Zhang, S.; Lin, J. Association between Dietary Inflammatory Index and Hyperemesis Gravidarum. Nutrients 2024, 16, 2618. [Google Scholar] [CrossRef]
- Yu, Y.C.; Paragomi, P.; Wang, R.; Jin, A.; Schoen, R.E.; Sheng, L.T.; Pan, A.; Koh, W.P.; Yuan, J.M.; Luu, H.N. Composite dietary antioxidant index and the risk of colorectal cancer: Findings from the Singapore Chinese Health Study. Int. J. Cancer 2022, 150, 1599–1608. [Google Scholar] [CrossRef]
- Wang, M.; Huang, Z.H.; Zhu, Y.H.; He, P.; Fan, Q.L. Association between the composite dietary antioxidant index and chronic kidney disease: Evidence from NHANES 2011–2018. Food Funct. 2023, 14, 9279–9286. [Google Scholar] [CrossRef]
- Wright, M.E.; Mayne, S.T.; Stolzenberg-Solomon, R.Z.; Li, Z.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am. J. Epidemiol. 2004, 160, 68–76. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef]
- Zhang, S.; Meng, G.; Zhang, Q.; Liu, L.; Wu, H.; Gu, Y.; Wang, Y.; Zhang, T.; Wang, X.; Zhang, J.; et al. Inflammatory potential of diet and risk of nonalcoholic fatty liver disease: A prospective cohort study. Eur. J. Clin. Nutr. 2022, 76, 1125–1132. [Google Scholar] [CrossRef]
- Piernas, C.; Gao, M.; Jebb, S.A. Dietary patterns derived by reduced rank regression and non-communicable disease risk. Proc. Nutr. Soc. 2022, 1–8. [Google Scholar] [CrossRef]
- Frankenfeld, C.L. Reduced Rank Regression: Illustration of an Important Tool in the Evaluation of Dietary Patterns and Chronic Disease Risk. J. Nutr. 2021, 151, 3269–3270. [Google Scholar] [CrossRef]
- Skulsky, S.L.; Koutoukidis, D.A.; Carter, J.L.; Piernas, C.; Jebb, S.A.; Gao, M.; Astbury, N.M. Associations between Dietary Patterns and Incident Colorectal Cancer in 114,443 Individuals from the UK Biobank: A Prospective Cohort Study. Cancer Epidemiol. Biomarkers Prev. 2024, 33, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, Z.; Shi, J.; Liu, S.; Li, L.; Ding, L.; Zhao, J.; Pan, Y.; Lei, H.; He, T.; et al. The association between prepregnancy dietary fatty acids and risk of gestational diabetes mellitus: A prospective cohort study. Clin. Nutr. 2024, 43, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Dibley, M.J.; Zhang, X.; Zeng, L.; Yan, H. Assessment of dietary intake among pregnant women in a rural area of western China. BMC Public Health 2009, 9, 222. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yan, H.; Dibley, M.J.; Shen, Y.; Li, Q.; Zeng, L. Validity and reproducibility of a semi-quantitative food frequency questionnaire for use among pregnant women in rural China. Asia Pac. J. Clin. Nutr. 2008, 17, 166–177. [Google Scholar] [PubMed]
- Xu, Q.; Qian, X.; Sun, F.; Liu, H.; Dou, Z.; Zhang, J. Independent and joint associations of dietary antioxidant intake with risk of post-stroke depression and all-cause mortality. J. Affect. Disord. 2023, 322, 84–90. [Google Scholar] [CrossRef]
- Yang, J.; Na, X.; Li, Z.; Zhao, A. Modification Role of Dietary Antioxidants in the Association of High Red Meat Intake and Lung Cancer Risk: Evidence from a Cancer Screening Trial. Antioxidants 2024, 13, 799. [Google Scholar] [CrossRef]
- Koren, G.; Boskovic, R.; Hard, M.; Maltepe, C.; Navioz, Y.; Einarson, A. Motherisk-PUQE (pregnancy-unique quantification of emesis and nausea) scoring system for nausea and vomiting of pregnancy. Am. J. Obstet. Gynecol. 2002, 186, S228–S231. [Google Scholar] [CrossRef]
- Jansen, L.A.W.; Shaw, V.; Grooten, I.J.; Koot, M.H.; Dean, C.R.; Painter, R.C. Diagnosis and treatment of hyperemesis gravidarum. Cmaj 2024, 196, E477–E485. [Google Scholar] [CrossRef]
- Jansen, L.A.W.; Koot, M.H.; Van’t Hooft, J.; Dean, C.R.; Bossuyt, P.M.M.; Ganzevoort, W.; Gauw, N.; Van der Goes, B.Y.; Rodenburg, J.; Roseboom, T.J.; et al. The windsor definition for hyperemesis gravidarum: A multistakeholder international consensus definition. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 266, 15–22. [Google Scholar] [CrossRef]
- Koot, M.H.; Grooten, I.J.; Post, J.; Bais, J.M.J.; Ris-Stalpers, C.; Naaktgeboren, C.A.; Niemeijer, M.N.; Bremer, H.A.; van der Ham, D.P.; Heidema, W.M.; et al. Ketonuria is not associated with hyperemesis gravidarum disease severity. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 254, 315–320. [Google Scholar] [CrossRef]
- Tennant, P.W.G.; Murray, E.J.; Arnold, K.F.; Berrie, L.; Fox, M.P.; Gadd, S.C.; Harrison, W.J.; Keeble, C.; Ranker, L.R.; Textor, J.; et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: Review and recommendations. Int. J. Epidemiol. 2021, 50, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Qin, Z.; Lv, X.; Dai, Y.; Ciren, Z.; Yangla, Y.; Zeng, P.; Ma, Y.; Li, X.; Wang, L.; et al. Dietary patterns and cardiometabolic risks in diverse less-developed ethnic minority regions: Results from the China Multi-Ethnic Cohort (CMEC) Study. Lancet Reg. Health West. Pac. 2021, 15, 100252. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Cao, Y. A variable selection method based on mutual information and variance inflation factor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120652. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S, discussion 1229S–1231S. [Google Scholar] [CrossRef] [PubMed]
- Tomova, G.D.; Arnold, K.F.; Gilthorpe, M.S.; Tennant, P.W.G. Adjustment for energy intake in nutritional research: A causal inference perspective. Am. J. Clin. Nutr. 2022, 115, 189–198. [Google Scholar] [CrossRef]
- Beesley, L.J.; Bondarenko, I.; Elliot, M.R.; Kurian, A.W.; Katz, S.J.; Taylor, J.M. Multiple imputation with missing data indicators. Stat. Methods Med. Res. 2021, 30, 2685–2700. [Google Scholar] [CrossRef]
- Alharbi, K.S.; Nadeem, M.S.; Afzal, O.; Alzarea, S.I.; Altamimi, A.S.A.; Almalki, W.H.; Mubeen, B.; Iftikhar, S.; Shah, L.; Kazmi, I. Gingerol, a Natural Antioxidant, Attenuates Hyperglycemia and Downstream Complications. Metabolites 2022, 12, 1274. [Google Scholar] [CrossRef]
- Tiran, D. Ginger to reduce nausea and vomiting during pregnancy: Evidence of effectiveness is not the same as proof of safety. Complement. Ther. Clin. Pract. 2012, 18, 22–25. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E. Oxidative stress. Best. Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 287–299. [Google Scholar] [CrossRef]
- Poston, L.; Raijmakers, M.T. Trophoblast oxidative stress, antioxidants and pregnancy outcome—A review. Placenta 2004, 25 (Suppl. A), S72–S78. [Google Scholar] [CrossRef]
- Pingitore, A.; Lima, G.P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Quinn, P.J. Vitamin E and its function in membranes. Prog. Lipid Res. 1999, 38, 309–336. [Google Scholar] [CrossRef] [PubMed]
- Sikiru, A.B.; Arangasamy, A.; Alemede, I.C.; Guvvala, P.R.; Egena, S.S.A.; Ippala, J.R.; Bhatta, R. Chlorella vulgaris supplementation effects on performances, oxidative stress and antioxidant genes expression in liver and ovaries of New Zealand White rabbits. Heliyon 2019, 5, e02470. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Matsuzaki, N.; Masuhiro, K.; Kameda, T.; Taniguchi, T.; Saji, F.; Yone, K.; Tanizawa, O. Trophoblast-derived tumor necrosis factor-alpha induces release of human chorionic gonadotropin using interleukin-6 (IL-6) and IL-6-receptor-dependent system in the normal human trophoblasts. J. Clin. Endocrinol. Metab. 1992, 74, 184–191. [Google Scholar] [CrossRef]
- Nestler, J.E. Interleukin-1 stimulates the aromatase activity of human placental cytotrophoblasts. Endocrinology 1993, 132, 566–570. [Google Scholar] [CrossRef]
- Cunningham, A.S.; Muneyyirci-Delale, O. The association between primary dysmenorrhea and hyperemesis gravidarum. Med. Hypotheses 2009, 73, 90–91. [Google Scholar] [CrossRef]
- Luu, H.N.; Wen, W.; Li, H.; Dai, Q.; Yang, G.; Cai, Q.; Xiang, Y.B.; Gao, Y.T.; Zheng, W.; Shu, X.O. Are dietary antioxidant intake indices correlated to oxidative stress and inflammatory marker levels? Antioxid. Redox Signal 2015, 22, 951–959. [Google Scholar] [CrossRef]
- Trebble, T.; Arden, N.K.; Stroud, M.A.; Wootton, S.A.; Burdge, G.C.; Miles, E.A.; Ballinger, A.B.; Thompson, R.L.; Calder, P.C. Inhibition of tumour necrosis factor-alpha and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br. J. Nutr. 2003, 90, 405–412. [Google Scholar] [CrossRef]
- Novoselova, E.G.; Lunin, S.M.; Novoselova, T.V.; Khrenov, M.O.; Glushkova, O.V.; Avkhacheva, N.V.; Safronova, V.G.; Fesenko, E.E. Naturally occurring antioxidant nutrients reduce inflammatory response in mice. Eur. J. Pharmacol. 2009, 615, 234–240. [Google Scholar] [CrossRef]
- Plunkett, B.A.; Callister, R.; Watson, T.A.; Garg, M.L. Dietary antioxidant restriction affects the inflammatory response in athletes. Br. J. Nutr. 2010, 103, 1179–1184. [Google Scholar] [CrossRef]
- Vahid, F.; Rahmani, D.; Davoodi, S.H. The correlation between serum inflammatory, antioxidant, glucose handling biomarkers, and Dietary Antioxidant Index (DAI) and the role of DAI in obesity/overweight causation: Population-based case-control study. Int. J. Obes. 2021, 45, 2591–2599. [Google Scholar] [CrossRef] [PubMed]
- DiPalma, J.R.; Ritchie, D.M. Vitamin toxicity. Annu. Rev. Pharmacol. Toxicol. 1977, 17, 133–148. [Google Scholar] [CrossRef]
- Thorlton, J.; Ahmed, A.; Colby, D.A. Energy Drinks: Implications for the Breastfeeding Mother. MCN Am. J. Matern. Child. Nurs. 2016, 41, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Cucó, G.; Fernández-Ballart, J.; Sala, J.; Viladrich, C.; Iranzo, R.; Vila, J.; Arija, V. Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. Eur. J. Clin. Nutr. 2006, 60, 364–371. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total | Tertiles of CDAI | Tertiles of DAPS | ||||
---|---|---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | Tertile 1 | Tertile 2 | Tertile 3 | ||
Number of participants | 2980 | 993 | 993 | 994 | 994 | 993 | 993 |
Age (years) | 30.0 (28.0, 33.0) | 30.0 (28.0, 33.0) | 30.0 (28.0, 33.0) | 30.0 (28.0, 32.0) | 30.0 (28.0, 33.0) | 30.0 (28.0, 32.0) | 30.0 (28.0, 32.0) |
Gestational week (weeks) | 12.0 (9.2, 12.7) | 12.2 (9.3, 12.7) | 12.0 (8.8, 12.7) | 12.0 (9.3, 12.7) | 12.2 (9.2, 12.7) | 12.0 (9.0, 12.7) | 12.0 (9.3, 12.7) |
Educational attainment (under college) | 1663 (55.8) | 542 (54.6) | 554 (55.8) | 567 (57.0) | 560 (56.3) | 541 (54.5) | 562 (56.6) |
Employment status (no) | 590 (19.8) | 204 (20.5) | 207 (20.8) | 179 (18.0) | 195 (19.6) | 207 (20.8) | 188 (18.9) |
Annual household income (<CNY 100,000) | 1755 (58.9) | 606 (61.0) | 595 (59.9) | 554 (55.7) | 601 (60.5) | 586 (59.0) | 568 (57.2) |
Ethnicity (Han) | 2928 (98.3) | 980 (98.7) | 968 (97.5) | 980 (98.6) | 968 (97.4) | 979 (98.6) | 981 (98.8) |
Primigravida (yes) | 1394 (46.8) | 447 (45.0) | 453 (45.6) | 494 (49.7) | 485 (48.8) | 438 (44.1) | 471 (47.4) |
Pre-pregnancy BMI (kg/m2) | 21.2 (19.5, 23.3) | 21.0 (19.4, 23.4) | 21.3 (19.5, 23.2) | 21.2 (19.6, 23.3) | 21.1 (19.3, 23.4) | 21.2 (19.5, 23.2) | 21.2 (19.6, 23.4) |
Quality of life in pregnancy | 8.0 (7.0, 9.0) | 8.0 (7.0, 9.0) | 8.0 (7.0, 9.0) | 8.0 (7.0, 9.0) | 8.0 (7.0, 9.0) | 8.0 (7.0, 9.0) | 8.0 (7.0, 9.0) |
Physical activity (MET-min/week) | 1188 (720, 1980) | 1188 (726, 1980) | 1188 (666, 1980) | 1188 (780, 1980) | 1194 (726, 1980) | 1188 (714, 1980) | 1188 (732, 1980) |
Menstruation regularity (no) | 496 (16.6) | 178 (17.9) | 169 (17.0) | 149 (15.0) | 153 (15.4) | 189 (19.0) | 154 (15.5) |
Family history of HG (yes) | 813 (27.3) | 256 (25.8) | 301 (30.3) | 256 (25.8) | 264 (26.6) | 284 (28.6) | 265 (26.7) |
Current smoker | 53 (1.8) | 9 (0.9) | 21 (2.1) | 23 (2.3) | 17 (1.7) | 12 (1.2) | 24 (2.4) |
Current alcohol drinker | 107 (3.6) | 41 (4.1) | 32 (3.2) | 34 (3.4) | 28 (2.8) | 38 (3.8) | 41 (4.1) |
Nutritional supplement usage (yes) | 1788 (60.0) | 602 (60.6) | 597 (60.1) | 589 (59.3) | 603 (60.7) | 593 (59.7) | 592 (59.6) |
Total energy intake (kcal/d) | 1679 (1314, 2139) | 1566 (1262, 2013) | 1648 (1279, 2053) | 1832 (1426, 2292) | 1566 (1262, 2013) | 1648 (1279, 2053) | 1832 (1426, 2292) |
Tertile 1 | Tertile 2 | Tertile 3 | p-Trend | Per SD Increase | |
---|---|---|---|---|---|
CDAI | (−1.60, −0.13) | (−0.13, 0.17) | (0.18, 1.35) | - | - |
Case/total | 118/993 | 86/993 | 37/994 | - | - |
Model 1 | 1.00 (reference) | 0.70 (0.53, 0.94) | 0.29 (0.20, 0.42) | <0.001 | 0.64 (0.72, 0.82) |
Model 2 | 1.00 (reference.) | 0.73 (0.55, 0.99) | 0.31 (0.21, 0.47) | <0.001 | 0.75 (0.66, 0.85) |
Model 3 | 1.00 (reference.) | 0.66 (0.48, 0.90) | 0.32 (0.21, 0.47) | <0.001 | 0.74 (0.64, 0.85) |
DAPS | (−1.01, 1.21) | (1.22, 1.57) | (1.58, 3.50) | - | - |
Case/total | 112/994 | 85/993 | 44/993 | - | - |
Model 1 | 1.00 (reference.) | 0.74 (0.55, 0.99) | 0.37 (0.26, 0.52) | <0.001 | 0.53 (0.45, 0.64) |
Model 2 | 1.00 (reference.) | 0.75 (0.55, 1.00) | 0.40 (0.28, 0.57) | <0.001 | 0.55 (0.46, 0.66) |
Model 3 | 1.00 (reference.) | 0.75 (0.55, 1.02) | 0.41 (0.30, 0.60) | <0.001 | 0.56 (0.46, 0.67) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, X.; Jin, Y.; Cheng, W.; Zhang, X.; Ma, Q.; Liu, A.; Chen, S.; Fan, Y.; Zhang, S.; et al. Association of Antioxidant Diet with Risk of Hyperemesis Gravidarum Among Chinese Pregnant Women: A Population-Based Cross-Sectional Study. Nutrients 2025, 17, 598. https://doi.org/10.3390/nu17030598
Zhang L, Li X, Jin Y, Cheng W, Zhang X, Ma Q, Liu A, Chen S, Fan Y, Zhang S, et al. Association of Antioxidant Diet with Risk of Hyperemesis Gravidarum Among Chinese Pregnant Women: A Population-Based Cross-Sectional Study. Nutrients. 2025; 17(3):598. https://doi.org/10.3390/nu17030598
Chicago/Turabian StyleZhang, Lan, Xiang Li, Yuan Jin, Wenjie Cheng, Xinyu Zhang, Qian Ma, Aohua Liu, Siyang Chen, Yahui Fan, Shunming Zhang, and et al. 2025. "Association of Antioxidant Diet with Risk of Hyperemesis Gravidarum Among Chinese Pregnant Women: A Population-Based Cross-Sectional Study" Nutrients 17, no. 3: 598. https://doi.org/10.3390/nu17030598
APA StyleZhang, L., Li, X., Jin, Y., Cheng, W., Zhang, X., Ma, Q., Liu, A., Chen, S., Fan, Y., Zhang, S., Lin, J., & Ma, L. (2025). Association of Antioxidant Diet with Risk of Hyperemesis Gravidarum Among Chinese Pregnant Women: A Population-Based Cross-Sectional Study. Nutrients, 17(3), 598. https://doi.org/10.3390/nu17030598