Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications
Conflicts of Interest
References
- Kuchta, D.; Gryglewski, D.; Wojtasiak, W. A GaN HEMT Amplifier Design for Phased Array Radars and 5G New Radios. Micromachines 2020, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- Min-Lee, P.; Kim, S.; Hong, S.; Kim, D. Compact 20-W GaN Internally Matched Power Amplifier for 2.5 GHz to 6 GHz Jammer Systems. Micromachines 2020, 11, 375. [Google Scholar]
- Lin, Y.C.; Chen, S.H.; Lee, P.H.; Lai, K.H.; Huang, T.J.; Chang, Y.E.; Hsu, H. Gallium Nitride (GaN) High-Electron-Mobility Transistors with Thick Copper Metallization Featuring a Power Density of 8.2 W/mm for Ka-Band Applications. Micromachines 2020, 11, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Tang, S.; Jiang, H. Investigation of Recessed Gate AlGaN/GaN MIS-HEMTs with Double AlGaN Barrier Designs toward an Enhancement-Mode Characteristic. Micromachines 2020, 11, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Gu, Z. Design and Implementation of a GaN-Based Three-Phase Active Power Filter. Micromachines 2020, 11, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajalli, A.; Borga, M.; Meneghini, M.; de Santi, C.; Benazzi, D.; Besendörfer, S.; Püsche, R.; Derluyn, J.; Degroote, S.; Germain, M.; et al. Vertical Leakage in GaN-on-Si Stacks Investigated by a Buffer Decomposition Experiment. Micromachines 2020, 11, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Huang, H.; Sun, N.; Tao, P.; Zhao, C.; Liang, Y.C. A Novel GaN Metal-Insulator-Semiconductor High Electron Mobility Transistor Featuring Vertical Gate Structure. Micromachines 2019, 10, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.; Wang, Y.; Wu, X.; Su, F. Simulation Study of 4H-SiC Trench Insulated Gate Bipolar Transistor with Low Turn-Off Loss. Micromachines 2019, 10, 815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Yamamoto, Y.; Nagao, S.; Wakasugi, N.; Chen, C.; Suganuma, K. Measurement of Heat Dissipation and Thermal-Stability of Power Modules on DBC Substrates with Various Ceramics by SiC Micro-Heater Chip System and Ag Sinter Joining. Micromachines 2019, 10, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keum, D.; Kim, H. Proton Irradiation Effects on the Time-Dependent Dielectric Breakdown Characteristics of Normally-Off AlGaN/GaN Gate-Recessed Metal-Insulator-Semiconductor Heterostructure Field Effect Transistors. Micromachines 2019, 10, 723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abid, I.; Kabouche, R.; Bougerol, C.; Pernot, J.; Masante, C.; Comyn, R.; Cordier, Y.; Medjdoub, F. High Lateral Breakdown Voltage in Thin Channel AlGaN/GaN High Electron Mobility Transistors on AlN/Sapphire Templates. Micromachines 2019, 10, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandupatla, A.; Arulkumaran, S.; Ing, N.G.; Nitta, S.; Kennedy, J.; Amano, H. Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors. Micromachines 2020, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kwon, S.; Choi, H.; Im, K.; Lee, H.; Oh, S.; Kim, K. Self-Aligned Hierarchical ZnO Nanorod/NiO Nanosheet Arrays for High Photon Extraction Efficiency of GaN-Based Photonic Emitter. Micromachines 2020, 11, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Xie, H.; Dong, C. Electrical Performance and Bias-Stress Stability of Amorphous InGaZnO Thin-Film Transistors with Buried-Channel Layers. Micromachines 2019, 10, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, G.; Guo, K.; Guo, D.; Shi, M.; Ning, H.; Qiu, T.; Chen, J.; Fu, X.; Yao, R.; et al. Effect of the Ammonium Tungsten Precursor Solution with the Modification of Glycerol on Wide Band Gap WO3 Thin Film and Its Electrochromic Properties. Micromachines 2020, 11, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Guo, D.; Xiao, P.; Chen, J.; Ning, H.; Wang, Y.; Zhang, X.; Fu, X.; Yao, R.; Peng, J. Silver Nanorings Fabricated by Glycerol-Based Cosolvent Polyol Method. Micromachines 2020, 11, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, L.; Ao, J.; Hao, Y. Physical-Based Simulation of the GaN-Based Grooved-Anode Planar Gunn Diode. Micromachines 2020, 11, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Xie, W.; Deng, Z.; Liao, M. Improving Output Power of InGaN Laser Diode Using Asymmetric In0.15Ga0.85N/In0.02Ga0.98N Multiple Quantum Wells. Micromachines 2019, 10, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Z.; Li, J.; Liao, M.; Xie, W.; Luo, S. InGaN/GaN Distributed Feedback Laser Diodes with Surface Gratings and Sidewall Gratings. Micromachines 2019, 10, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; Li, J.; Li, M. Improved Output Power of GaN-based VCSEL with Band-Engineered Electron Blocking Layer. Micromachines 2019, 10, 694. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medjdoub, F. Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications. Micromachines 2021, 12, 83. https://doi.org/10.3390/mi12010083
Medjdoub F. Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications. Micromachines. 2021; 12(1):83. https://doi.org/10.3390/mi12010083
Chicago/Turabian StyleMedjdoub, Farid. 2021. "Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications" Micromachines 12, no. 1: 83. https://doi.org/10.3390/mi12010083