Discovering Vitamin-D-Deficiency-Associated Factors in Korean Adults Using KNHANES Data Based on an Integrated Analysis of Machine Learning and Statistical Techniques
Highlights
- This study integrated machine learning techniques with statistical analysis to identify factors associated with vitamin D deficiency (VDD) using KNHANES IX-1 data (2022).
- The CatBoost model achieved the highest F1 score and identified 17 key VDD-associated factors from 583 variables.
- For the 17 screened factors, age- and sex-stratified statistical analyses were performed, adjusting for age, dietary intake, socioeconomic status, and lifestyle factors.
- Non-use of dietary supplements was associated with a higher risk of VDD compared to supplement use across both sexes and all age groups.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Participants
2.2. General Characteristics
2.3. Laboratory Tests and Dietary Intake Analyses
2.4. Machine Learning Analyses
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Cui, A.; Xiao, P.; Ma, Y.; Fan, Z.; Zhou, F.; Zheng, J.; Zhang, L. Prevalence, trend, and predictor analyses of vitamin D deficiency in the US population, 2001–2018. Front. Nutr. 2022, 9, 965376. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Lim, Y.-H.; Park, J.B.; Rhie, J.; Lee, S.-J. Environmental and occupation factors associated with vitamin D deficiency in Korean adults: The Korea National Health and Nutrition Examination Survey (KNHANES) 2010–2014. Int. J. Environ. Res. Public Health 2020, 17, 9166. [Google Scholar] [CrossRef]
- Zargar, A.; Ahmad, S.; Masoodi, S.; Wani, A.; Bashir, M.; Laway, B.; Shah, Z. Vitamin D status in apparently healthy adults in Kashmir Valley of Indian subcontinent. Postgrad. Med. J. 2007, 83, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Minisola, S.; Colangelo, L.; Pepe, J.; Diacinti, D.; Cipriani, C.; Rao, S.D. Osteomalacia and vitamin D status: A clinical update 2020. J. Bone Miner. Res. Plus 2021, 5, e10447. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A. Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef]
- Park, C.Y.; Shin, S.; Han, S.N. Multifaceted Roles of Vitamin D for Diabetes: From Immunomodulatory Functions to Metabolic Regulations. Nutrients 2024, 16, 3185. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Han, S.N. The role of vitamin D in adipose tissue biology: Adipocyte differentiation, energy metabolism, and inflammation. J. Lipid Atheroscler. 2021, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Martineau, A.R.; Forouhi, N.G. Vitamin D for COVID-19: A case to answer? Lancet Diabetes Endocrinol. 2020, 8, 735–736. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Park, C.Y.; Han, S.N. Nutrient modulation of viral infection-implications for COVID-19. Nutr. Res. Pract. 2021, 15, S1–S21. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- De-Regil, L.M.; Palacios, C.; Lombardo, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2016, 14, CD008873. [Google Scholar] [CrossRef]
- Liu, X.; Baylin, A.; Levy, P.D. Vitamin D deficiency and insufficiency among US adults: Prevalence, predictors and clinical implications. Br. J. Nutr. 2018, 119, 928–936. [Google Scholar] [CrossRef]
- Lee, Y.A.; Kim, H.Y.; Hong, H.; Kim, J.Y.; Kwon, H.J.; Shin, C.H.; Yang, S.W. Risk factors for low vitamin D status in Korean adolescents: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008–2009. Public Health Nutr. 2014, 17, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Kim, O.; Choi, J.-A.; Jung, H.; Kim, J.; Lee, H.; Lee, H. Vitamin D deficiency and associated factors in south Korean childbearing women: A cross-sectional study. BMC Nurs. 2021, 20, 218. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. Korea National Health & Nutrition Examination Survey IX-1. Available online: https://knhanes.kdca.go.kr/knhanes/main.do (accessed on 31 January 2025).
- Oh, K.; Kim, Y.; Kweon, S.; Kim, S.; Yun, S.; Park, S.; Lee, Y.K.; Kim, Y.; Park, O.; Jeong, E.K. Korea National Health and Nutrition Examination Survey, 20th anniversary: Accomplishments and future directions. Epidemiol. Health 2021, 43, e2021025. [Google Scholar] [CrossRef]
- Korean Food Composition Database 9.3. Rural Development Administration & National Institute of Agricultural Sciences: 2021. Available online: http://koreanfood.rda.go.kr/ (accessed on 31 January 2025).
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Hwang, J.H.; Song, M.R. The Association Between Vitamin D Deficiency and Metabolic Syndrome in Korean Adolescents. J. Pediatr. Nurs. 2018, 38, e7–e11. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, Y.H. Vitamin D Status and Related Factors among Korean Stroke Survivors: A Nationwide Population-Based Study. J. Nutr. Sci. Vitaminol. 2020, 66, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, G.W.; Park, C.Y. Older Korean men with inadequate vitamin D status have lower odds of radiologic osteoarthritis. Sci. Rep. 2022, 12, 11372. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Baek, K.H.; Song, K.H.; Il Kang, M.; Park, C.Y.; Lee, W.Y.; Oh, K.W. Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: The Fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009. J. Clin. Endocrinol. Metab. 2011, 96, 3250–3256. [Google Scholar] [CrossRef]
- Kang, J.H.; Kim, S.S.; Moon, S.S.; Kim, W.J.; Bae, M.J.; Choi, B.G.; Jeon, Y.K.; Kim, B.H.; Kim, Y.K.; Kim, I.J. Adiposity in the Relationship between Serum Vitamin D Level and Insulin Resistance in Middle-Aged and Elderly Korean Adults: The Korea National Health and Nutrition Examination Survey 2008. Endocrinol. Metab. 2013, 28, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Scragg, R.; Sowers, M.; Bell, C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care 2004, 27, 2813–2818. [Google Scholar] [CrossRef] [PubMed]
- Hadgu, A.; Yan, F.; Mayberry, R. The Association Between Vitamin D Deficiency and Diabetes in Adult African Americans and Whites: An NHANES Study. J. Racial Ethn. Health Disparities, 2024; Epub ahead of print. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, S.; Oh, C. Age-specific risk factors for the prediction of obesity using a machine learning approach. Front. Public Health 2022, 10, 998782. [Google Scholar] [CrossRef]
- Kim, J.O.R.; Jeong, Y.S.; Kim, J.H.; Lee, J.W.; Park, D.; Kim, H.S. Machine Learning-Based Cardiovascular Disease Prediction Model: A Cohort Study on the Korean National Health Insurance Service Health Screening Database. Diagnostics 2021, 11, 943. [Google Scholar] [CrossRef]
- Oh, T.; Kim, D.; Lee, S.; Won, C.; Kim, S.; Yang, J.S.; Yu, J.; Kim, B.; Lee, J. Machine learning-based diagnosis and risk factor analysis of cardiocerebrovascular disease based on KNHANES. Sci. Rep. 2022, 12, 2250. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Park, S. A Prediction Model for Osteoporosis Risk Using a Machine-Learning Approach and Its Validation in a Large Cohort. J. Korean Med. Sci. 2023, 38, e162. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Kim, J.; Kwon, O.; Oh, S.-y.; Kim, J.; Yang, Y.J. Associations between serum 25-hydroxyvitamin D and consumption frequencies of vitamin D rich foods in Korean adults and older adults. Korean J. Community Nutr. 2014, 19, 122–132. [Google Scholar] [CrossRef]
- Yoo, K.; Cho, J.; Ly, S. Vitamin D Intake and Serum 25-Hydroxyvitamin D Levels in Korean Adults: Analysis of the 2009 Korea National Health and Nutrition Examination Survey (KNHANES IV-3) Using a Newly Established Vitamin D Database. Nutrients 2016, 8, 610. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Lee, J.S.; Shim, J.S.; Yoon, M.O.; Lee, H.S. Estimated dietary vitamin D intake and major vitamin D food sources of Koreans: Based on the Korea National Health and Nutrition Examination Survey 2016–2019. Nutr. Res. Pract. 2023, 17, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; He, Q.; Li, Y. Machine learning-based prediction of vitamin D deficiency: NHANES 2001–2018. Front. Endocrinol. 2024, 15, 1327058. [Google Scholar] [CrossRef]
- Lee, E.; Jang, J.A.; Kim, J.-M. Eating habits and dietary supplement utilization according to food-related lifestyle among Korean adults: A cross-sectional study. Korean J. Community Nutr. 2024, 29, 253–264. [Google Scholar] [CrossRef]
- Park, H.A. Which Types of Dietary Supplements Are Used in Korea? Data from the 2015 Korea National Health and Nutrition Examination Survey. Korean J. Health Promot. 2018, 18, 107–112. [Google Scholar] [CrossRef]
- Jeong, H.; Cho, W.K.; Jeong, C.-E.; Lee, J.E. Assessment of excessive nutrient intake from health functional foods. In Proceedings of the Korean Nutrition Society International Conference and Annual Meeting, Seoul, Republic of Korea, 18 October 2024. [Google Scholar]
- Park, J.H.; Hong, I.Y.; Chung, J.W.; Choi, H.S. Vitamin D status in South Korean population: Seven-year trend from the KNHANES. Medicine 2018, 97, e11032. [Google Scholar] [CrossRef] [PubMed]
- Hamulka, J.; Jeruszka-Bielak, M.; Górnicka, M.; Drywień, M.E.; Zielinska-Pukos, M.A. Dietary Supplements during COVID-19 Outbreak. Results of Google Trends Analysis Supported by PLifeCOVID-19 Online Studies. Nutrients 2020, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Yang, S. Exploring the unique association between high-density lipoprotein cholesterol and vitamin D deficiency in adults aged 20–59: Findings based on the NHANES database. BMC Endocr. Disord. 2024, 24, 192. [Google Scholar] [CrossRef] [PubMed]
- Ponda, M.P.; Huang, X.; Odeh, M.A.; Breslow, J.L.; Kaufman, H.W. Vitamin D may not improve lipid levels: A serial clinical laboratory data study. Circulation 2012, 126, 270–277. [Google Scholar] [CrossRef]
- Alkhatatbeh, M.J.; Amara, N.A.; Abdul-Razzak, K.K. Association of 25-hydroxyvitamin D with HDL-cholesterol and other cardiovascular risk biomarkers in subjects with non-cardiac chest pain. Lipids Health Dis. 2019, 18, 27. [Google Scholar] [CrossRef]
- Wakayo, T.; Belachew, T.; Vatanparast, H.; Whiting, S.J. Vitamin D deficiency and its predictors in a country with thirteen months of sunshine: The case of school children in central Ethiopia. PLoS ONE 2015, 10, e0120963. [Google Scholar] [CrossRef] [PubMed]
- Griffin, T.P.; Wall, D.; Blake, L.; Griffin, D.G.; Robinson, S.; Bell, M.; Mulkerrin, E.C.; O’Shea, P.M. Higher risk of vitamin D insufficiency/deficiency for rural than urban dwellers. J. Steroid Biochem. Mol. Biol. 2020, 197, 105547. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.S.E.; Verly, E., Jr.; Marchioni, D.M.L.; Fisberg, M.; Martini, L.A. The influence of breakfast and dairy products on dietary calcium and vitamin D intake in postpubertal adolescents and young adults. J. Hum. Nutr. Diet. 2012, 25, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Fagnant, H.S.; Lutz, L.J.; Nakayama, A.T.; Gaffney-Stomberg, E.; McClung, J.P.; Karl, J.P. Breakfast skipping is associated with vitamin D deficiency among young adults entering initial military training. J. Acad. Nutr. Diet. 2022, 122, 1114–1128.e1111. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Arteaga, C.; McManus, C.; Smith, J.; Moffitt, S. Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method. Am. J. Clin. Nutr. 1983, 37, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Molnar, M.Z.; Tayek, J.A.; Ix, J.H.; Noori, N.; Benner, D.; Heymsfield, S.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine as a marker of muscle mass in chronic kidney disease: Results of a cross-sectional study and review of literature. J. Cachexia Sarcopenia Muscle 2013, 4, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Ureña-Torres, P.; Metzger, M.; Haymann, J.P.; Karras, A.; Boffa, J.-J.; Flamant, M.; Vrtovsnik, F.; Gauci, C.; Froissart, M.; Houillier, P. Association of kidney function, vitamin D deficiency, and circulating markers of mineral and bone disorders in CKD. Am. J. Kidney Dis. 2011, 58, 544–553. [Google Scholar] [CrossRef]
- de Boer, I.H.; Ioannou, G.N.; Kestenbaum, B.; Brunzell, J.D.; Weiss, N.S. 25-Hydroxyvitamin D levels and albuminuria in the Third National Health and Nutrition Examination Survey (NHANES III). Am. J. Kidney Dis. 2007, 50, 69–77. [Google Scholar] [CrossRef]
- Gupta, S.; Goyal, P.; Feinn, R.S.; Mattana, J. Role of Vitamin D and Its Analogues in Diabetic Nephropathy: A Meta-analysis. Am. J. Med. Sci. 2019, 357, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, M.; Levy, R.; Melamed, M.L. Vitamin D deficiency and kidney hyperfiltration: A mechanism of kidney injury? Ann. Transl. Med. 2019, 7, S207. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Hynson, J.E.; Hecht, T.J.; Light, R.P.; Sinha, A.D. Short-term vitamin D receptor activation increases serum creatinine due to increased production with no effect on the glomerular filtration rate. Kidney Int. 2011, 80, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Lucock, M.; Veysey, M.; Beckett, E. The Vitamin D⁻Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas. Nutrients 2018, 10, 554. [Google Scholar] [CrossRef] [PubMed]
- Eloranta, J.J.; Zaïr, Z.M.; Hiller, C.; Häusler, S.; Stieger, B.; Kullak-Ublick, G.A. Vitamin D3 and its nuclear receptor increase the expression and activity of the human proton-coupled folate transporter. Mol. Pharmacol. 2009, 76, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Visentin, M.; Diop-Bove, N.; Zhao, R.; Goldman, I.D. The intestinal absorption of folates. Annu. Rev. Physiol. 2014, 76, 251–274. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Oh, M.K.; Namgung, R.; Park, M.J. Prevalence of 25-hydroxyvitamin D deficiency in Korean adolescents: Association with age, season and parental vitamin D status. Public Health Nutr. 2014, 17, 122–130. [Google Scholar] [CrossRef]
- Yu, H.J.; Kwon, M.J.; Woo, H.Y.; Park, H. Analysis of 25-Hydroxyvitamin D Status According to Age, Gender, and Seasonal Variation. J. Clin. Lab. Anal. 2016, 30, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Won Woo, H.; Kim, J.; Shin, M.H.; Koh, I.; Youl Choi, B.; Kyung Kim, M. Independent and interactive associations of season, dietary vitamin D, and vitamin D-related genetic variants with serum 25(OH)D in Korean adults aged 40 years or older. Endocr. J. 2021, 68, 701–711. [Google Scholar] [CrossRef]
- Mason, R.S.; Rybchyn, M.S.; Abboud, M.; Brennan-Speranza, T.C.; Fraser, D.R. The Role of Skeletal Muscle in Maintaining Vitamin D Status in Winter. Curr. Dev. Nutr. 2019, 3, nzz087. [Google Scholar] [CrossRef]
- Rybchyn, M.S.; Abboud, M.; Puglisi, D.A.; Gordon-Thomson, C.; Brennan-Speranza, T.C.; Mason, R.S.; Fraser, D.R. Skeletal Muscle and the Maintenance of Vitamin D Status. Nutrients 2020, 12, 3270. [Google Scholar] [CrossRef]
Men (n = 1424) | Women (n = 1895) | |||||
---|---|---|---|---|---|---|
VD Deficient (n = 729) | VD Sufficient (n = 695) | p Value * | VD Deficient (n = 857) | VD Sufficient (n = 1038) | p Value * | |
Breakfast intake frequency, % | <0.001 | <0.001 | ||||
5–7 times/wk | 261 (33) | 393 (52) | 310 (33) | 583 (54) | ||
3–4 times/wk | 96 (14) | 78 (13) | 121 (14) | 138 (13) | ||
1–2 times/wk | 109 (16) | 75 (12) | 172 (21) | 119 (11) | ||
<1 time/wk | 263 (37) | 149 (23) | 254 (32) | 198 (21) | ||
Dietary supplement use, % | 390 (53) | 528 (78) | <0.001 | 550 (63) | 916 (89) | <0.001 |
Urban residence, % | 632 (90) | 528 (81) | <0.001 | 750 (91) | 835 (85) | 0.007 |
Blood urea nitrogen | 13.4 ± 0.1 | 14.6 ± 0.1 | <0.001 | 12.2 ± 0.1 | 13.4 ± 0.2 | <0.001 |
Waist circumference, cm | 89.1 ± 0.4 | 88.3 ± 0.4 | 0.13 | 77.8 ± 0.5 | 77.8 ± 0.4 | 0.96 |
Serum HDL cholesterol | 50.6 ± 0.5 | 52.2 ± 0.6 | 0.03 | 63.7 ± 0.7 | 65.4 ± 0.5 | 0.04 |
Urinary sodium | 115 ± 2 | 113 ± 2 | 0.45 | 104 ± 2 | 99.2 ± 1.8 | 0.06 |
Blood creatinine | 0.91 ± 0.01 | 0.93 ± 0.01 | 0.005 | 0.67 ± 0.0 | 0.07 ± 0.01 | 0.006 |
Folate intake | 314 ± 5 | 338 ± 7 | 0.006 | 264 ± 6 | 286 ± 6 | 0.005 |
Average daily sitting time, h | 14.4 ± 0.8 | 15.9 ± 1.2 | 0.07 | 14.0 ± 1.0 | 14.0 ± 0.7 | 0.33 |
Fasting plasma glucose | 102 ± 1 | 102 ± 1 | 0.74 | 95.4 ± 0.7 | 95.7 ± 0.8 | 0.76 |
SGOT | 24.4 ± 0.6 | 24.8 ± 0.6 | 0.59 | 18.8 ± 0.4 | 20.3 ± 0.3 | 0.001 |
Water intake | 1103 ± 26 | 1212 ± 26 | 0.002 | 950 ± 21 | 988 ± 19 | 0.14 |
Body weight | 76.5 ± 0.5 | 75.3 ± 0.5 | 0.09 | 60.4 ± 0.5 | 58.5 ± 0.4 | 0.002 |
Hemoglobin | 15.3 ± 0.0 | 15.2 ± 0.0 | 0.008 | 12.9 ± 0.0 | 13.1 ± 0.0 | <0.001 |
Urinary creatinine | 183 ± 4 | 160 ± 4 | <0.001 | 142 ± 3 | 114 ± 3 | <0.001 |
Red blood cell count | 5.1 ± 0.0 | 5.0 ± 0.0 | <0.001 | 4.4 ± 0.0 | 4.4 ± 0.0 | 0.07 |
Men (n = 671) | Women (n = 831) | |||||
---|---|---|---|---|---|---|
VD Deficient (n = 226) | VD Sufficient (n = 445) | p Value * | VD Deficient (n = 222) | VD Sufficient (n = 609) | p Value * | |
Breakfast intake frequency, % | 0.68 | 0.75 | ||||
5–7 times/wk | 211 (94) | 419 (93) | 197 (90) | 545 (89) | ||
3–4 times/wk | 3 (1) | 7 (3) | 7 (3) | 21 (4) | ||
1–2 times/wk | 5 (2) | 4 (1) | 6 (2) | 18 (3) | ||
<1 time/wk | 7 (3) | 15 (4) | 12 (5) | 25 (4) | ||
Dietary supplement use, % | 92 (44) | 304 (70) | <0.001 | 124 (57) | 467 (78) | <0.001 |
Urban residence, % | 176 (84) | 266 (70) | 0.01 | 153 (78) | 386 (74) | 0.35 |
Blood urea nitrogen | 16.9 ± 0.4 | 17.5 ± 0.3 | 0.15 | 16.7 ± 0.4 | 16.7 ± 0.3 | 1.00 |
Waist circumference, cm | 89.5 ± 0.6 | 88.8 ± 0.5 | 0.34 | 86.9 ± 0.8 | 84.7 ± 0.5 | 0.02 |
Serum HDL cholesterol | 50.5 ± 0.9 | 52.8 ± 0.8 | 0.052 | 57.1 ± 1.1 | 58.3 ± 0.7 | 0.35 |
Urinary sodium | 125 ± 4 | 121 ± 3 | 0.48 | 119 ± 4 | 109 ± 2 | 0.03 |
Blood creatinine | 1.01 ± 0.02 | 0.96 ± 0.01 | 0.06 | 0.74 ± 0.02 | 0.73 ± 0.01 | 0.28 |
Folate intake | 379 ± 12 | 377 ± 9 | 0.91 | 318 ± 13 | 311 ± 10 | 0.63 |
Average daily sitting time, h | 19.0 ± 1.9 | 16.2 ± 1.6 | 0.76 | 27.0 ± 3.0 | 18.8 ± 1.4 | 0.02 |
Fasting plasma glucose | 113 ± 3 | 107 ± 1 | 0.02 | 108 ± 2 | 104 ± 1 | 0.07 |
SGOT | 23.6 ± 0.8 | 24.5 ± 0.5 | 0.32 | 23.2 ± 0.5 | 24.2 ± 0.5 | 0.18 |
Water intake | 856 ± 31 | 964 ± 33 | 0.02 | 744 ± 35 | 769 ± 25 | 0.52 |
Body weight | 66.1 ± 0.7 | 66.7 ± 0.5 | 0.51 | 58.1 ± 0.8 | 56.9 ± 0.4 | 0.21 |
Hemoglobin | 14.2 ± 0.1 | 14.2 ± 0.1 | 0.88 | 12.8 ± 0.1 | 12.9 ± 0.05 | 0.29 |
Urinary creatinine | 104 ± 4 | 109 ± 3 | 0.50 | 79.7 ± 3.6 | 72.5 ± 1.9 | 0.08 |
Red blood cell count | 1.59 ± 0.03 | 4.58 ± 0.02 | 0.65 | 4.23 ± 0.03 | 4.24 ± 0.02 | 0.80 |
Continuous Variables | 19–64 Years | Model 1 * | Model 2 † | ≥65 Years | Model 1 * | Model 2 † | ||||
---|---|---|---|---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | β | p-Value | |||
Blood urea nitrogen | Men | 0.386 | <0.001 | 0.398 | <0.001 | Men | 0.297 | <0.001 | 0.313 | 0.005 |
Women | 0.105 | 0.16 | 0.121 | 0.09 | Women | 0.179 | 0.03 | 0.160 | 0.06 | |
Waist circumference | Men | −0.185 | 0.008 | −0.190 | 0.01 | Men | 0.012 | 0.92 | 0.040 | 0.72 |
Women | −0.048 | 0.56 | −0.028 | 0.75 | Women | −0.077 | 0.52 | −0.116 | 0.39 | |
Serum HDL cholesterol | Men | 0.075 | 0.001 | 0.067 | 0.003 | Men | 0.041 | 0.25 | 0.044 | 0.25 |
Women | 0.042 | 0.02 | 0.041 | 0.03 | Women | 0.071 | 0.09 | 0.052 | 0.18 | |
Urinary sodium | Men | −0.010 | 0.04 | −0.009 | 0.08 | Men | −0.016 | 0.12 | −0.016 | 0.15 |
Women | −0.017 | 0.004 | −0.015 | 0.005 | Women | −0.037 | 0.002 | −0.037 | 0.004 | |
Blood creatinine | Men | 8.16 | <0.001 | 8.16 | <0.001 | Men | −1.926 | 0.34 | −1.97 | 0.31 |
Women | 4.93 | 0.04 | 5.19 | 0.02 | Women | 1.286 | 0.65 | 1.17 | 0.68 | |
Folate intake | Men | 0.002 | 0.32 | 0.001 | 0.62 | Men | −0.001 | 0.82 | −0.001 | 0.68 |
Women | 0.001 | 0.55 | 0.002 | 0.49 | Women | −0.001 | 0.89 | −0.001 | 0.79 | |
Average daily sitting time | Men | 0.010 | 0.37 | 0.002 | 0.98 | Men | −0.016 | 0.42 | −0.065 | 0.09 |
Women | 0.015 | 0.27 | −0.061 | 0.34 | Women | −0.026 | 0.24 | −0.032 | 0.50 | |
Fasting plasma glucose | Men | −0.023 | 0.003 | −0.022 | 0.006 | Men | −0.035 | 0.006 | −0.033 | 0.009 |
Women | −0.018 | 0.20 | −0.012 | 0.39 | Women | −0.008 | 0.75 | −0.000 | 1.00 | |
SGOT | Men | 0.009 | 0.56 | −0.004 | 0.79 | Men | 0.012 | 0.83 | −0.008 | 0.89 |
Women | 0.039 | 0.14 | 0.032 | 0.18 | Women | 0.035 | 0.45 | 0.036 | 0.42 | |
Water intake | Men | 0.002 | 0.003 | 0.001 | 0.02 | Men | 0.003 | 0.006 | 0.003 | 0.02 |
Women | 0.001 | 0.02 | 0.002 | 0.02 | Women | 0.002 | 0.25 | 0.002 | 0.27 | |
Weight | Men | 0.086 | 0.06 | 0.084 | 0.08 | Men | 0.163 | 0.08 | 0.209 | 0.02 |
Women | 0.007 | 0.90 | 0.009 | 0.90 | Women | 0.047 | 0.70 | −0.064 | 0.61 | |
Hemoglobin | Men | −0.364 | 0.14 | −0.280 | 0.26 | Men | 0.152 | 0.72 | 0.055 | 0.89 |
Women | 0.778 | 0.002 | 0.791 | 0.003 | Women | 0.157 | 0.73 | 0.392 | 0.43 | |
Urinary creatinine | Men | −0.010 | 0.001 | −0.009 | 0.002 | Men | −0.009 | 0.26 | −0.007 | 0.38 |
Women | −0.014 | <0.001 | −0.014 | 0.001 | Women | −0.029 | 0.009 | −0.036 | 0.001 | |
Red blood cells | Men | −0.973 | 0.18 | −0.762 | 0.31 | Men | −0.120 | 0.92 | −0.228 | 0.84 |
Women | −0.536 | 0.54 | −0.412 | 0.65 | Women | −0.414 | 0.75 | 0.398 | 0.77 |
Categorical Variables | Sex (Age) | Model 1 * | Model 2 † | |||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |||
Breakfast intake frequency | Men (19–64) | <1 time/wk | 2.07 | 1.53, 2.79 | 1.89 | 1.38, 2.59 |
1–2 times/wk | 1.76 | 1.16, 2.66 | 1.65 | 1.09, 2.51 | ||
3–4 times/wk | 1.30 | 0.88, 1.92 | 1.25 | 0.84, 1.85 | ||
5–7 times/wk | 1 (ref) | 1 (ref) | ||||
Women (19–64) | <1 time/wk | 1.61 | 1.22, 2.11 | 1.47 | 1.11, 1.96 | |
1–2 times/wk | 2.04 | 1.42, 2.95 | 2.02 | 1.36, 2.99 | ||
3–4 times/wk | 1.27 | 0.92, 1.76 | 1.23 | 0.88, 1.72 | ||
5–7 times/wk | 1 (ref) | 1 (ref) | ||||
Men (≥65) | <1 time/wk | 0.82 | 0.30, 2.26 | 0.92 | 0.31, 2.69 | |
1–2 times/wk | 2.31 | 0.52, 10.2 | 2.19 | 0.56, 8.52 | ||
3–4 times/wk | 0.74 | 0.17, 3.25 | 0.79 | 0.17, 3.64 | ||
5–7 times/wk | 1 (ref) | 1 (ref) | ||||
Women (≥65) | <1 time/wk | 1.15 | 0.56, 2.38 | 1.09 | 0.48, 2.46 | |
1–2 times/wk | 0.73 | 0.25, 2.15 | 0.76 | 0.24, 2.37 | ||
3–4 times/wk | 0.63 | 0.21, 1.89 | 0.82 | 0.27, 2.50 | ||
5–7 times/wk | 1 (ref) | 1 (ref) | ||||
Dietary supplement use | Men (19–64) | No | 3.06 | 2.21, 4.23 | 3.13 | 2.23, 4.41 |
Yes | 1 (ref) | 1 (ref) | ||||
Women (19–64) | No | 3.90 | 2.94, 5.16 | 3.71 | 2.75, 4.99 | |
Yes | 1 (ref) | 1 (ref) | ||||
Men (≥65) | No | 2.91 | 1.91, 4.43 | 3.26 | 2.11, 5.03 | |
Yes | 1 (ref) | 1 (ref) | ||||
Women (≥65) | No | 2.77 | 1.90, 4.05 | 2.31 | 1.51, 3.54 | |
Yes | 1 (ref) | 1 (ref) | ||||
Urban residence | Men (19–64) | Urban | 1.80 | 1.11, 2.90 | 1.94 | 1.19, 3.16 |
Rural | 1 (ref) | 1 (ref) | ||||
Women (19–64) | Urban | 1.67 | 1.06, 2.62 | 2.00 | 1.26, 3.18 | |
Rural | 1 (ref) | 1 (ref) | ||||
Men (≥65) | Urban | 2.33 | 1.36, 4.02 | 2.88 | 1.67, 4.97 | |
Rural | 1 (ref) | 1 (ref) | ||||
Women (≥65) | Urban | 1.26 | 0.92, 1.74 | 1.26 | 0.86, 1.84 | |
Rural | 1 (ref) | 1 (ref) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.; Kim, S.; Jung, J.; Park, C.Y. Discovering Vitamin-D-Deficiency-Associated Factors in Korean Adults Using KNHANES Data Based on an Integrated Analysis of Machine Learning and Statistical Techniques. Nutrients 2025, 17, 618. https://doi.org/10.3390/nu17040618
Ahn H, Kim S, Jung J, Park CY. Discovering Vitamin-D-Deficiency-Associated Factors in Korean Adults Using KNHANES Data Based on an Integrated Analysis of Machine Learning and Statistical Techniques. Nutrients. 2025; 17(4):618. https://doi.org/10.3390/nu17040618
Chicago/Turabian StyleAhn, Hongryul, Seungwon Kim, Jinmyung Jung, and Chan Yoon Park. 2025. "Discovering Vitamin-D-Deficiency-Associated Factors in Korean Adults Using KNHANES Data Based on an Integrated Analysis of Machine Learning and Statistical Techniques" Nutrients 17, no. 4: 618. https://doi.org/10.3390/nu17040618
APA StyleAhn, H., Kim, S., Jung, J., & Park, C. Y. (2025). Discovering Vitamin-D-Deficiency-Associated Factors in Korean Adults Using KNHANES Data Based on an Integrated Analysis of Machine Learning and Statistical Techniques. Nutrients, 17(4), 618. https://doi.org/10.3390/nu17040618