Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional Gas Sensing Nanomaterials: A Panoramic View. Appl. Phys. Rev. 2020, 7, 021301. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Ranjan, R.; Ranjan, S.; Singh, A.; Garg, A.; Gupta, R.K. Effect of NIO Precursor Solution Ageing on the per-Ovskite Film Formation and Their Integration as Hole Transport Material for Perovskite Solar Cells. J. Nanosci. Nanotechnol. 2020, 20, 3710–3717. [Google Scholar] [CrossRef] [PubMed]
- Saki, Z.; Sveinbjörnsson, K.; Boschloo, G.; Taghavinia, N. The Effect of Lithium Doping in Solution-Processed Nickel Oxide Films for Perovskite Solar Cells. ChemPhysChem 2019, 20, 3322–3327. [Google Scholar] [CrossRef]
- Sato, H.; Minami, T.; Takata, S.; Yamada, T. Transparent Conducting P-Type NiO Thin Films Prepared by Magnetron Sputtering. Thin Solid Films 1993, 236, 27–31. [Google Scholar] [CrossRef]
- Nishiyama, H.; Saito, N.; Chou, H.; Sato, K.; Inoue, Y. Effects of Surface Acoustic Waves on Adsorptive Properties of ZnO and NiO Thin Films Deposited on Ferroelectric Substrates. Surf. Sci. 1999, 433, 525–528. [Google Scholar] [CrossRef]
- Amirzhanova, A.; Karakaya, I.; Uzundal, C.B.; Karaoğlu, G.; Karadas, F.; Ulgut, B.; Dag, Ö. Synthesis and Water Oxidation Electrocatalytic and Electrochromic Behaviours of Mesoporous Nickel Oxide Thin Film Electrodes. J. Mater. Chem. A 2019, 7, 22012–22020. [Google Scholar] [CrossRef] [Green Version]
- Atak, G.; Coşkun, Ö.D. Effects of Anodic Layer Thickness on Overall Performance of All-Solid-State Electrochromic Device. Solid State Ionics 2019, 341, 115045. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, L.; Chang, T.; Bell, J.; Huang, A.; Jin, P.; Bao, S. High Performance All-Solid-State Electrochromic Device Based on LixNiOy Layer with Gradient LI Distribution. Electrochim. Acta 2019, 317, 10–16. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromic Devices. J. Eur. Ceram. Soc. 2005, 25, 2907–2912. [Google Scholar] [CrossRef]
- Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Danine, A.; Manceriu, L.M.; Faure, C.; Labrugère, C.; Penin, N.; Delattre, A.; Eymin-Petot-Tourtollet, G.; Rougier, A. Toward Simplified Electrochromic Devices Using Silver as Counter Electrode Material. ACS Appl. Mater. Interfaces 2019, 11, 34030–34038. [Google Scholar] [CrossRef]
- Oukassi, S.; Giroud-Garampon, C.; Dubarry, C.; Ducros, C.; Salot, R. All Inorganic Thin Film Electrochromic Device Using LiPON as the Ion Conductor. Sol. Energy Mater. Sol. Cells 2016, 145, 2–7. [Google Scholar] [CrossRef]
- Cai, G.; Darmawan, P.; Cui, M.; Chen, J.; Wang, X.; Eh, A.L.-S.; Magdassi, S.; Lee, P.S. Inkjet-Printed All Solid-State Electrochromic Devices Based on NiO/WO3 Nanoparticle Complementary Electrodes. Nanoscale 2016, 8, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, V.; Haritha, L.; Anis, M.; Shkir, M.; Yahia, I.; Singh, A.; AlFaify, S. Structural, Morphological, Optical and Third Order Nonlinear Optical Response of Spin-Coated NiO Thin Films: An Effect of N Doping. Solid State Sci. 2018, 86, 98–106. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, Q.; Zhang, Q.; Lu, B.; Zhai, J.; Diao, X. Fast-Switching Quasi-Solid State Electrochromic Full Device Based on Mesoporous WO3 and NiO Thin Films. Sol. Energy Mater. Sol. Cells 2019, 200, 110017. [Google Scholar] [CrossRef]
- Huang, Q.; Dong, G.; Xiao, Y.; Diao, X. Electrochemical Studies of Silicon Nitride Electron Blocking Layer for All-Solid-State Inorganic Electrochromic Device. Electrochim. Acta 2017, 252, 331–337. [Google Scholar] [CrossRef]
- Huang, Q.J.; Zhang, Q.Q.; Xiao, Y.; He, Y.C.; Diao, X.G. Improved Electrochromic Performance of NiO-Based Thin Films by Lithium and Tantalum Co-doping. J. Alloy. Compd. 2018, 747, 416–422. [Google Scholar] [CrossRef]
- Choi, D.S.; Han, S.H.; Kim, H.; Kang, S.H.; Kim, Y.; Yang, C.M.; Kim, T.Y.; Yoon, D.H.; Yang, W.S. Flexible Electro-Chromic Films Based on Cvd-Graphene Electrodes. Nanotechnology 2014, 25, 7. [Google Scholar]
- Jaing, C.C.; Tang, C.J.; Chan, C.C.; Lee, K.H.; Kuo, C.C.; Chen, H.C.; Lee, C.C. Optical Constants of Electrochromic Films and Contrast Ratio of Reflective Electrochromic Devices. Appl. Opt. 2014, 53, A154–A158. [Google Scholar] [CrossRef]
- Azevedo, C.F.; Balboni, R.D.; Cholant, C.M.; Moura, E.; Lemos, R.M.; Pawlicka, A.; Gündel, A.; Flores, W.H.; Pereira, M.; Avellaneda, C.O. New Thin Films of NiO Doped with V2O5 for Electrochromic Applications. J. Phys. Chem. Solids 2017, 110, 30–35. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, K.; Zhang, X.; Yuan, W.; Shi, M.; Ning, H.; Tao, R.; Liu, X.; Yao, R.; Peng, J. Effects of Annealing Temperature on Optical Band Gap of Sol-gel Tungsten Trioxide Films. Micromachines 2018, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Korošec, R.C.; Bukovec, P. The Role of Thermal Analysis in Optimization of the Electrochromic Effect of Nickel Oxide Thin Films, Prepared by the Sol–Gel Method: Part II. Thermochim. Acta 2004, 410, 65–71. [Google Scholar] [CrossRef]
- Patra, A.; Auddy, K.; Ganguli, D.; Livage, J.; Biswas, P.K. Sol–Gel Electrochromic WO3 Coatings on Glass. Mater. Lett. 2004, 58, 1059–1063. [Google Scholar] [CrossRef]
- Ren, Y.; Chim, W.K.; Guo, L.; Tanoto, H.; Pan, J.; Chiam, S.Y. The Coloration and Degradation Mechanisms of Electrochromic Nickel Oxide. Sol. Energy Mater. Sol. Cells 2013, 116, 83–88. [Google Scholar] [CrossRef]
- Noh, S.; Lee, E.; Seo, J.; Mehregany, M. Electrical Properties of Nickel Oxide Thin Films for Flow Sensor Application. Sens. Actuators A Phys. 2006, 125, 363–366. [Google Scholar] [CrossRef]
- Atak, G.; Coşkun, Ö.D. Annealing Effects of NiO Thin Films for All-Solid-State Electrochromic Devices. Solid State Ionics 2017, 305, 43–51. [Google Scholar] [CrossRef]
- Chem, A. Joint Committee on Powder Diffraction Standards. Anal. Chem. 1973, 45, 944A. [Google Scholar]
- Zou, Y.; Zhang, Y.; Lou, D.; Wang, H.; Gu, L.; Dong, Y.; Dou, K.; Song, X.; Zeng, H. Structural and Optical Properties of WO3 Films Deposited by Pulsed Laser Deposition. J. Alloy. Compd. 2014, 583, 465–470. [Google Scholar] [CrossRef]
- Carpenter, M.K.; Conell, R.S.; Corrigan, D.A. The Electrochromic Properties of Hydrous Nickel Oxide. Sol. Energy Mater. 1987, 16, 333–346. [Google Scholar] [CrossRef]
- Dalavi, D.S.; Devan, R.S.; Patil, R.S.; Ma, Y.-R.; Patil, P.S. Electrochromic Performance of Sol–Gel Deposited NiO thin Film. Mater. Lett. 2013, 90, 60–63. [Google Scholar] [CrossRef]
- Agrawal, A.; Habibi, H.R.; Agrawal, R.K.; Cronin, J.P.; Roberts, D.M.; Caron-Popowich, R.; Lampert, C.M. Effect of Deposition Pressure on the Microstructure and Electrochromic Properties of Electron-Beam-Evaporated Nickel Oxide Films. Thin Solid Film. 1992, 221, 239–253. [Google Scholar] [CrossRef]
- Yoshimura, K.; Miki, T.; Tanemura, S. Nickel Oxide Electrochromic Thin Films Prepared by Reactive DC Magnetron Sputtering. Jpn. J. Appl. Phys. 1995, 34, 2440–2446. [Google Scholar] [CrossRef]
- Granqvist, C. Window Coatings for the Future. Thin Solid Film. 1990, 193, 730–741. [Google Scholar] [CrossRef]
Annealing Temperature (°C) | (111) (nm) | (200) (nm) | (220) (nm) |
---|---|---|---|
300 | 0.4170 | 0.4166 | 0.4178 |
400 | 0.4164 | 0.4168 | 0.4171 |
500 | 0.4162 | 0.4167 | 0.4169 |
Annealing Temperature (°C) | D (111) (nm) | D (200) (nm) | D (220) (nm) |
---|---|---|---|
300 | 5.40 | 6.30 | 7.72 |
400 | 10.12 | 11.34 | 13.01 |
500 | 13.11 | 16.21 | 14.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Qiu, T.; Tang, B.; Zhang, G.; Yao, R.; Xu, W.; Chen, J.; Fu, X.; Ning, H.; Peng, J. Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism. Micromachines 2021, 12, 80. https://doi.org/10.3390/mi12010080
Shi M, Qiu T, Tang B, Zhang G, Yao R, Xu W, Chen J, Fu X, Ning H, Peng J. Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism. Micromachines. 2021; 12(1):80. https://doi.org/10.3390/mi12010080
Chicago/Turabian StyleShi, Muyang, Tian Qiu, Biao Tang, Guanguang Zhang, Rihui Yao, Wei Xu, Junlong Chen, Xiao Fu, Honglong Ning, and Junbiao Peng. 2021. "Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism" Micromachines 12, no. 1: 80. https://doi.org/10.3390/mi12010080