Neurochemical Effects of Chronic Administration of Calcitriol in Rats
Abstract
:1. Introduction
2. Experimental Section
2.1. Animals and Drug Administration
2.2. VDR Protein Analysis and Serum Biochemical Assays
2.3. Neurochemistry Analysis
2.4. Real-Time PCR Analysis
Amplicon length | |||
---|---|---|---|
GAD65 (NM012563) | GCTCTACGGAGACTCTGAGAAG | CGGTTGGTCTGACAATTCCC | 318 bp |
GAD67 (NM017007) | TGTGGCGTAGCCCATGGATG | ACTGGTGTGGGTGGTGGAAG | 320 bp |
GS (NM017073) | CCACTGTCCCTGGGCTTAGTTTA | AGTGACATGCTAGTCCCACCAA | 147 bp |
TPH2 (NM173839) | GGGTTACTTTCCTCCATCGGA | AAGCAGGTTGTCTTCGGGTC | 86 bp |
MAOA (NM033653) | GTGTGGAACCCCTTGGCATA | GTCCCATTCCTGAGCGTGTC | 130 bp |
IDO (NM023973) | CCAGTCCGTGAGTTTGTCATTTT | CAGTCCCTCTGTTTTCCGTGTTT | 196 bp |
TH (NM012740) | ACCACCTGGTCACCAAGTTT | GCAATCTCTTCCGCTGTGTA | 160 bp |
COMT (NM012531) | ATCTTCACGGGGTTTCAGTG | GAGCTGCTGGGGACAGTAAG | 145 bp |
β-Actin (NM031144) | CATCCTGCGTCTGGACCTGG | TAATGTCACGCACGATTTCC | 116bp |
2.5. Statistical Analysis
3. Results
3.1. VDR Expression and Serum Levels of Calcium and Phosphorus
Groups | Body weight gain (g) | Calcium (mmol/L) | Phosphate (mmol/L) |
---|---|---|---|
Control | 162.25 ± 5.77 | 2.30 ± 0.06 | 2.59 ± 0.15 |
50 ng/kg calcitriol | 170.02 ± 6.75 | 2.38 ± 0.04 | 2.68 ± 0.11 |
100 ng/kg calcitriol | 161.25 ± 7.49 | 2.46 ± 0.05 | 2.56 ± 0.10 |
3.2. Brain Neurochemistry and Gene Expression
Hippocampus | ||||||
---|---|---|---|---|---|---|
100 ng/kg calcitriol | ||||||
GABA (µg/g) | 28.2 ± 2.4 | 31.2 ± 2.3 | 38.3 ± 3.1 * | 20.4 ± 2.8 | 35.7 ± 3.2 ** | 31.5 ± 3.7 * |
Glu (µg/g) | 90.5 ± 6.5 | 101.8 ± 5.9 | 134.5 ± 6.8 ** | 80.1 ± 3.5 | 82.9 ± 10.2 | 99.2 ± 14.3 |
Gln (µg/g) | 49.8 ± 3.6 | 56.7 ± 4.9 | 68.5 ± 4.5 * | 38.1 ± 2.3 | 41.69 ± 2.69 | 45.90 ± 4.35 |
TRY (µg/g) | 5.6 ± 1.0 | 5.5 ± 1.4 | 5.3 ± 0.6 | 5.4 ± 0.7 | 5.2 ± 0.4 | 5.3 ± 1.2 |
5-HT (ng/g) | 919.6 ± 64.6 | 838.1 ± 54.3 | 945.7 ± 30.8 | 747.2 ± 32.7 | 833.9 ± 46.3 | 762.1 ± 28.1 |
5-HIAA (ng/g) | 232.7 ± 31.6 | 624.1 ± 99.8 ** | 544.9 ± 52.7 ** | 343.1 ± 54.5 | 554.6 ± 83.6 | 573.5 ± 57.1 * |
KYN (ng/g) | 337.3 ± 24.0 | 284.5 ± 64.5 | 239.9 ± 37.1 | 394.4 ± 107.5 | 287.4 ± 82.3 | 416.0 ± 46.2 |
DA (ng/g) | 551.5 ± 104.3 | 613.4 ± 81.0 | 516.7 ± 51.9 | 335.1 ± 26.1 | 399.1 ± 60.2 | 337.8 ± 16.7 |
NE (ng/g) | 609.2 ± 65.4 | 533.5 ± 60.3 | 536.6 ± 29.2 | 546.6 ± 113.5 | 571.1 ±54.6 | 591.2 ± 64.7 |
DOPAC (ng/g) | 115.8 ± 16.6 | 149.2 ± 11.9 | 190.9 ± 20.5 * | 30.5 ± 5.1 | 66.1 ±7.9 ** | 41.7 ± 4.4 |
HVA (ng/g) | 104.9 ± 9.5 | 158.9 ± 18.9 * | 163.6 ± 11.4 * | 83.2 ± 10.1 | 127.9 ± 11.0 * | 178.1 ± 17.2 ** |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Groves, N.J.; McGrath, J.J.; Burne, T.H. Vitamin D as a neurosteroid affecting the developing and adult brain. Annu. Rev. Nutr. 2014, 34, 117–141. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Wong, K.; Cachat, J.; Elegante, M.; Gilder, T.; Mohnot, S.; Wu, N.; Minasyan, A.; Tuohimaa, P.; Kalueff, A.V. Neurosteroid vitamin d system as a nontraditional drug target in neuropsychopharmacology. Behav. Pharmacol. 2010, 21, 420–426. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, G.C.; Kimball, S.M.; Kolasinski, J.; Ramagopalan, S.V.; Ebers, G.C. Review: The role of vitamin d in nervous system health and disease. Neuropathol. Appl. Neurobiol. 2013, 39, 458–484. [Google Scholar] [CrossRef] [PubMed]
- Eyles, D.W.; Liu, P.Y.; Josh, P.; Cui, X. Intracellular distribution of the vitamin d receptor in the brain: Comparison with classic target tissues and redistribution with development. Neuroscience 2014, 268, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Patrick, R.P.; Ames, B.N. Vitamin d hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J. 2014, 28, 2398–2413. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Wu, J.N.; Cherng, T.L.; Hoffer, B.J.; Chen, H.H.; Borlongan, C.V.; Wang, Y. Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res. 2001, 904, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Cass, W.A.; Peters, L.E.; Fletcher, A.M.; Yurek, D.M. Calcitriol promotes augmented dopamine release in the lesioned striatum of 6-hydroxydopamine treated rats. Neurochem. Res. 2014, 39, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Orme, R.P.; Bhangal, M.S.; Fricker, R.A. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Groves, N.J.; Kesby, J.P.; Eyles, D.W.; McGrath, J.J.; Mackay-Sim, A.; Burne, T.H. Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behav. Brain Res. 2013, 241, 120–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, J.H.; Voogt, M.; Turner, K.M.; Eyles, D.W.; McGrath, J.J.; Burne, T.H. The impact of adult vitamin d deficiency on behaviour and brain function in male sprague-dawley rats. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Kesby, J.P.; Cui, X.; O’Loan, J.; McGrath, J.J.; Burne, T.H.; Eyles, D.W. Developmental vitamin D deficiency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology 2010, 208, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Kesby, J.P.; Cui, X.; Ko, P.; McGrath, J.J.; Burne, T.H.; Eyles, D.W. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain. Neurosci. Lett. 2009, 461, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Cass, W.A.; Peters, L.E.; Fletcher, A.M.; Yurek, D.M. Evoked dopamine overflow is augmented in the striatum of calcitriol treated rats. Neurochem. Int. 2012, 60, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Tenenhouse, A.; Warner, M.; Commissiong, J.W. Neurotransmitters in the cns of the vitamin D deficient, hypocalcemic rat. Neurochem. Int. 1991, 18, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A. Impact of vitamin D3 on cardiovascular responses to glucocorticoid excess. J. Physiol. Biochem. 2013, 69, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Xue, Y.; Li, H.D.; Liu, Y.P.; Cai, H.L.; Tang, M.M.; Zhang, L.H. Dysregulation of vitamin D metabolism in the brain and myocardium of rats following prolonged exposure to dexamethasone. Psychopharmacology 2014, 231, 3445–3451. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.L.; Zhu, R.H.; Li, H.D. Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal. Biochem. 2010, 396, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Zella, L.A.; Meyer, M.B.; Nerenz, R.D.; Lee, S.M.; Martowicz, M.L.; Pike, J.W. Multifunctional enhancers regulate mouse and human vitamin d receptor gene transcription. Mol. Endocrinol 2010, 24, 128–147. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zemel, M.B. 1α,25-dihydroxyvitamin d and corticosteroid regulate adipocyte nuclear vitamin D receptor. Int. J. Obes. 2008, 32, 1305–1311. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, W.Y.; Li, H.D.; Cai, H.L.; Liu, Y.P.; Chen, L.Y. Stress and vitamin D: Altered vitamin D metabolism in both the hippocampus and myocardium of chronic unpredictable mild stress exposed rats. Psychoneuroendocrinology 2013, 38, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Groves, N.J.; Burne, T.H.; Eyles, D.W.; McGrath, J.J. Low vitamin D concentration exacerbates adult brain dysfunction. Am. J. Clin. Nutr. 2013, 97, 907–908. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Zhang, W.Y.; Li, H.D.; Cai, H.L.; Xue, Y. Repeated haloperidol administration has no effect on vitamin D signaling but increase retinoid X receptors and Nur77 expression in rat prefrontal cortex. Cell. Mol. Neurobiol. 2013, 33, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Kesby, J.P.; Eyles, D.W.; Burne, T.H.; McGrath, J.J. The effects of vitamin D on brain development and adult brain function. Mol. Cell. Endocrinol. 2011, 347, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Cass, W.A.; Smith, M.P.; Peters, L.E. Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine. Ann. N. Y. Acad. Sci. 2006, 1074, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sheng, H.; Xu, Y.; Liu, Y.; Lu, J.; Ni, X. Swimming exercise ameliorates depression-like behavior in chronically stressed rats: Relevant to proinflammatory cytokines and IDO activation. Behav. Brain Res. 2013, 242, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Fernandes de Abreu, D.A.; Eyles, D.; Feron, F. Vitamin D, a neuro-immunomodulator: Implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 2009, 34, S265–277. [Google Scholar]
- Wrzosek, M.; Lukaszkiewicz, J.; Jakubczyk, A.; Matsumoto, H.; Piatkiewicz, P.; Radziwon-Zaleska, M.; Wojnar, M.; Nowicka, G. Vitamin D and the central nervous system. Pharmacol. Rep. 2013, 65, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Leke, R.; Silveira, T.R.; Escobar, T.D.; Schousboe, A. Expression of glutamate decarboxylase (GAD) mrna in the brain of bile duct ligated rats serving as a model of hepatic encephalopathy. Neurochem. Res. 2014, 39, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Pehrson, A.L.; Bondi, C.O.; Totah, N.K.; Moghaddam, B. The influence of NMDA and GABA(A) receptors and glutamic acid decarboxylase (GAD) activity on attention. Psychopharmacology 2013, 225, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.F.; Klomp, A.; Wu, J.L.; Swaab, D.F.; Bao, A.M. Reduced GAD(65/67) immunoreactivity in the hypothalamic paraventricular nucleus in depression: A postmortem study. J. Affect. Disord. 2013, 149, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.B.; Nilsen, L.H.; Eyjolfsson, E.M.; Vestergaard, H.T.; Hansen, S.L.; Schousboe, A.; Sonnewald, U.; Waagepetersen, H.S. GAD65 is essential for synthesis of gaba destined for tonic inhibition regulating epileptiform activity. J. Neurochem. 2010, 115, 1398–1408. [Google Scholar] [CrossRef] [PubMed]
- Kesby, J.P.; O’Loan, J.C.; Alexander, S.; Deng, C.; Huang, X.F.; McGrath, J.J.; Eyles, D.W.; Burne, T.H. Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring. Psychopharmacology 2012, 220, 455–463. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Zhang, L.-H.; Cai, H.-L.; Li, H.-D.; Liu, Y.-P.; Tang, M.-M.; Dang, R.-L.; Zhu, W.-Y.; Xue, Y.; He, X. Neurochemical Effects of Chronic Administration of Calcitriol in Rats. Nutrients 2014, 6, 6048-6059. https://doi.org/10.3390/nu6126048
Jiang P, Zhang L-H, Cai H-L, Li H-D, Liu Y-P, Tang M-M, Dang R-L, Zhu W-Y, Xue Y, He X. Neurochemical Effects of Chronic Administration of Calcitriol in Rats. Nutrients. 2014; 6(12):6048-6059. https://doi.org/10.3390/nu6126048
Chicago/Turabian StyleJiang, Pei, Li-Hong Zhang, Hua-Lin Cai, Huan-De Li, Yi-Ping Liu, Mi-Mi Tang, Rui-Li Dang, Wen-Ye Zhu, Ying Xue, and Xin He. 2014. "Neurochemical Effects of Chronic Administration of Calcitriol in Rats" Nutrients 6, no. 12: 6048-6059. https://doi.org/10.3390/nu6126048