Multi-Step Mechanical and Thermal Homogenization for the Warpage Estimation of Silicon Wafers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing Process and Parametrized Samples
2.2. Multi-Scale Analysis for Thermal and Mechanical Properties
2.2.1. RVE Homogenization Analysis at the Meso-Scale
2.2.2. Boundary Conditions for RVE with Void Phase
2.2.3. Multi-Step Homogenization Procedure
- In direct homogenization (homo 1), the RVE is homogenized by using the properties of each material as listed in Table 1;
- In multi-step homogenization (homo 2), after process step 2, the RVE 2 consists of three materials: Si, SiO2, and Si3N4. At this stage, the properties of SiO2 and Si are substituted with the homogenized RVE 1 determined in the previous step. Then, after process step 3, the material properties of Si, SiO2, and Si3N4 are substituted with the homogenized properties of the RVE 2 as determined in the last step.
2.2.4. Numerical Prediction of Wafer Warpage at the Macro-Scale
3. Results and Discussions
3.1. Numerical Validation
3.2. Experimental Validation
3.3. Theoretical Analyses of the CTE Mismatch
3.4. Parameter Sensitivity Analyses and Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, J.H.; Lee, H.; Hwang, J.; Yoo, J. Ultra-Low ESL Capacitor Based on Silicon Technology with Substrate Embedded Platform. In Proceedings of the Electronic Components and Technology Conference, Orlando, FL, USA, 3–30 June 2020; pp. 861–866. [Google Scholar] [CrossRef]
- Bunel, C.; Murray, F. Ultra Thin Low ESL and Ultra Wide Broadband Silicon Capacitors. In Proceedings of the 2016 International Conference on Electronics Packaging, ICEP 2016, Hokkaido, Japan, 20–22 April 2016; pp. 27–30. [Google Scholar] [CrossRef]
- Lee, H.; Im, Y.; Kim, J.; Hwang, J.; Jeong, J.; Cho, Y.; Choi, H.; Shin, Y. Hybrid Approach for Large Size FC-BGA to Enhance Thermal and Electrical Performance Including Power Delivery. In Proceedings of the Electronic Components and Technology Conference, Las Vegas, NV, USA, 28–31 May 2019; pp. 300–305. [Google Scholar] [CrossRef]
- Song, C.; Wang, Q.; Zheng, K.; Zhou, Y.; Cai, J. Design and Simulation of Deep Trench Capacitor on High-Performance Silicon Interposer. In Proceedings of the 23rd International Conference on Electronic Packaging Technology, ICEPT 2022, Dalian, China, 10–13 August 2022. [Google Scholar] [CrossRef]
- Sunami, H. The Role of the Trench Capacitor in DRAM Innovation. IEEE Solid-State Circuits Newsl. 2009, 13, 42–44. [Google Scholar] [CrossRef]
- Trigg, A.D.; Yu, L.H.; Zhang, X.; Chong, C.T.; Kuo, C.C.; Khan, N.; Daquan, Y. Design and Fabrication of a Reliability Test Chip for 3D-TSV. In Proceedings of the Electronic Components and Technology Conference, Las Vegas, NV, USA, 1–4 June 2010; pp. 79–83. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, S.K.; Kim, S.E. Study of Thinned Si Wafer Warpage in 3D Stacked Wafers. Microelectron. Reliab. 2010, 50, 1988–1993. [Google Scholar] [CrossRef]
- Thakur, R.P.S.; Chhabra, N.; Ditali, A. Effects of Wafer Bow and Warpage on the Integrity of Thin Gate Oxides. Appl. Phys. Lett. 1994, 64, 3428–3430. [Google Scholar] [CrossRef]
- Draney, N.R.; Liu, J.J.; Jiang, T. Experimental Investigation of Bare Silicon Wafer Warp. In Proceedings of the IEEE Workshop on Microelectronics and Electron Devices, WMED: IEEE Electron Devices Northwest Regional Meeting, Boise, ID, USA, 16 April 2004; pp. 120–123. [Google Scholar] [CrossRef]
- Hebb, J.P.; Jensen, K.F. The Effect of Patterns on Thermal Stress during Rapid Thermal Processing of Silicon Wafers. IEEE Trans. Semicond. Manuf. 1998, 11, 99–107. [Google Scholar] [CrossRef]
- Che, F.; Li, H.Y.; Zhang, X.; Gao, S.; Teo, K.H. Development of Wafer-Level Warpage and Stress Modeling Methodology and Its Application in Process Optimization for TSV Wafers. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 944–955. [Google Scholar] [CrossRef]
- Wright, A.; Krach, F.; Thielen, N.; Grünler, S.; Erlbacher, T.; Pichler, P. Simulating Wafer Bow for Integrated Capacitors Using a Multiscale Approach. In Proceedings of the 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE, Montpellier, France, 18–20 April 2016. [Google Scholar] [CrossRef]
- Wang, L.; He, L.; Liu, F.; Yuan, H.; Li, J.; Chen, M. Mechanical Characterization of Multifunctional Metal-Coated Polymer Lattice Structures. Materials 2024, 17, 741. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, Y.; Ellyin, F. A Unified Periodical Boundary Conditions for Representative Volume Elements of Composites and Applications. Int. J. Solids Struct. 2003, 40, 1907–1921. [Google Scholar] [CrossRef]
- Li, S.; Sitnikova, E. An Excursion into Representative Volume Elements and Unit Cells. In Comprehensive Composite Materials II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 451–489. [Google Scholar] [CrossRef]
- Feng, W.; Shimamoto, H.; Kawagoe, T.; Honma, I.; Yamasaki, M.; Okutsu, F.; Masuda, T.; Kikuchi, K. Warpage Reduction and Thermal Stress Study of Dicing Process in Wafer-to-Wafer Bonding Fabrication. IEEE Trans. Electron. Devices 2022, 69, 6265–6269. [Google Scholar] [CrossRef]
- Bacciocchi, M.; Savino, V.; Lanzoni, L.; Tarantino, A.M.; Viviani, M. Multi-Phase Homogenization Procedure for Estimating the Mechanical Properties of Shot-Earth Materials. Compos. Struct. 2022, 295, 115799. [Google Scholar] [CrossRef]
- Yang, T.F.; Kao, K.S.; Cheng, R.C.; Chang, J.Y.; Zhan, C.J. Evaluation of Cu/SnAg Microbump Bonding Processes for 3D Integration Using Wafer-Level Underfill Film. Solder. Surf. Mt. Technol. 2012, 24, 287–293. [Google Scholar] [CrossRef]
- Kim, S.K.; Jang, C.-M.; Hwang, J.-M.; Park, M.-C. Warpage Simulation by the CTE Mismatch in Blanket Structured Wafer Level 3D Packaging. J. Korean Soc. Manuf. Technol. Eng. 2013, 22, 168–172. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, S.K.; Kim, S.D.; Kim, S.E. Wafer Warpage Analysis of Stacked Wafers for 3D Integration. Microelectron. Eng. 2012, 89, 46–49. [Google Scholar] [CrossRef]
- Kang, S.-G.; Lee, J.-E.; Kim, E.-S.; Lim, N.-E.; Kim, S.-H.; Kim, S.-D.; Kim, S.E.-K. Fabrication and Challenges of Cu-to-Cu Wafer Bonding. J. Microelectron. Packag. Soc. 2012, 19, 29–33. [Google Scholar] [CrossRef]
- Petersen, K.E. Dynamic Micromechanics on Silicon: Techniques and Devices. IEEE Trans. Electron. Devices 1978, 25, 1241–1250. [Google Scholar] [CrossRef]
- Mrstik, B.J.; Revesz, A.G.; Ancona, M.; Hughes, H.L. Structural and Strain-Related Effects during Growth of SiO2 Films on Silicon. J. Electrochem. Soc. 1987, 134, 2020–2027. [Google Scholar] [CrossRef]
- Tada, H.; Kumpel, A.E.; Lathrop, R.E.; Slanina, J.B.; Nieva, P.; Zavracky, P.; Miaoulis, I.N.; Wong, P.Y.; Tada, H.; Kumpel, A.E.; et al. Thermal Expansion Coefficient of Polycrystalline Silicon and Silicon Dioxide Thin Films at High Temperatures. J. Appl. Phys. 2000, 87, 4189–4193. [Google Scholar] [CrossRef]
- Tabata, O.; Kawahata, K.; Sugiyama, S.; Igarashi, I. Mechanical Property Measurements of Thin Films Using Load-Deflection of Composite Rectangular Membranes. Sens. Actuators 1989, 20, 135–141. [Google Scholar] [CrossRef]
- Shackelford, J.F.; Han, Y.-H.; Kim, S.; Kwon, S.-H. CRC Materials Science and Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Hughey, M.P.; Cook, R.F. Massive Stress Changes in Plasma-Enhanced Chemical Vapor Deposited Silicon Nitride Films on Thermal Cycling. Thin. Solid. Films. 2004, 460, 7–16. [Google Scholar] [CrossRef]
- Sharpe, W.N.; Yuan, B.; Vaidyanathan, R.; Edwards, R.L. Measurements of Young’s Modulus, Poisson’s Ratio, and Tensile Strength of Polysilicon. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Nagoya, Japan, 26–30 January 1997; pp. 424–429. [Google Scholar] [CrossRef]
- Hu, S.M. Stress-related Problems in Silicon Technology. J. Appl. Phys. 1991, 70, R53–R80. [Google Scholar] [CrossRef]
- Baek, J.W.; Yang, W.S.; Hur, M.J.; Yun, J.C.; Park, S.J. Representative Volume Element Analysis for Wafer-Level Warpage Using Finite Element Methods. Mater. Sci. Semicond. Process 2019, 91, 392–398. [Google Scholar] [CrossRef]
- Okada, Y.; Tokumaru, Y. Precise Determination of Lattice Parameter and Thermal Expansion Coefficient of Silicon between 300 and 1500 K. J. Appl. Phys. 1984, 56, 314–320. [Google Scholar] [CrossRef]
- Omairey, S.L.; Dunning, P.D.; Sriramula, S. Development of an ABAQUS Plugin Tool for Periodic RVE Homogenisation. Eng. Comput. 2019, 35, 567–577. [Google Scholar] [CrossRef]
- Moeini, M.; Begon, M.; Lévesque, M. Numerical Homogenization of a Linearly Elastic Honeycomb Lattice Structure and Comparison with Analytical and Experimental Results. Mech. Mater. 2022, 167, 104210. [Google Scholar] [CrossRef]
- Yao, W.Z.; Roqueta, F.; Craveur, J.C.; Belhenini, S.; Gardes, P.; Tougui, A. Modelling and Analysis of the Stress Distribution in a Multi-Thin Film System Pt/USG/Si. Mater. Res. Express 2018, 5, 046405. [Google Scholar] [CrossRef]
- Yazdi, S.A.F.F.; Garavaglia, M.; Ghisi, A.; Corigliano, A. A New Approach for the Control and Reduction of Warpage and Residual Stresses in Bonded Wafer. Micromachines 2021, 12, 361. [Google Scholar] [CrossRef]
Material | Young’s Modulus (GPa) | Poisson’s Ratio | CTE (ppm/K) |
---|---|---|---|
SiO2 | 69 [22] | 0.14 [23] | 0.5 [24] |
Si3N4 | 290 [25] | 0.27 [26] | 3.4 [27] |
Polysilicon | 169 [28] | 0.22 [28] | 2.8 [29] |
Silicon | 161 [30] | 0.28 [30] | 4.4 [31] |
Method | CTE (ppm/K) after Process Step 1 | CTE (ppm/K) after Process Step 3 |
---|---|---|
Direct homogenization | ||
Multi-step homogenization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Z.; Chen, M.; Deng, Y.; Huang, S.; Liu, S.; Li, J. Multi-Step Mechanical and Thermal Homogenization for the Warpage Estimation of Silicon Wafers. Micromachines 2024, 15, 408. https://doi.org/10.3390/mi15030408
Xiang Z, Chen M, Deng Y, Huang S, Liu S, Li J. Multi-Step Mechanical and Thermal Homogenization for the Warpage Estimation of Silicon Wafers. Micromachines. 2024; 15(3):408. https://doi.org/10.3390/mi15030408
Chicago/Turabian StyleXiang, Zhouyi, Min Chen, Yonghui Deng, Songhua Huang, Sanli Liu, and Ji Li. 2024. "Multi-Step Mechanical and Thermal Homogenization for the Warpage Estimation of Silicon Wafers" Micromachines 15, no. 3: 408. https://doi.org/10.3390/mi15030408