Fabrication and Investigation of Graphite-Flake-Composite-Based Non-Invasive Flex Multi-Functional Force, Acceleration, and Thermal Sensor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, T.; Ji, S.; Jin, W.; Yang, Q.; Luo, Q.; Ren, T.L. Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors 2023, 23, 2991. [Google Scholar] [CrossRef] [PubMed]
- Karimov, K.S.; Saleem, M.; Iqbal, Y.; Fatima, N.; Gohar, R. Phase, microstructural analysis, and humidity-sensing properties of orange dye and cuprous-oxide composite. Appl. Phys. A 2017, 123, 740. [Google Scholar] [CrossRef]
- Rizal, M.; Ghani, J.A. Design and construction of a strain gauge-based dynamometer for a 3-axis cutting force measurement in turning process. J. Mech. Eng. Sci. 2018, 12, 4072–4087. [Google Scholar] [CrossRef]
- Nasir, N.N.; Singh, S.; Abdullah, S.; Haris, S.M. Accelerating the fatigue analysis based on strain signal using Hilbert–Huang transform. Int. J. Struct. Integr. 2019, 10, 118–132. [Google Scholar] [CrossRef]
- Azzuhri, S.R.; Azizul, Z.; Z’aba, M.; Zakaria, R.; Salim, M.; Razak, M.; Amiri, I. Investigation of U-shaped microfiber temperature sensor using a combination of thermal expansion of a metal and reflectivity of a silver coated mirror. Optik 2020, 205, 164256. [Google Scholar] [CrossRef]
- Kolka, M.A.; Levine, L.; Stephenson, L.A. Use of an ingestible telemetry sensor to measure core temperature under chemical protective clothing. J. Therm. Biol. 1997, 22, 343–349. [Google Scholar] [CrossRef]
- Mazgaoker, S.; Ketko, I.; Yanovich, R.; Heled, Y.; Epstein, Y. Measuring core body temperature with a non-invasive sensor. J. Therm. Biol. 2017, 66, 17–20. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Suryadevara, N.K.; Nag, A. Wearable sensors for healthcare: Fabrication to application. Sensors 2022, 22, 5137. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, J.; Gao, F. Influence of flexible spherical joints parameters on accuracy of the six-axis force/torque sensor with three-three orthogonal parallel mechanism. Mech. Mach. Theory 2020, 145, 103697. [Google Scholar] [CrossRef]
- Yan, Z.F.; He, B.; Lin, Q. Force sensing with an optomechanical system at room temperature. Phys. Rev. A 2023, 107, 013529. [Google Scholar] [CrossRef]
- Lu, Y.; Yue, Y.; Ding, Q.; Mei, C.; Xu, X.; Jiang, S.; He, S.; Wu, Q.; Xiao, H.; Han, J. Environment-tolerant ionic hydrogel–elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical–thermal multimode sensor. InfoMat 2023, 5, e12409. [Google Scholar] [CrossRef]
- Ren, T.-L.; Tian, H.; Xie, D.; Yang, Y. Flexible graphite-on-paper piezoresistive sensors. Sensors 2012, 12, 6685–6694. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-H.; Song, P.; Li, X.; Ru, C.; Ferrari, G.; Balasubramanian, P.; Amabili, M.; Sun, Y.; Liu, X. A paper-based piezoelectric accelerometer. Micromachines 2018, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, J.G.; Robertsson, A.; Ortega, J.G.; Johansson, R. (Eds.) Sensor fusion of force and acceleration for robot force control. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat No 04CH37566), Sendai, Japan, 28 September–2 October 2004; IEEE: Piscataway, NJ, USA, 2004. [Google Scholar]
- Agha, M.; Augustine, B.; Lovich, J.E.; Delaney, D.; Sinervo, B.; Murphy, M.O.; Ennen, J.R.; Briggs, J.R.; Cooper, R.; Price, S.J. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii). J. Therm. Biol. 2015, 49, 119–126. [Google Scholar] [CrossRef]
- Liu, X.; O’Brien, M.; Mwangi, M.; Li, X.; Whitesides, G. (Eds.) Graphene based piezoresistive MEMS force sensors. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Zhao, H.; Feng, H. A novel angular acceleration sensor based on the electromagnetic induction principle and investigation of its calibration tests. Sensors 2013, 13, 10370–10385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, J.I. Silicon Accelerometer. U.S. Patent 4,553,436, 19 November 1985. [Google Scholar]
- Chang, D.Y.; Lin, C.H.; Wu, X.Y.; Yang, C.C.; Chou, S.C. Cutting force, vibration, and temperature in drilling on a thermoplastic material of PEEK. J. Thermoplast. Compos. Mater. 2023, 36, 1088–1112. [Google Scholar] [CrossRef]
- Yin, P.; Li, R.; Yin, C.; Xu, X.; Bian, X.; Xie, H.; Duan, C.K.; Huang, P.; He, J.H.; Du, J. Experiments with levitated force sensor challenge theories of dark energy. Nat. Phys. 2022, 18, 1181–1185. [Google Scholar] [CrossRef]
- Ahmad, Z.; Karimov, K.S.; Fatima, N.; Touati, F. Flexible organic photo-thermogalvanic cell for low power applications. J. Mater. Sci. Mater. Electron. 2016, 27, 2442–2447. [Google Scholar] [CrossRef]
- Li, B.; Luo, J.; Huang, X.; Lin, L.; Wang, L.; Hu, M.; Tang, L.; Xue, H.; Gao, J.; Mai, Y.W. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos. Part B Eng. 2020, 181, 107580. [Google Scholar] [CrossRef]
- Kim, J.-M.; Nam, T.; Lim, S.; Seol, Y.; Lee, N.-E.; Kim, D.; Kim, H. Atomic layer deposition ZnO: N flexible thin film transistors and the effects of bending on device properties. Appl. Phys. Lett. 2011, 98, 142113. [Google Scholar]
- AbdElazem, S.; Al-Basheer, W. Measuring the acceleration due to gravity using an IR transceiver. Eur. J. Phys. 2015, 36, 045017. [Google Scholar] [CrossRef]
- Karimov, K.S.; Fatima, N.; Siddiqui, K.J.; Khan, M.I. Flexible thermoelectric cells fabricated by rubbing-in technology with rubber-carbon nanotubes/graphene composites. Mater. Sci. Energy Technol. 2019, 2, 551–555. [Google Scholar] [CrossRef]
- Fatima, N.; Karimov, K.S.; Nabi, J.-U.; Meng, H.; Ahmad, Z.; Riaz, M.; Bashir, M.M.; Khan, M.I.; ALIa, R.A.S.; Khan, A.; et al. Semi-transparent thermo-electric cells based on bismuth telluride and its composites with CNTs and graphene. J. Optoelectron. Adv. Mater. 2019, 21, 333–337. [Google Scholar]
- Kearton, T.R.; Doughty, A.K.; Morton, C.L.; Hinch, G.N.; Godwin, I.R.; Cowley, F.C. Core and peripheral site measurement of body temperature in short wool sheep. J. Therm. Biol. 2020, 90, 102606. [Google Scholar] [CrossRef] [PubMed]
- Karimov, K.S.; Fatima, N. Shock-proof and supple multiplex sensor based on silicon composite fabricated through an energy-free technology. Sens. Actuators A Phys. 2021, 331, 112902. [Google Scholar]
- Lyu, G.; Bi, C.; Zhang, Y.; Wang, C.; Wang, M.; Jiang, X. (Eds.) Large-Range Bridge Beam-Gap Displacement Sensors Based on Cantilever Beam with Fiber Bragg Grating. In Proceedings of the 2018 International Conference on Optoelectronics and Measurement, Hangzhou, China, 18–20 October 2018; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Tang, Y.; Wang, M.; Wu, B.; Dong, Y.; Xiao, H.; Zhang, J.; Mu, H.; Fan, G. High-sensitivity displacement sensing based on an OEO incorporating an unbalanced MZI. Opt. Laser Technol. 2020, 121, 105816. [Google Scholar] [CrossRef]
- Karimov, K.S.; Sulaiman, K.; Ahmad, Z.; Akhmedov, K.M.; Mateen, A. Novel pressure and displacement sensors based on carbon nanotubes. Chin. Phys. B 2015, 24, 018801. [Google Scholar] [CrossRef]
- Ahmad, Z.; Karimov, K.S.; Touati, F. Flexible impedance and capacitive tensile load Sensor based on CNT composite. Chin. Phys. B 2016, 25, 028801. [Google Scholar] [CrossRef]
- Karimov, K.S. Transversal tensity resistive effect in TEA (TCNQ)2 crystals. Synth. Met. 1991, 44, 103–106. [Google Scholar] [CrossRef]
- Fatima, N.; Ahmed, M.M.; Karimov, K.S. Effects of humidity and temperature on orange dye-based organic field effect transistors fabricated at different gravity. J. Electron. Mater. 2017, 46, 6588–6594. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, W.; Ning, Z.; Wang, G.; Cheng, X.; Hu, W.; Zhou, W.; Liu, Z.; Yang, S.; Xu, K.; et al. Ambipolar graphene–quantum dot phototransistors with CMOS compatibility. Adv. Opt. Mater. 2018, 6, 1800985. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Xu, C.; Li, Y.; Gao, J.; Wang, W.; Liu, Y. High-strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem. 2011, 21, 10399–10406. [Google Scholar] [CrossRef]
- Ahmadian, M.; Jafari, K.; Sharifi, M.J. Novel graphene-based optical MEMS accelerometer dependent on intensity modulation. ETRI J. 2018, 40, 794–801. [Google Scholar] [CrossRef]
- Tian, M.; Huang, Y.; Wang, W.; Li, R.; Liu, P.; Liu, C.; Zhang, Y. Temperature-dependent electrical properties of graphene nanoplatelets film dropped on flexible substrates. J. Mater. Res. 2014, 29, 1288–1294. [Google Scholar] [CrossRef]
- Wu, H.; Drzal, L.T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 2012, 50, 1135–1145. [Google Scholar] [CrossRef]
- Yan, P.; Tang, Q.; Deng, A.; Li, J. Ultrasensitive detection of clenbuterol by quantum dots based electrochemiluminescent immunosensor using gold nanoparticles as substrate and electron transport accelerator. Sens. Actuators B Chem. 2014, 191, 508–515. [Google Scholar] [CrossRef]
- Kaidarova, A.; Khan, M.A.; Marengo, M.; Swanepoel, L.; Przybysz, A.; Muller, C.; Fahlman, A.; Buttner, U.; Geraldi, N.R.; Wilson, R.P.; et al. Wearable multi-functional printed graphene sensors. NPJ Flex. Electron. 2019, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H.; Sun, L. Graphene-Based Sensors for Human Health Monitoring. Front. Chem. 2019, 7, 399. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Nag, A.; Simorangkir, R.B.; Afsarimanesh, N.; Liu, H.; Mukhopadhyay, S.C.; Xu, Y.; Zhadobov, M.; Sauleau, R. Multi-Functional Flexible Sensor Based on Laser-Induced Graphene. Sensors 2019, 19, 3477. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Lu, Y.F.; Xiang, J.X.; Zhang, M.K.; Zhao, Y.J.; Xie, Z.Y.; Gu, Z.Z. A multi-functional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 2018, 10, 2090–2098. [Google Scholar] [CrossRef]
- Xu, F.; Li, X.; Shi, Y.; Li, L.; Wang, W.; He, L.; Liu, R. Recent developments for flexible pressure sensors: A review. Micromachines 2018, 9, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimov, K.S.; Fatima, N.; Qasuria, T.A.; Siddiqui, K.J.; Bashir, M.M.; Alharbi, H.F.; Alharth, N.H.; Al-Harthi, Y.S.; Amin, N.; Akhtaruzzaman, M. Innovative semitransparent photo-thermoelectric cells based on bismuth antimony telluride alloy. J. Alloys Compd. 2020, 816, 152593. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, N.; Karimov, K.S.; Jamaludin, F.A.; Ahmad, Z. Fabrication and Investigation of Graphite-Flake-Composite-Based Non-Invasive Flex Multi-Functional Force, Acceleration, and Thermal Sensor. Micromachines 2023, 14, 1358. https://doi.org/10.3390/mi14071358
Fatima N, Karimov KS, Jamaludin FA, Ahmad Z. Fabrication and Investigation of Graphite-Flake-Composite-Based Non-Invasive Flex Multi-Functional Force, Acceleration, and Thermal Sensor. Micromachines. 2023; 14(7):1358. https://doi.org/10.3390/mi14071358
Chicago/Turabian StyleFatima, Noshin, Khasan S. Karimov, Farah Adilah Jamaludin, and Zubair Ahmad. 2023. "Fabrication and Investigation of Graphite-Flake-Composite-Based Non-Invasive Flex Multi-Functional Force, Acceleration, and Thermal Sensor" Micromachines 14, no. 7: 1358. https://doi.org/10.3390/mi14071358