All-Optical XOR, AND, OR, NOT, NOR, NAND, and XNOR Logic Operations Based on M-Shaped Silicon Waveguides at 1.55 μm
Abstract
:1. Introduction
2. Waveguide Principle
3. Logic Operations
3.1. XOR, AND, OR
3.2. NOT, NOR, NAND, XNOR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.R.; Wang, J.; Naghdi, B.; Glesk, I. Subwavelength grating waveguide devices for telecommunications applications. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 8200111. [Google Scholar] [CrossRef]
- Lipson, M. Guiding, modulating, and emitting light on silicon—challenges and opportunities. J. Light. Technol. 2005, 23, 4222–4238. [Google Scholar] [CrossRef]
- Vlasov, Y.A. Silicon photonics for next-generation computing systems. In Proceedings of the 34th European Conference on Optical Communication (ECOC 2008), Brussels, Belgium, 21–25 September 2008. paper Tu.1.A.1. [Google Scholar]
- Lee, B.G.; Bergmann, K. Silicon nano-photonic interconnection networks in multicore processor systems. In Proceedings of the Optical Society of America (OSA) Annual Meeting, Toronto, ON, Canada, 3–8 October 2008. paper FTh S1. [Google Scholar]
- Thourhout, D.V.; Campenhout, J.V.; Baets, R.; Rojo-Romeo, P.; Regreny, P.; Seassal, C.; Binetti, P.; Leijtens, X.J.M.; Ntzel, R.; Smit, M.K.; et al. Photonic interconnect layer on CMOS. In Proceedings of the 33rd European Conference and Exhibition on Optical Communication, Berlin, Germany, 16–20 September 2007. paper 6.3.1. [Google Scholar]
- Tsybeskov, L.; Lockwood, D.J.; Ichikawa, M. Silicon photonics: CMOS going optical. Proc. IEEE 2009, 97, 1161–1165. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Xiao, X.; Xu, H.; Zhang, L.; Pan, B. Silicon photonics for high-capacity data communications. Photon. Res. 2022, 10, A106–A134. [Google Scholar] [CrossRef]
- Tsuchizawa, T.; Yamada, K.; Fukuda, H.; Watanabe, T.; Takahashi, J.; Takahashi, M.; Shoji, T.; Tamechika, E.; Itabashi, S.; Morita, H.; et al. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 232–240. [Google Scholar] [CrossRef]
- Saruwatari, A. All-optical signal processing for terabit/second optical transmission. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1363–1374. [Google Scholar] [CrossRef]
- Willner, A.E.; Khaleghi, S.; Chitgarha, M.R.; Yilmaz, O.F. All-optical signal processing. J. Light. Technol. 2014, 32, 660–680. [Google Scholar] [CrossRef]
- Rani, P.; Kalra, Y.; Sinha, R.K. Design of all optical logic gates in photonic crystal waveguides. Optik 2015, 126, 950–955. [Google Scholar] [CrossRef]
- Husko, C.; Vo, T.D.; Corcoran, B.; Li, J.; Krauss, T.; Eggleton, B. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide. Opt. Express 2011, 19, 20681–20690. [Google Scholar] [CrossRef]
- Andalib, P.; Granpayeh, N. All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 2009, 26, 10–16. [Google Scholar] [CrossRef]
- Jandieri, V.; Khomeriki, R.; Erni, D. Realization of true all-optical AND logic gate based on the nonlinear coupled air-hole type photonic crystal waveguide. Opt. Express 2018, 26, 19845–19853. [Google Scholar] [CrossRef]
- Ishizaka, Y.; Kawaguchi, Y.; Saitoh, K.; Koshiba, M. Design of ultracompact all-optical XOR and AND logic gates with low power consumption. Opt. Commun. 2011, 284, 3528–3533. [Google Scholar] [CrossRef]
- Priya, N.H.; Swarnakar, S.; Krishna, S.V.; Kumar, S. Design and analysis of an optical three-input AND gate using a photonic crystal fiber. Appl. Opt. 2022, 61, 77–83. [Google Scholar]
- Priya, N.H.; Swarnakar, S.; Krishna, S.V.; Kumar, S. Design and analysis of a photonic crystal-based all-optical 3-input OR gate for high-speed optical processing. Opt. Quantum Electron. 2021, 53, 720. [Google Scholar] [CrossRef]
- Rao, D.G.S.; Swarnakar, S.; Palacharla, V.; Raju, K.S.R.; Kumar, S. Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications. Photon. Netw. Commun. 2021, 41, 109–118. [Google Scholar] [CrossRef]
- Swarnakar, S.; Palacharla, V.; Muduli, A.; Kumar, S. Design and optimization of photonic crystal based all-optical logic gate with enhanced contrast ratio. Opt. Quantum Electron. 2023, 55, 623. [Google Scholar] [CrossRef]
- Rachana, M.; Swarnakar, S.; Babu, M.R.; Swetha, P.M.; Rangaiah, Y.P.; Krishna, S.V.; Kumar, S. Optimization of an all-optical 3-input universal logic gate with an enhanced contrast ratio by exploiting T-shaped photonic crystal waveguide. App. Opt. 2022, 61, 8162–8171. [Google Scholar] [CrossRef] [PubMed]
- Pavelyev, V.; Krivosheeva, Y.; Golovashkin, D. Genetic optimization of the Y-shaped photonic crystal NOT logic gate. Photonics 2023, 10, 1173. [Google Scholar] [CrossRef]
- Mostafa, T.S.; Mohammed, N.A.; El-Rabaie, E.M. Ultra-high bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 2019, 66, 1005–1016. [Google Scholar] [CrossRef]
- Kita, S.; Nozaki, K.; Takata, K.; Shinya, A.; Notomi, M. Ultrashort low-loss Ψ gates for linear optical logic on Si photonics platform. Commun. Phys. 2020, 3, 33. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, Y.; Pun, E. Ultrasmall optical logic gates based on silicon periodic dielectric waveguides. Photon. Nanostr. Fundam. Appl. 2010, 8, 32. [Google Scholar] [CrossRef]
- Cui, L.; Yu, L. Multifunctional logic gates based on silicon hybrid plasmonic waveguides. Mod. Phys. Lett. B 2018, 32, 1850008. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Hatziefremidis, A.; Guo, C. Optical logic gates based on Z-shaped silicon waveguides at 1.55 μm. Micromachines 2023, 14, 1266. [Google Scholar] [CrossRef] [PubMed]
- Kotb, A.; Zoiros, K.E.; Li, W. Silicon-on-silica waveguides-based all-optical logic gates at 1.55 μm. Phys. Scr. 2023, 98, 035517. [Google Scholar] [CrossRef]
- Kotb, A.; Yao, C. All-optical logic operations based on silicon-on-insulator waveguides. Opt. Eng. 2023, 62, 048101. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E. 2 × 2 compact silicon waveguide-based optical logic functions at 1.55 μm. Photonics 2023, 10, 403. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Guo, C. All-optical logic gates using E-shaped silicon waveguides at 1.55 μm. J. App. Phys. 2023, 133, 173101. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Guo, C. High-performance all-optical logic operations using ψ-shaped silicon waveguides at 1.55 μm. Micromachines 2023, 14, 1793. [Google Scholar] [CrossRef]
- Gao, L.; Chen, L.; Wei, H.; Xu, H. Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates. Nanoscale 2018, 10, 14771. [Google Scholar] [CrossRef]
- Nozhat, N.; Alikomak, H.; Khodadadi, M. All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt. Commun. 2017, 392, 208–213. [Google Scholar] [CrossRef]
- Pan, D.; Wei, H.; Xu, H. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt. Express 2013, 21, 9556. [Google Scholar] [CrossRef]
- Bian, Y.; Gong, Q. Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures. Opt. Commun. 2014, 313, 27–35. [Google Scholar] [CrossRef]
- Al-Musawi, H.K.; Al-Janabi, A.K.; Al-Abassi, S.A.W.; Abusiba, N.A.A.; Al-Fatlawi, N.A.Q. Plasmonic logic gates based on dielectric-metal-dielectric design with two optical communication bands. Optik 2020, 223, 165416. [Google Scholar] [CrossRef]
- Yao, C.; Kotb, A.; Wang, B.; Singh, S.; Guo, C. All-optical logic gates using dielectric-loaded waveguides with quasi-rhombus metasurfaces. Opt. Lett. 2020, 45, 3769–3772. [Google Scholar] [CrossRef]
- Keshtkar, P.; Miri, M.; Yasrebi, N. Low power, high speed, all-optical logic gates based on optical bistability in graphene-containing compact microdisk resonators. Appl. Opt. 2021, 60, 7234–7242. [Google Scholar] [CrossRef]
- Kotb, A.; Guo, C. 100 Gb/s all-optical multifunctional AND, XOR, NOR, OR, XNOR, and NAND logic gates in a single compact scheme based on semiconductor optical amplifiers. Opt. Laser Technol. 2021, 137, 106828. [Google Scholar] [CrossRef]
- Alali, M.J.; Raheema, M.N.; Alwahib, A.A. Nanoscale plasmonic logic gates design by using an elliptical resonator. App. Opt. 2023, 62, 4080–4088. [Google Scholar] [CrossRef]
- Neseli, B.; Yilmaz, Y.A.; Kurt, H.; Turduev, M. Inverse design of ultra-compact photonic gates for all-optical logic operations. J. Phys. D Appl. Phys. 2022, 55, 215107. [Google Scholar] [CrossRef]
- Available online: https://www.ansys.com/products/optics/fdtd (accessed on 31 December 2018).
- Laakso, I.S.; Ilvonen, S.T.; Uusitupa, T. Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations. Phys. Med. Biol. 2007, 52, 7183–7192. [Google Scholar] [CrossRef]
- Smith, B.J.; Kundys, D.; Thomas-Peter, N.; Smith, P.G.R.; Walmsley, I.A. Phase-controlled integrated photonic quantum circuits. Opt. Express 2009, 17, 13516–13525. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, Z.; Li, Y.; Zhang, Z.; Wang, L.; Chen, Q. Phase customization in photonic integrated circuits with trimmed waveguides. Opt. Lett. 2022, 47, 5889–5892. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.L.; Mookherjea, S. Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides. Opt. Express 2009, 17, 1583–1599. [Google Scholar] [CrossRef] [PubMed]
- Hazura, H.; Menon, P.S.; Majlis, B.Y.; Hanim, A.R.; Mardiana, B.; Hasanah, L.; Mulyanti, B.; Mahmudin, D.; Wiranto, G. Modeling of SOI-based MRR by coupled mode theory using lateral coupling configuration. In Proceedings of the 10th IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 19–21 September 2012; pp. 422–425. [Google Scholar]
- Syahriar, A.; Adam, H.; Astharini, D.; Lubis, A.L.; Gandana, D.M. Analysis of three parallel waveguides using coupled mode theory and the method of lines. In Proceedings of the 2016 International Seminar on Application for Technology of Information and Communication, Baku, Azerbaijan, 12–14 October 2016; pp. 174–178. [Google Scholar]
- Zhu, S.; Fang, Q.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides. Opt. Express 2009, 17, 20891–20899. [Google Scholar] [CrossRef] [PubMed]
- Donzella, V.; Sherwali, A.; Flueckiger, J.; Grist, S.M.; Fard, S.T.; Chrostowski, L. Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Opt. Express 2015, 23, 4791–4803. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Hu, X.; Lu, C.; Yue, S.; Yang, H.; Gong, Q. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 2012, 12, 5784–5790. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Chen, Y.; Feng, L.; Yan, L.; Zhang, Q.; Bao, J.; Liu, B.; Ren, X.; Wang, J.; et al. On-chip path encoded photonic quantum Toffoli gate. Photon. Res. 2022, 10, 1533–1542. [Google Scholar] [CrossRef]
- Klauck, F.; Heinrich, M.; Szameit, A. Photonic two-particle quantum walks in Su–Schrieffer–Heeger lattices. Photon. Res. 2021, 9, A1–A7. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Xu, J.; Lin, Z.; Yu, H.; Wang, M.; Fang, Z.; Cheng, Y.; Gong, Q.; Li, Y. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photon. Res. 2019, 7, 503–507. [Google Scholar] [CrossRef]
- Anton, C.; Loredo, J.C.; Coppola, G.; Ollivier, H.; Viggianiello, N.; Harouri, A.; Somaschi, N.; Crespi, A.; Sagnes, I.; Lemaitre, A.; et al. Interfacing scalable photonic platforms: Solid-state based multi-photon interference in a reconfigurable glass chip. Optica 2019, 6, 1471–1477. [Google Scholar] [CrossRef]
- Atzeni, S.; Rab, A.S.; Corrielli, G.; Polino, E.; Valeri, M.; Mataloni, P.; Spagnolo, N.; Crespi, A.; Sciarrino, F.; Osellame, R. Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits. Optica 2018, 5, 311–314. [Google Scholar] [CrossRef]
- Wei, D.; Wang, C.; Wang, H.; Hu, X.; Wei, D.; Fang, X.; Zhang, Y.; Wu, D.; Hu, Y.; Li, J.; et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photon. 2018, 12, 596–600. [Google Scholar] [CrossRef]
- Marshall, G.D.; Politi, A.; Matthews, J.C.F.; Dekker, P.; Ams, M.; Withford, M.J.; O’Brien, J.L. Laser written waveguide photonic quantum circuits. Opt. Express 2009, 17, 12546–12554. [Google Scholar] [CrossRef] [PubMed]
ΦCLK | Φ2 | Φ3 | Pout | T | CR (dB) |
---|---|---|---|---|---|
180° | - | - | 0 | 0.024 | 14.94 |
180° | 180° | - | 1 | 0.586 | |
180° | - | 180° | 1 | 0.786 | |
180° | 90° | 0° | 0 | 0.021 |
ΦCLK | Φ2 | Φ3 | Pout | T | CR (dB) |
---|---|---|---|---|---|
180° | - | - | 0 | 0.024 | 15.36 |
180° | 90° | - | 0 | 0.028 | |
180° | - | 0° | 0 | 0.026 | |
180° | 180° | 180° | 1 | 0.894 |
ΦCLK | Φ2 | Φ3 | Pout | T | CR (dB) |
---|---|---|---|---|---|
180° | - | - | 0 | 0.024 | 15.20 |
180° | 180° | - | 1 | 0.586 | |
180° | - | 180° | 1 | 0.786 | |
180° | 180° | 180° | 1 | 0.894 |
Φ1 | ΦCLK | Pout | T | CR (dB) |
---|---|---|---|---|
180° | 0° | 0 | 0.024 | 15.10 |
- | 0° | 1 | 0.775 |
Φ1 | Φ2 | ΦCLK | Pout | T | CR (dB) |
---|---|---|---|---|---|
- | - | 0° | 1 | 0.775 | 15.28 |
180° | - | 0° | 0 | 0.024 | |
- | 180° | 0° | 0 | 0.026 | |
90° | 180° | 0° | 0 | 0.021 |
Φ1 | Φ2 | ΦCLK | Pout | T | CR (dB) |
---|---|---|---|---|---|
- | - | 0° | 1 | 0.775 | 14.65 |
0° | - | 0° | 1 | 0.575 | |
- | 0° | 0° | 1 | 0.484 | |
90° | 180° | 0° | 0 | 0.021 |
Φ1 | Φ2 | ΦCLK | Pout | T | CR (dB) |
---|---|---|---|---|---|
- | - | 0° | 1 | 0.775 | 15.24 |
180° | - | 0° | 0 | 0.024 | |
- | 180° | 0° | 0 | 0.027 | |
0° | 0° | 0° | 1 | 0.894 |
References | Functions | Design | Materials | Size (μm2) | Wavelength (nm) | CR (dB) |
---|---|---|---|---|---|---|
[11] | AND, XOR, OR, NOT, NAND, NOR XNOR | PhC waveguides | Si/air | 9 × 5 | 1550 | 5.42–9.59 |
[16,17,18] | AND, XOR, XNOR | T-shaped PhC waveguides | Si/air | - | 1550 | 8.29–33.05 |
[22] | AND, OR | 2D PhC design | Si/air | 19.8 × 12.6 | 1520 | 9.74 and 17.95 |
[23] | AND, NOR, XNOR | Si photonics platform | 1550 | >10 dB | ||
[34] | NOT, XOR, AND, OR, NOR, NAND, XNOR | Metal slot waveguide | Silver/SiO2 | 1.5 × 2.36 | 632.8 | 6–16 |
[35] | NOT, XOR, AND, OR, NOR, NAND, XNOR | Metal-insulator-metal structures | Air/silver | 5.33 × 0.42 | 632.8 | 15 |
[40] | AND, NAND, OR, XOR, NOR, XNAOR, NOT | Plasmonic logic gates design | Silver/SiO2 | 0.25 × 0.25 | 850 | 4.14–14.46 |
[41] | AND, OR, NOT, NAND | Inverse design on Si platforms | Si/SiO2 | 1.0 × 1.5 | 1300 | 0.5–5.79 |
This work | XOR, AND, OR, NOT, NOR, XNOR, NAND | M-shaped Si waveguides | Si/SiO2 | 1.0 × 1.0 | 1550 | 14.65–15.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotb, A.; Zoiros, K.E.; Chen, W. All-Optical XOR, AND, OR, NOT, NOR, NAND, and XNOR Logic Operations Based on M-Shaped Silicon Waveguides at 1.55 μm. Micromachines 2024, 15, 392. https://doi.org/10.3390/mi15030392
Kotb A, Zoiros KE, Chen W. All-Optical XOR, AND, OR, NOT, NOR, NAND, and XNOR Logic Operations Based on M-Shaped Silicon Waveguides at 1.55 μm. Micromachines. 2024; 15(3):392. https://doi.org/10.3390/mi15030392
Chicago/Turabian StyleKotb, Amer, Kyriakos E. Zoiros, and Wei Chen. 2024. "All-Optical XOR, AND, OR, NOT, NOR, NAND, and XNOR Logic Operations Based on M-Shaped Silicon Waveguides at 1.55 μm" Micromachines 15, no. 3: 392. https://doi.org/10.3390/mi15030392