Sidewall Slope Control of InP Via Holes for 3D Integration
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. InP via Holes with Steep Sidewall Slopes of 80 to 90 Degrees
3.2. InP via Holes with Gradual Sidewall Slopes of 36 to 69 Degrees
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mei, X.; Yoshida, W.; Lange, M.; Lee, J.; Zhou, J.; Liu, P.; Leong, K.; Zamora, A.; Padilla, J.; Sarkozy, S.; et al. First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process. IEEE Electron. Device Lett. 2015, 36, 327–329. [Google Scholar] [CrossRef]
- Urteaga, M.; Griffith, J.; Young, J.; Pierson, R.; Rowell, P.; Seo, M.; Rodwell, M.J.W. A 130 nm InP HBT Integrated Circuit Technology for THz Electronics. In Proceedings of the IEEE IEDM, San Francisco, CA, USA, 3–7 December 2016; pp. 711–714. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Yang, K. A 1.52 THz RTD Triple-Push Oscillator with a μW-level Output Power. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 336–340. [Google Scholar] [CrossRef]
- Kraemer, T.; Ostermay, I.; Jensen, T.; Johansen, T.K.; Schmueckle, F.-J.; Thies, A.; Krozer, V.; Heinrich, W.; Krueger, O.; Traenkle, G.; et al. InP-DHBT-on-BiCMOS Technology With f T / f max of 400/350 GHz for Heterogeneous Integrated Millimeter-Wave Sources. IEEE Trans. Electron. Devices 2013, 60, 2209–2216. [Google Scholar] [CrossRef]
- Urteaga, M.; Carter, A.; Griffith, Z.; Pierson, R.; Bergman, J.; Arias, A.; Rowell, P.; Hacker, J.; Brar, B.; Rodwell, M.J.W. THz Bandwidth InP HBT Technologies and Heterogeneous Integration with Si CMOS. In Proceedings of the 2016 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), New Brunswick, NJ, USA, 25–27 September 2016; pp. 35–41. [Google Scholar] [CrossRef]
- Carter, A.; Urteaga, M. 3D Integration Unites InP, GaN and Silicon CMOS. Compd. Semicond. 2018, 24, 50–53. Available online: https://compoundsemiconductor.net/article/104207/3D_Integration_Unites_InP_GaN_And_Silicon_CMOS (accessed on 9 November 2020).
- Wheeler, H.A. Formulas for the Skin Effect. Proc. IRE 1942, 30, 412–414. [Google Scholar] [CrossRef]
- Tsutsumi, T.; Hamada, H.; Sano, K.; Ida, M.; Matsuzaki, H. Feasibility Study of Wafer-Level Backside Process for InP-Based ICs. IEEE Trans. Electron. Devices 2019, 66, 3771–3776. [Google Scholar] [CrossRef]
- Karabacaka, T.; Lu, T.-M. Enhanced step coverage by oblique angle physical vapor deposition. J. Appl. Phys. 2005, 97, 124504. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Kohmoto, S.; Ozaki, M.; Hamao, N.; Sugimoto, Y.; Sugimoto, M.; Asakawa, K. Smooth and vertical InP reactive ion beam etching with Cl2 ECR plasma. Jpn. J. Appl. Phys. 1992, 31, L655–L657. [Google Scholar] [CrossRef]
- Ko, K.K.; Pang, S.W. High Aspect Ratio Deep Via Holes in InP Etched Using CI2/Ar Plasma. J. Electrochem. Soc. 1995, 142, 3945–3949. [Google Scholar] [CrossRef]
- Deng, L.; Goodyear, A.L.; Dineen, M. ICP etching of InP and related materials using photoresist as mask. Proc. SPIE 2004, 5280, 838–843. [Google Scholar] [CrossRef]
- Docter, B.; Geluk, E.J.; Karouta, F.; Smit, M.K. Deep etching of DBR gratings in InP using Cl2 based ICP processes. In Proceedings Symposium IEEE/LEOS Benelux Chapter; Eindhoven University of Technology: Eindhoven, The Netherlands, 2006; pp. 97–100. [Google Scholar]
- Bae, J.W.; Jeong, C.H.; Lim, J.T.; Lee, H.C.; Yeom, G.Y. Anisotropic Etching of InP and InGaAs by Using an Inductively Coupled Plasma in Cl2/N2 and Cl2/Ar Mixtures at Low Bias Power. J. Korean Phys. Soc. 2007, 50, 1130–1135. [Google Scholar] [CrossRef]
- Bouchoule, S.; Azouigui, S.; Guilet, S.; Patriarche, G.; Largeau, L.; Martinez, A.; Gratiet, L.L.; Lemaitre, A.; Lelarge, F. Anisotropic and Smooth Inductively Coupled Plasma Etching of III-V Laser Waveguides Using HBr- O2 Chemistry. J. Electrochem. Soc. 2008, 155, H778–H785. [Google Scholar] [CrossRef]
- Lim, E.L.; Teng, J.H.; Chong, L.F.; Sutanto, N.; Chua, S.J.; Yeoh, S. Inductively Coupled Plasma Etching of InP with HBr∕O2 Chemistry. J. Electrochem. Soc. 2008, 155, D47–D51. [Google Scholar] [CrossRef]
- Lee, J.W.; Hong, J.; Pearton, S.J. Etching of InP at ≥ 1 μm/min in Cl2/Ar plasma chemistries. Appl. Phys. Lett. 1996, 68, 847–849. [Google Scholar] [CrossRef]
Process Flow /Measurement | Description | Process Split #1 | Process Split #2 | Process Split #3 | Process Split #4 | Process Split #5 |
---|---|---|---|---|---|---|
Process flow for patterned SiO2 layer | SiO2 deposition | 300 °C in PECVD (UNAXIS SLR-730) | ||||
Prebake | 120 °C, 10 min. | |||||
HMDS | 3000 RPM for 30 s | |||||
Photoresist (PR) | 3000 RPM for 30 s with i-1549 PR | |||||
Soft bake | 90 °C, 90 s | |||||
Exposure | 90 mJ | |||||
Develop | 50 s in MIF 300 | |||||
Hard bake | 120 °C, 5 min. | 120 °C, 15 min. | 120 °C, 15 min. | 150 °C, 15 min. | 150 °C, 30 min. | |
PR Descum | O2 of 2500 sccm, pressure of 1 Torr, time of 20 s and room temp. in ICP PR Asher (DAS-2000, PSK, Hwaseong, Korea) | |||||
Wet-etching | 2.5 min. in DHF 1 | 2.5 min. in DHF 1 | 23 min. in BOE 2 | 2.5 min. in DHF 1 | 2.5 min. in DHF 1 | |
PR removal | Acetone—Isopropyl alcohol—DI | |||||
Measurement of patterned SiO2 layer | Average thickness (μm) | - | 1.02 | 1.03 | 1.02 | 1.02 |
Thickness deviation (%) | - | ±2.6 | ±2.7 | ±2.7 | ±2.6 | |
Average sidewall slope (°) | - | 2.55 | 44.25 | 2 | 2 | |
Sidewall slope deviation (%) | - | ±5.9 | ±2.8 | ±5 | ±5 | |
Problem | PR adhesion | - | - | - | - |
Type of Process | InP via Holes with Steep Sidewall Slopes | InP via Holes with Gradual Sidewall Slopes | |||
---|---|---|---|---|---|
Average θ2 1 (°) | 80–90 | 69 | 59 | 50 | 36 |
WFOOT 2 (μm) | 11.5 | 36 | 39.2 | 62.4 | 101.3 |
RFOOT 3 (μm/μm) | - | 3.1 | 3.4 | 5.4 | 8.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Roh, K.; Lim, S.-K.; Kim, Y. Sidewall Slope Control of InP Via Holes for 3D Integration. Micromachines 2021, 12, 89. https://doi.org/10.3390/mi12010089
Lee J, Roh K, Lim S-K, Kim Y. Sidewall Slope Control of InP Via Holes for 3D Integration. Micromachines. 2021; 12(1):89. https://doi.org/10.3390/mi12010089
Chicago/Turabian StyleLee, Jongwon, Kilsun Roh, Sung-Kyu Lim, and Youngsu Kim. 2021. "Sidewall Slope Control of InP Via Holes for 3D Integration" Micromachines 12, no. 1: 89. https://doi.org/10.3390/mi12010089