Comprehensive Study and Design of Graphene Transistor
Abstract
:1. Introduction
2. Graphene Field-Effect Transistors
3. Fabrication Process
3.1. Wafer Cleaning
3.2. Graphene Synthesis
3.3. The Graphene Transfer Process
3.4. Photolithography and Electron-Beam Lithography
3.5. GFET Fabrication
4. GFET Results and Analysis
5. Future Direction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhan, B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. Graphene field-effect transistor and its application for electronic sensing. Small 2014, 10, 4042–4065. [Google Scholar] [CrossRef]
- Radsar, T.; Khalesi, H.; Ghods, V. Graphene properties and applications in nanoelectronic. Opt. Quantum Electron. 2021, 53, 178. [Google Scholar] [CrossRef]
- Krsihna, B.V.; Ravi, S.; Prakash, M.D. Recent developments in graphene based field effect transistors. Mater. Today Proc. 2021, 45, 1524–1528. [Google Scholar] [CrossRef]
- Andronescu, C.; Schuhmann, W. Graphene-based field effect transistors as biosensors. Curr. Opin. Electrochem. 2017, 3, 11–17. [Google Scholar] [CrossRef]
- Ning, J.; Wang, Y.; Feng, X.; Wang, B.; Dong, J.; Wang, D.; Yan, C.; Shen, X.; Wang, X.; Zhang, J.; et al. Flexible field-effect transistors with a high on/off current ratio based on large-area single-crystal graphene. Carbon 2020, 163, 417–424. [Google Scholar] [CrossRef]
- Forsyth, R.; Devadoss, A.; Guy, O.J. Graphene field effect transistors for biomedical applications: Current Status and Future Prospects. Diagnostics 2017, 7, 45. [Google Scholar]
- Llinas, J.P.; Fairbrother, A.; Barin, G.B.; Shi, W.; Lee, K.; Wu, S.; Choi, B.Y.; Braganza, R.; Lear, J.; Kau, N.; et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 2017, 8, 633. [Google Scholar] [CrossRef]
- Tayade, V.P.; Lahudkar, S.L. Design of silicon-on-insulator field-effect transistor using graphene channel to improve short channel effects over conventional devices. Int. J. Adv. Technol. Eng. Explor. 2023, 10, 458. [Google Scholar]
- Miao, J.; Zhang, S.; Cai, L.; Scherr, M.; Wang, C. Ultrashort channel length black phosphorus field-effect transistors. ACS Nano 2015, 9, 9236–9243. [Google Scholar] [CrossRef]
- Zou, X.; Liu, L.; Xu, J.; Wang, H.; Tang, W.-M. Few-layered MoS2 field-effect transistors with a vertical channel of sub-10 nm. ACS Appl. Mater. Interfaces 2020, 12, 32943–32950. [Google Scholar] [CrossRef]
- Li, Q.; Yang, J.; Li, Q.; Liu, S.; Xu, L.; Yang, C.; Xu, L.; Li, Y.; Sun, X.; Yang, J.; et al. Sub-5 nm gate length monolayer MoTe2 transistors. J. Phys. Chem. C 2021, 125, 19394–19404. [Google Scholar] [CrossRef]
- Chuan, M.W.; Riyadi, M.A.; Hamzah, A.; Alias, N.E.; Sultan, S.M.; Lim, C.S.; Tan, M.L.P. Impact of phonon scattering mechanisms on the performance of silicene nanoribbon field-effect transistors. Results Phys. 2021, 29, 104714. [Google Scholar] [CrossRef]
- Shi, X.; Li, X.; Guo, Q.; Zeng, M.; Wang, X.; Wu, Y. Ultrashort channel chemical vapor deposited bilayer WS2 field-effect transistors. Appl. Phys. Rev. 2023, 10, 011405. [Google Scholar] [CrossRef]
- Resta, G.V.; Agarwal, T.; Lin, D.; Radu, I.P.; Catthoor, F.; Gaillardon, P.-E.; De Micheli, G. Scaling trends and performance evaluation of 2-dimensional polarity-controllable FETs. Sci. Rep. 2017, 7, 45556. [Google Scholar] [CrossRef]
- Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F.H.; Konstantatos, G. Hybrid 2d–0d mos2–pbs quantum dot photodetectors. Adv. Mater. 2015, 27, 176–180. [Google Scholar] [CrossRef]
- Yu, X.; Dong, Z.; Liu, Y.; Liu, T.; Tao, J.; Zeng, Y.; Yang, J.K. A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with hfo 2. Nanoscale 2016, 8, 327–332. [Google Scholar] [CrossRef]
- Sun, Z.; Aigouy, L.; Chen, Z. Plasmonic-enhanced perovskite– graphene hybrid photodetectors. Nanoscale 2016, 8, 7377–7383. [Google Scholar] [CrossRef]
- Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A.M.; Schrenk, W.; Strasser, G.; et al. Microcavity integrated graphene photodetector. Nano Lett. 2012, 12, 2773–2777. [Google Scholar] [CrossRef]
- Park, J.; Ahn, Y.; Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 2009, 9, 1742–1746. [Google Scholar] [CrossRef]
- Amin, R.; Ma, Z.; Maiti, R.; Khan, S.; Khurgin, J.B.; Dalir, H.; VSorger, J. Attojoule-efficient graphene optical modulators. Appl. Opt. 2018, 57, D130–D140. [Google Scholar] [CrossRef]
- Jornet, J.M.; Akyildiz, I.F. Graphene-based nano-antennas for electromagnetic nano communications in the terahertz band. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010. [Google Scholar]
- Mueller, T.; Xia, F.; Avouris, P. Graphene photodetectors for highspeed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Miao, X.; Tongay, S.; Petterson, M.K.; Berke, K.; Rinzler, A.G.; Appleton, B.R.; Hebard, A.F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745–2750. [Google Scholar] [CrossRef]
- Sun, Z.; Popa, D.; Hasan, T.; Torrisi, F.; Wang, F.; Kelleher, E.J.; Travers, J.C.; Nicolosi, V.; Ferrari, A.C. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res. 2010, 3, 653–660. [Google Scholar] [CrossRef]
- Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 2015, 25, 4929–4947. [Google Scholar] [CrossRef]
- Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS photonics 2016, 3, 1564–1568. [Google Scholar] [CrossRef]
- Pospischil, A.; Humer, M.; Furchi, M.M.; Bachmann, D.; Guider, R.; Mueller, T. Cmos-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Ni, Z.; Ma, L.; Du, S.; Xu, Y.; Yuan, M.; Fang, H.; Wang, Z.; Xu, M.; Li, D.; Yang, J.; et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano 2017, 11, 9854–9862. [Google Scholar] [CrossRef]
- George, P.A.; Strait, J.; Dawlaty, J.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M.G. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 2008, 8, 4248–4251. [Google Scholar] [CrossRef]
- Freitag, M.; Low, T.; Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 2013, 13, 1644–1648. [Google Scholar] [CrossRef]
- Avsar, A.; Ochoa, H.; Guinea, F.; Özyilmaz, B.; Van Wees, B.J.; Vera-Marun, I.J. Colloquium: Spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 2020, 92, 021003. [Google Scholar] [CrossRef]
- Heinisch, R.L.; Bronold, F.X.; Fehske, H. Mie scattering analog in graphene: Lensing, particle confinement, and depletion of Klein tunneling. Phys. Rev. B 2013, 87, 155409. [Google Scholar] [CrossRef]
- Caridad, J.M.; Connaughton, S.; Ott, C.; Weber, H.B.; Krstić, V. An electrical analogy to Mie scattering. Nat. Commun. 2016, 7, 12894. [Google Scholar] [CrossRef]
- Fonseca, D.B.; Pereira, L.F.C.; Barbosa, A.L.R. Lévy flight for electrons in graphene: Superdiffusive-to-diffusive transport transition. Phys. Rev. B 2023, 107, 155432. [Google Scholar] [CrossRef]
- Heidari, E.; Dalir, H.; Koushyar, F.M.; Nouri, B.M.; Patil, C.; Miscuglio, M.; Akinwande, D.; VSorger, J. Integrated ultra-high-performance graphene optical modulator. Nanophotonics 2022, 11, 4011–4016. [Google Scholar] [CrossRef]
- Amin, R.; George, J.K.; Wang, H.; Maiti, R.; Ma, Z.; Dalir, H.; Khurgin, J.B.; Sorger, V.J. An ITO–graphene heterojunction integrated absorption modulator on Si-photonics for neuromorphic nonlinear activation. APL Photonics 2021, 6, 120801. [Google Scholar] [CrossRef]
- Asghari, A.; Dalir, H.; Sorger, V.J.; Chen, R.T. High speed graphene optoelectronic devices enabled through controlled molecularly doped graphene. In 2D Photonic Materials and Devices III; SPIE: Washington, DC, USA, 2020; Volume 11282, p. 61. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; AFirsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y.; et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lu, C.-C.; Yeh, C.-H.; Jin, C.; Suenaga, K.; Chiu, P.-W. Graphene annealing: How clean can it be? Nano Lett. 2012, 12, 414–419. [Google Scholar] [CrossRef]
- Ponomarenko, L.; Yang, R.; Mohiuddin, T.; Katsnelson, M.; Novoselov, K.; Morozov, S.; Zhukov, A.; Schedin, F.; Hill, E.; Geim, A. Effect of a high-κ environment on charge carrier mobility in graphene. Phys. Rev. Lett. 2009, 102, 206603. [Google Scholar] [CrossRef]
- Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; Klitzing, K.V.; Smet, J.H. Graphene on a hydrophobic substrate: Doping reduction and hysteresis suppression under ambient conditions. Nano Lett. 2010, 10, 1149–1153. [Google Scholar] [CrossRef]
- Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209. [Google Scholar] [CrossRef]
- Kern, W. Handbook of Semiconductor Wafer Cleaning Technology; Noyes Publication: Park Ridge, NJ, USA, 1993; pp. 111–196. [Google Scholar]
- Nagashio, K.; Yamashita, T.; Fujita, J.; Nishimura, T.; Kita, K.; Toriumi, A. Impacts of graphene/SiO2 interaction on FET mobility and Raman spectra in mechanically exfoliated graphene films. In Proceedings of the Electron Devices Meeting (IEDM), San Francisco, CA, USA, 6–8 December 2010; IEEE: New York, NY, USA, 2010; pp. 23–24. [Google Scholar] [CrossRef]
- Nagashio, K.; Yamashita, T.; Nishimura, T.; Kita, K.; Toriumi, A. Electrical transport properties of graphene on SiO2 with specific surface structures. J. Appl. Phys. 2011, 110, 024513. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y. Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011, 11, 767–771. [Google Scholar] [CrossRef]
- Liang, X.; Sperling, B.A.; Calizo, I.; Cheng, G.; Hacker, C.A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q.; et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144–9153. [Google Scholar] [CrossRef]
- Mayer, A.; Shwartzman, S. Megasonic cleaning: A new cleaning and drying system for use in semiconductor processing. J. Electron. Mater. 1979, 8, 855–864. [Google Scholar] [CrossRef]
- Bera, B. Silicon wafer cleaning: A fundamental and critical step in semiconductor fabrication process. Int. J. Appl. Nanotechnol. 2019, 5, 8–13. [Google Scholar]
- Reinhardt, K.; Kern, W. Handbook of Silicon Wafer Cleaning Technology, 3rd ed.; William Andrew: Norwich, NY, USA, 2018. [Google Scholar]
- Giovannetti, G.; Khomyakov, P.A.; Brocks, G.; Karpan, V.V.; van den Brink, J.; Kelly, P.J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803. [Google Scholar] [CrossRef]
- Tapaszto, L.; Dobrik, G.; Nemes-Incze, P.; Vertesy, G.; Lambin, P.; Biro, L.P. Tuning the electronic structure of graphene by ion irradiation. Phys. Rev. B 2008, 78, 233407. [Google Scholar] [CrossRef]
- Dan, Y.; Lu, Y.; Kybert, N.J.; Luo, Z.; Johnson, A.C. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475. [Google Scholar] [CrossRef]
- Xu, S.; Ostrikov, K.N.; Li, Y.; Tsakadze, E.L.; Jones, I.R. Low-frequency, high-density, high-density, inductively coupled plasma sources: Operation and applications. Phys. Plasmas 2008, 8, 2549–2557. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Cantoro, M.; Klekachev, A.; Clemente, F.; Soree, B.; Van Der Veen, M.; Vosch, T.; Stesmans, A.; Sels, B.; De Gendt, S. Tuning the fermi level of SiO2-supported single-layer graphene by thermal annealing. J. Phys. Chem. C 2010, 114, 6894–6900. [Google Scholar] [CrossRef]
- Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91, 163513. [Google Scholar] [CrossRef]
- Connolly, M.; Chiou, K.; Smith, C.; Anderson, D.; Jones, G.; Lombardo, A.; Fasoli, A.; Ferrari, A. Scanning gate microscopy of current-annealed single layer graphene. Appl. Phys. Lett. 2010, 96, 113501. [Google Scholar] [CrossRef]
- Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A.; Tolvanen, A.; Nordlund, K.; Keinonen, J. Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation. Phys. Rev. B 2010, 81, 153401. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, L.; Herranz M, Á.; Martín, N. The chemistry of pristine graphene. Chem. Comm. 2013, 49, 3721–3735. [Google Scholar] [CrossRef]
- Lim, Y.-D.; Lee, D.-Y.; Shen, T.-Z.; Ra, C.-H.; Choi, J.-Y.; Yoo, W.J. Si-compatible cleaning process for graphene using low-density inductively coupled plasma. ACS Nano 2012, 6, 4410–4417. [Google Scholar] [CrossRef]
- Leven, I.; Maaravi, T.; Azuri, I.; Kronik, L.; Hod, O. Interlayer potential for graphene/h-bn heterostructures. J. Chem. Theory Comput. 2016, 12, 2896–2905. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Liang, W.; Sun, M. Electrical properties and applications of graphene, hexagonal boron nitride (h-bn), and graphene/h-bn heterostructures. Mater. Today Phys. 2017, 2, 6–34. [Google Scholar] [CrossRef]
- Ling, X.; Fang, W.; Lee, Y.-H.; Araujo, P.T.; Zhang, X.; RodriguezNieva, J.F.; Lin, Y.; Zhang, J.; Kong, J.; Dresselhaus, M.S. Raman enhancement effect on two-dimensional layered materials: Graphene, h-bn and mos2. Nano Lett. 2014, 14, 3033–3040. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Garcia, A.G.; Neumann, M.; Amet, F.; Williams, J.R.; Watanabe, K.; Goldhaber-Gordon, D. Effective cleaning of hexagonal boron nitride for graphene devices. Nano Lett. 2012, 12, 4449–4454. [Google Scholar] [CrossRef]
- Blakely, J.; Kim, J.; Potter, H. Segregation of carbon to the (100) surface of nickel. J. Appl. Phys. 1970, 41, 2693–2697. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, R.; Chen, W. Graphene-supported nano electrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160. [Google Scholar] [CrossRef]
- Seah, C.-M.; Chai, S.-P.; Mohamed, A.R. Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 2014, 70, 1–21. [Google Scholar] [CrossRef]
- IC Knowledge LLC, “Technology Backgrounder: Atomic Layer Deposition,” IC Knowledge. Available online: www.icknowledge.com/misc_technology/Atomic%20Layer%20Deposition%20Briefing.pdf (accessed on 24 April 2006).
- LOCOS Technology—Oxidation—Semiconductor Technology from a to z—Halbleiter.org. Available online: https://www.halbleiter.org/en/oxidation/locos/ (accessed on 28 August 2023).
- Frolov, V.; Pivovarov, P.; Zavedeev, E.; Konov, V. Influence of laser irradiation on local electronic properties of graphene in the presence of water adsorbate. Opt. Laser Technol. 2017, 90, 216–221. [Google Scholar] [CrossRef]
- Rahimi, S.; Tao, L.; Chowdhury, S.F.; Park, S.; Jouvray, A.; Buttress, S.; Rupesinghe, N.; Teo, K.; Akinwande, D. Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. ACS Nano 2014, 8, 10471–10479. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Kaner, R.B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475. [Google Scholar] [CrossRef]
- Wei, D.; Lu, Y.; Han, C.; Niu, T.; Chen, W.; Wee, A.T.S. Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew. Chem Int. Ed. Engl. 2013, 125, 14371–14376. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Y.; Wen, Y.; Huang, L.; Xue, Y.; Geng, D.; Wu, B.; Luo, B.; Yu, G.; Liu, Y. Graphene: Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates (adv. mater. 7/2013). Adv. Mater. 2013, 25, 938. [Google Scholar] [CrossRef]
- Osváth, Z.; Darabont, A.; Nemes-Incze, P.; Horváth, E.; Horváth, Z.; Biró, L. Graphene layers from thermal oxidation of exfoliated graphite plates. Carbon 2007, 45, 3022–3026. [Google Scholar] [CrossRef]
- Patel, R.B.; Yu, C.; Chou, T.; Iqbal, Z. Novel synthesis route to graphene using iron nanoparticles. J. Mater. Res. 2014, 29, 1522–1527. [Google Scholar] [CrossRef]
- Fabrication of Oxide Layers Oxidation Semiconductor Technology from a to z Halbleiter.org. Available online: https://www.halbleiter.org/en/oxidation/oxidation/ (accessed on 28 August 2023).
- Zhang, C.; Lin, W.; Zhao, Z.; Zhuang, P.; Zhan, L.; Zhou, Y.; Cai, W. CVD synthesis of nitrogen-doped graphene using urea. Sci. China Phys. Mech. Astron. 2015, 58, 107801. [Google Scholar] [CrossRef]
- Murakami, K.; Tanaka, S.; Hirukawa, A.; Hiyama, T.; Kuwajima, T.; Kano, E.; Takeguchi, M.; Fujita, J.-I. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition. Appl. Phys. Lett. 2015, 106, 093112. [Google Scholar] [CrossRef]
- Kim, S.-M.; Kim, J.-H.; Kim, K.-S.; Hwangbo, Y.; Yoon, J.-H.; Lee, E.-K.; Ryu, J.; Lee, H.-J.; Cho, S.; Lee, S.-M. Synthesis of cvd-graphene on rapidly heated copper foils. Nanoscale 2014, 6, 4728–4734. [Google Scholar] [CrossRef]
- Das, S.; Drucker, J. Nucleation and growth of single layer graphene on electrodeposited cu by cold wall chemical vapor deposition. Nanotechnology 2017, 28, 105601. [Google Scholar] [CrossRef]
- Coltrin, M.E.; Ho, P.; Moffat, H.K.; Buss, R.J. Chemical kinetics in chemical vapor deposition: Growth of silicon dioxide from tetraethoxysilane (teos). Thin Solid Films 2000, 365, 251–263. [Google Scholar] [CrossRef]
- Das, S.; Drucker, J. Pre-coalescence scaling of graphene island sizes. J. Appl. Phys. 2018, 123, 205306. [Google Scholar] [CrossRef]
- The Making of Graphene—Youtube.com. Available online: https://www.youtube.com/watch?v=U2jR0YyGW0k (accessed on 28 August 2023).
- Son, J.G.; Son, M.; Moon, K.-J.; Lee, B.H.; Myoung, J.-M.; Strano, M.S.; Ham, M.-H.; Ross, C.A. Sub-10 nm graphene nanoribbon array field effect transistors fabricated by block copolymer lithography. Adv. Mater. 2013, 25, 4723–4728. [Google Scholar] [CrossRef]
- Compton, O.C.; Nguyen, S.T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef]
- Reddy, D.; Register, L.F.; Carpenter, G.D.; Banerjee, S.K. Graphene field-effect transistors. J. Phys. D Appl. Phys. 2011, 44, 313001. [Google Scholar] [CrossRef]
- Benfdila, A.; Zekentes, K. On silicon carbide thermal oxidation. Afr. Rev. Phys. 2010, 4, 0005. [Google Scholar]
- Chang, C.-P. Shallow trench isolation. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 8437–8444. [Google Scholar]
- Bogalecki, A.W.; Plessis, M.D. Design and manufacture of quantum-confined SI light sources. SAIEE Afr. Res. J. 2010, 101, 11–16. [Google Scholar] [CrossRef]
- Chen, G.; Li, S.; Wang, X. Source mask optimization using the covariance matrix adaptation evolution strategy. Opt. Express 2020, 28, 33371–33389. [Google Scholar] [CrossRef]
- Team, K.L. Spotlight Photronics: Etching Intellectual Property into Every Wafer—Knowledge Leaders Capital. Knowledge Leaders Capital—Investing in Knowledge Leaders. Available online: https://www.knowledgeleaderscapital.com/2022/07/11/spotlight-photronics-etching-intellectual-property-into-every-wafer/ (accessed on 19 February 2024).
- Ahlberg, P.; Hinnemo, M.; Song, M.; Gao, X.; Olsson, J.; Zhang, S.-L.; Zhang, Z.-B. A two-in-one process for reliable graphene transistors processed with photolithography. Appl. Phys. Lett. 2015, 107, 203104. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Foxe, M.; Tian, J.; Jalilian, R.; Jovanovic, I.; Chen, Y.P. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 2010, 97, 173109. [Google Scholar] [CrossRef]
- Kang, S.; Movva, H.C.; Sanne, A.; Rai, A.; Banerjee, S.K. Influence of electron-beam lithography exposure current level on the transport characteristics of graphene field effect transistors. J. Appl. Phys. 2016, 119, 124502. [Google Scholar] [CrossRef]
- Wang, X.; Tao, P.; Wang, Q.; Zhao, R.; Liu, T.; Hu, Y.; Hu, Z.; Wang, Y.; Wang, J.; Tang, Y.; et al. Trends in photoresist materials for extreme ultraviolet lithography: A review. Mater. Today 2023, 67, 299–319. [Google Scholar] [CrossRef]
- Photomasks Photolithography Semiconductor Technology from a to z halbleiter.org. Available online: https://www.halbleiter.org/en/photolithography/photomasks/ (accessed on 28 August 2023).
- Zhu, Y.; James, D.K.; Tour, J.M. New routes to graphene, graphene oxide and their related applications. Adv. Mater. 2012, 24, 4924–4955. [Google Scholar] [CrossRef]
- Wei, T.; Bao, L.; Hauke, F.; Hirsch, A. Recent advances in graphene patterning. ChemPlusChem 2020, 85, 1655–1668. [Google Scholar] [CrossRef]
- Patel, R. Fabrication and Characterization of Graphene Based Biocompatible Ion-Sensitive Field Effect Transistor (ISFET). Ph.D. Dissertation, University of South Carolina, Columbia, SC, USA, 2015. [Google Scholar]
- Singh, A.K. Tunable Graphene Chem-Fet and Graphene/Si Heterojunction Chemi-Diode Sensors. Ph.D. Dissertation, University of South Carolina, Columbia, SC, USA, 2014. [Google Scholar]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99, 2957–2976. [Google Scholar] [CrossRef]
- Hulst, H.C.; van de Hulst, H.C. Light Scattering by Small Particles; Courier Corporation: New York, NY, USA, 1981. [Google Scholar]
- Prosini, P.P. Crystal group prediction for litigated manganese oxides using machine learning. Batteries 2023, 9, 112. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Ni, Z.H.; Yu, T.; Shen, Z.X.; Wang, H.M.; Wu, Y.H.; Chen, W.; Shen, W.A.T. Raman studies of monolayer graphene: The substrate effect. J. Phys. Chem. C 2008, 112, 10637–10640. [Google Scholar] [CrossRef]
- Dolle, C.; Schweizer, P.; Dasler, D.; Gsänger, S.; Maidl, R.; Abellán, G.; Hauke, F.; Meyer, B.; Hirsch, A.; Spiecker, E. Atomically resolved TEM imaging of covalently functionalised graphene. npj 2D Mater. Appl. 2022, 6, 29. [Google Scholar] [CrossRef]
- Boneschanscher, M.P.; Lit, J.V.; Sun, Z.; Swart, I.; Liljeroth, P.; Vanmaekelberg, D. Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 2012, 6, 10216–10221. [Google Scholar] [CrossRef]
- Reina, A.; Son, H.; Jiao, L.; Fan, B.; Dresselhaus, M.S.; Liu, Z.; Kong, J. Transferring and identification of single-and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.-W.; Jung, W.-G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H.-J.; Winnewisser, C. High-mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Adv. Mater. 2008, 20, 2217–2224. [Google Scholar] [CrossRef]
- Eshkalak, M.A.; Anvarifard, M.K. A novel graphene nanoribbon fet with an extra peak electric field (efp-gnrfet) for enhancing the electrical performances. Phys. Lett. A 2017, 381, 1379–1385. [Google Scholar] [CrossRef]
- Li, J.; Niu, L.; Zheng, Z.; Yan, F. Photosensitive graphene transistors. Adv. Mater. 2014, 26, 5239–5273. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Hernandez, Y.; Feng, X.; Müllen, K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 2011, 23, 2779–2795. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Wehling, T.; Katsnelson, M.; Lichtenstein, A. Adsorbates on graphene: Impurity states and electron scattering. Chem. Phys. Lett. 2009, 476, 125–134. [Google Scholar] [CrossRef]
- Brar, V.W.; Decker, R.; Solowan, H.-M.; Wang, Y.; Maserati, L.; Chan, K.T.; Lee, H.; Girit, O.; Zettl, A.; Louie, S.G.; et al. Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nat. Phys. 2011, 7, 43–47. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors: Status, prospects, and problems. Proc. IEEE 2013, 101, 1567–1584. [Google Scholar] [CrossRef]
- Banerjee, S.K.; Register, L.F.; Tutuc, E.; Basu, D.; Kim, S.; Reddy, D.; MacDonald, A.H. Graphene for CMOS and beyond CMOS applications. Proc. IEEE 2010, 98, 2032–2046. [Google Scholar] [CrossRef]
- Mao, L.-F.; Li, X.-J.; Wang, Z.-O.; Wang, J.-Y. The gate leakage current in graphene field-effect transistor. IEEE Electron Device Lett. 2008, 29, 1047–1049. [Google Scholar] [CrossRef]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Serge, L. Quantum capacitance devices. Appl. Phys. Lett. 1988, 52, 501–503. [Google Scholar]
- Zhu, H.; Yang, Y.; Zhu, X.; Raju, P.; Ioannou, D.E.; Li, Q. Graphene-Integrated Negative Quantum Capacitance Field-Effect Transistor With Sub-60-mV/dec Switching. IEEE Trans. Electron Devices 2023, 70, 4899–4904. [Google Scholar] [CrossRef]
Device Structure | T (nm) | Dielectrics/Tox (nm) | LCH (nm) | μFE (cm2/Vs) | On/Off Ratio | SS (mV/dec) | DIBL (mV/V) |
---|---|---|---|---|---|---|---|
Silicon-on-insulator Few-layer Graphene [8] | 4 | HfO2/1 | 18 | 30,000 | 7 × 108 | 61.03 | 25.95 |
Top Gate Few-layer Black Phosphorus [9] | 10 | Al2O3/10 | 20 | 12 | 102 | 90 | 450 |
Vertical Short-channel Few-layer MoS2 [10] | 2.8 | HfO2/10 | 8.7 | 4.92 | 107 | 73 | 100 |
Double Gate Monolayer MoTe2 [11] | 0.7 | SiO2/1.5 | 7 | - | 1.44 × 107 | 77 | 20 |
Double Gate Silicene Nanoribbons [12] | 2.22 | SiO2/1.5 | 10 | 100 | 1.15 × 105 | 66.9 | 39.8 |
Back Gate Bilayer WS2 [13] | 1.95 | HfLaO/10 | 18 | 31 | 105 | 295 | 300 |
Double Gate Bilayer WSe2 [14] | 1.4 | HfO2/0.037 | 6 | - | 2 × 106 | 76 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Q.; Ye, J.; Jahannia, B.; Wang, H.; Patil, C.; Al Foysal Redoy, R.; Sidam, A.; Sameer, S.; Aljohani, S.; Umer, M.; et al. Comprehensive Study and Design of Graphene Transistor. Micromachines 2024, 15, 406. https://doi.org/10.3390/mi15030406
Cai Q, Ye J, Jahannia B, Wang H, Patil C, Al Foysal Redoy R, Sidam A, Sameer S, Aljohani S, Umer M, et al. Comprehensive Study and Design of Graphene Transistor. Micromachines. 2024; 15(3):406. https://doi.org/10.3390/mi15030406
Chicago/Turabian StyleCai, Qian, Jiachi Ye, Belal Jahannia, Hao Wang, Chandraman Patil, Rasul Al Foysal Redoy, Abdulrahman Sidam, Sinan Sameer, Sultan Aljohani, Muhammed Umer, and et al. 2024. "Comprehensive Study and Design of Graphene Transistor" Micromachines 15, no. 3: 406. https://doi.org/10.3390/mi15030406