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Abstract: Synaptic transistors with low-temperature, solution-processed dielectric films have demon-
strated programmable conductance, and therefore potential applications in hardware artificial neural
networks for recognizing noisy images. Here, we engineered AlOy/InOy synaptic transistors via a
solution process to instantiate neural networks. The transistors show long-term potentiation under
appropriate gate voltage pulses. The artificial neural network, consisting of one input layer and
one output layer, was constructed using 9 x 3 synaptic transistors. By programming the calculated
weight, the hardware network can recognize 3 x 3 pixel images of characters z, v and n with a high
accuracy of 85%, even with 40% noise. This work demonstrates that metal-oxide transistors, which
exhibit significant long-term potentiation of conductance, can be used for the accurate recognition of
noisy images.
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1. Introduction

Artificial neural networks (ANNs) have achieved remarkable success in machine
vision tasks such as image recognition, driving the demand for specialized hardware [1-4].
Emerging devices combining storage and computational functionalities have become the
focus of research, including memristors [5-7], synaptic transistors [8-11], and ferroelectric
transistors [12-15]. By emulating their behavior, it is possible to instantiate neural net-
works capable of executing complex tasks like image recognition directly at the hardware
level. However, the practical implementation of neuromorphic computing using these
in-memory computation devices presents significant challenges, particularly maintaining
robust operation under non-ideal environmental conditions.

Oxide-based synaptic transistors are promising candidates for the implementation of
ANN s [10]. They leverage the formation of the electric double layer in the oxide electrolyte
that enables substantial modulation of the channel conductance, thereby mimicking the
biological synaptic plasticity [16-18]. This property means they are suitable for use as
weights in connections of the network, especially when dealing with high-noise image
recognition. Furthermore, amorphous oxide films are attractive because they are compatible
with large-area semiconductor device processes that can be integrated into device networks.

In this study, we employed an InOy synaptic transistor with an AlOy solid electrolyte as
the dielectric layer and 9 x 3 transistors were used to construct a single-layer neural network
model. The synaptic transistor exhibited pronounced long-term potentiation, which enables
the construction of networks and recognizes images under high-noise conditions.
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2. Materials and Methods

The method of film deposition has been reported in a previous study [19]. The
AlOy precursor was synthesized by dissolving aluminum nitrate hydrate, nitric acid and
ammonium hydroxide in hydrogen peroxide, and it was spin-coated on a heavily doped
silicon wafer. The sample was annealed on a hot plate at 300 °C for 30 min. After repeating
this process five times, the thickness of the AlOy film reached about 30 nm. Then, the InOx
precursor was synthesized by dissolving indium nitrate hydrate in deionized water and
was spin-coated on the AlOy film. The sample was annealed on a hot plate at 230 °C for 2 h.
The Al top electrodes were deposited on the InOy film to fabricate an AlOy/InOx capacitor.
For the fabrication of the transistor, the InOy film was patterned by photolithography
and etched with hydrochloric acid. The InOy films were patterned to reduce the gate
leakage current. Subsequently, the sample was annealed on a hot plate at 100 °C for
10 min to repair the damage from the etching process. Then, Al was used as source/drain
electrodes to fabricate bottom-gate, top-contact transistors. The films and devices were
characterized by a semiconductor parameter analyzer and an electrochemical impedance
analyzer. The composition of the SiO, / AlOy thin film was characterized by secondary-ion
mass spectroscopy (SIMS), which measured the depth profiles with a 2 kV Cs+ sputter
beam. Cross-sectional transmission electron microscope (TEM) images were obtained with
the JEM 2100F system operating at 200 kV and the samples were prepared on silicon using
focused-ion-beam techniques.

3. Results

Figure 1a shows the scheme of the AlO, /InOy capacitor. The capacitor is equivalent to
the circuit that contains three parallel RC in series, representing the dielectric layer, electric
double layer (EDL) and semiconductor layer. The EDL is formed by the accumulation of
protons at the interface between AlOy and InOx under positive bias at the bottom electrode.
Thus, the impedance and the capacitance are dependent on the frequency and the bottom
electrode bias, as shown in Figure 1b,c. The measured capacitances were determined by
the complex impedance and represent the response of the film to the AC voltage with
various frequencies and DC biases. The capacitive components in the equivalent circuit
represent the corresponding charge storage and release processes within the thin film.
For example, the EDL capacitance Cgpy, represents the storage and release of ions at the
interface between AlOy and InOy. Due to the formation of the EDL, the total capacitance of
the capacitor increases as the bias increases. Meanwhile, induced by the EDL, the carriers
in InOy, accumulate at the interface and increase the conductance of InOy. Thus, the total
impedance of the capacitor decreases as the bias increases. At negative bias, due to the
absence of EDL formation, the impedance and capacitance are close at bias values of 0 V
and -3 V.

Therefore, the conductance of the transistor can be modulated in a wide range by Vg
pulse stimulation, as shown in Figure le. The gate leakage current at Vg = 2 V is about
2.9 x 1072 A, which is lower than I = 6.3 x 107> A. The results can confirm that the
electrical insulation characteristics of the AlOx layer are good enough for the gate dielectric
layer. This is because the capacitance increases when the frequency decreases at a bias
value of 3 V, as shown in Figure 1c. It indicates the interfacial ion concentration would
increase with a reducing scan rate. Corresponding to the low frequency (0.1-10 Hz) with
large capacitance, an appropriate scanning rate (in Figure 1le, the scan rate is 0.41 V/s) can
effectively ensure the formation of EDL and the plasticity of the device. Under a positive
gate voltage, the ions in AIOx move towards the interface. Due to the ion accumulation,
the electric double layer (EDL) is formed near the interface. In addition, the ions may be
adsorbed on the interface electrochemically. The large capacitance of the EDL and the
charge from adsorption stimulate the channel carrier and increase the current. Depending
on the decay time of the accumulated ions, the increased current can be maintained for
a long time (serving as long-term potentiation) or a short time (serving as short-term
potentiation). By applying the V pulses, the current increases with the continuous pulse
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stimulation, demonstrating short-term potentiation, as shown in Figure 1f. After the pulses,
the current decays but remains above the initial value, indicating long-term potentiation.
Various pulse widths and intervals would affect the potentiation behaviors. As shown
in Figure 1g, when increasing the pulse width from 20 ms to 70 ms, the drain current
stimulated by 30 gate pulses increases from 0.72 pA to 1.10 pA. As shown in Figure 1h,
when increasing the pulse interval from 20 ms to 70 ms, the drain current stimulated
by 30 gate pulses decreases from 0.52 pA to 0.37 pA. By increasing the pulse width and
reducing the pulse interval, the accumulated ions at the interface increased, resulting
in a higher drain current. The paired pulse facilitation (PPF) behavior can be observed
in Figure 1i. The PPF index can be fitted by the double-phase exponential function as
PPF index = 1+ Ajexp(—At/11) + Azexp(—At/12). 7y and 1, are estimated to be 12.3 ms
and 284.3 ms. The relaxation time indicates that the PPF is mainly related to ion response
at 1-10 Hz.
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Figure 1. (a) A scheme of the AlOy/InOx capacitor. (b,c) The impedance and the capacitance of the
AlOy /InOx capacitor at various biases. (d) A scheme of the AlOy/InOx TFT. (e) Transfer curves of
the AlOx/InOx TFT before and after Vg pulses at V4 =2 V. (f) The response of five pulses (amplitude:
1.5V to 5V, width: 20 ms, period: 100 ms). The drain current corresponding to the consecutive pulses
with (g) various pulse widths (20 ms to 70 ms) and constant pulse intervals and amplitudes, or with
(h) various pulse intervals (20 ms to 70 ms) and constant pulse widths and amplitudes. (i) Paired
pulse facilitation (PPF) index as a function of the interval time At.
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To characterize the hydrogen in the alumina, transmission electron microscopy (TEM)
of Si/ AlOx/InOx and secondary ion mass spectrometry (SIMS) of SiO, / AlIOx were per-
formed. As shown in Figure 2a, the alumina was amorphous with inapparent pinholes.
The pinholes are probably formed due to the decomposition of nitric acid and ammonium
hydroxide in the precursor. The amorphous structure may provide a transport channel for
the hydrogen in the film. The hydrogen concentration was related to the annealing temper-
ature. Figure 2b,c show the hydrogen and aluminum intensity with the film annealed at
200 °C and 300 °C. The hydrogen concentration decreases when the annealing temperature
increases from 200 °C to 300 °C. It indicates that the source of hydrogen ions is probably the
residual decomposition of the precursor. The absorbed moisture is also a possible source
because at the start of sputtering, the surface shows an obvious hydrogen intensity. This
means that the moisture in the atmosphere was adsorbed by the film. To characterize the
influence of temperature on the retention time, we analyzed the drain current stimulated
by a gate pulse at various temperatures as shown in Figure 2d. The decay of the current
was fitted with the exponential function, i.e., Iy = Igjexp(—t/T) + Iqo. The extracted time
constant T as a function of the temperature is shown in Figure 2e. When increasing the
temperature from —50 °C to 50 °C, T decreases from 2.41 s to 0.69 s. As the temperature
increases, the ions migrate more easily. Thus, the carrier induced by the electric double
layer decays faster after the pulse at a high temperature, resulting in a shorter retention
time for the conductance.
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Figure 2. (a) The transmission electron microscopy (TEM) cross-section image of Si/ AlOy /InOx (scale
bar is 6 nm). The secondary ion mass spectrometry (SIMS) depth profile of SiO, / AlOx annealed at
200 °C and 300 °C for hydrogen (b) and aluminum (c). (d) The I4-t curve stimulated by a gate pulse
(6'V, 100 ms) at various temperatures (left) and the enlarged view of the pulse response (right). (e) The
time constant T as a function of the temperature. 7 is fitted by the equation Iy = Igjexp(—t/7) + I4o-

The ability of long-term potentiation to provide the weight update function is essential
in artificial neural networks (ANNSs). We built an ANN that can recognize three types of
images with 3 x 3 pixels like characters z, v and n. The training and test datasets contain
9999 and 999 sets of pixel data, respectively. The framework of the network contains one
input layer (nine inputs) and one output layer (three outputs), as shown in Figure 3a. The
input layer and output layer are fully connected; this means that the output value o, is
the sum of all inputs, i.e., on = 21911:1 (Pm %X Gmn), where pp, is the normalized grayscale
values used as input and G, i, is the connection weight. Considering that the conductance
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of a transistor is positive, G is restricted to being greater than zero. The activation
function is yn = 1/[1 + exp(—on)] (Sigmoid function). The pixel grayscale was introduced
with noise, which is expressed as pm = 1 — opn and 0 + opy, for the black and white pixel,
respectively, where ¢ is the degree of noise and py, is the random noise in the range of zero
to one. Through training the ANN in software using the backpropagation algorithm [20],
the weights in the ANN are updated from the random values (Figure 3b) to converge
(Figure 3c). The accuracy is 100% for the images when ¢ = 0.4. The weight mapping
indicates that three transistors are needed to update the weight.
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Figure 3. (a) A scheme of an artificial neural network with one input layer and one output layer to
recognize the 3 x 3 pixel images z, v and n. The distribution of weights after software training at the
first epoch (b) and the last epoch (c).

For implementation in devices, the normalized grayscale values p,, were converted
to the drain voltage, when 0 < p,, < 0.1, Vg =0.1V,and when09 <p <1, V4 =1V.
The conductance of the transistors was used as the connection weight. The sum of the
drain currents can represent the output value, i.e., on = Z?nzl (Vg X Gmpn) = Z?n:l Igmn, as
shown in Figure 4a. By comparing the values of 01, 02, and 03, the images can be recognized.
According to the simulation results, the corresponding devices can be trained using gate
voltage pulses. The initial conductance mapping was carried out in the range of about 10 nS
to 80 nS (Figure 4b) and updated to a similar conductance distribution. The corresponding
conductance was in the range of about 1 uS to 5 uS (Figure 4c). Although the device size
is relatively large, it can be further scaled down after optimizing the following process:
(1) the spin-coating process of the InOy film for improving the film’s quality and uniformity;
(2) the photolithography process for high exposure resolution; (3) the etching process to
eliminate the nonideal etching profile, like undercut and overetching; (4) the metal lift-off
process to achieve a high yield rate.

A detailed training process for hardware device arrays was implemented in a similar
way to the simulation in the software. The drain current with a period time of 3 s served as
one epoch. The devices were set to an initial state of about 10 nS. When the image pixel data
were input, namely the corresponding drain bias, the I4-t curves were measured. For the
transistors that did not require updated conductance, no gate pulse was applied. For the
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transistors that required updated conductance, gate pulses (width: 90 ms, amplitude: 3 V)
were applied. Examples of the I4-t curves at various drain voltages are shown in Figure 5a.
Figure 5b,c show the process of recognizing image z. The grayscale values were inputted
as V4 into each column, and the I4 of each row were summed to obtain o, After 30 epochs,
the conductance of the corresponding devices was enhanced to satisfy the need for image
recognition, as shown in Figure 5d.
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Figure 4. (a) A scheme of the 9 x 3 transistor network. The normalized grayscale values of image
pixels are used as the V4. The conductance of the transistors represents the weights in neural
connection and is modifiable by the gate voltage pulses. The inset shows the optical microscope
photograph of the transistor array (the unit of the ruler is cm) and a transistor in the array (the scale
bar is 400 um). The distribution of weights in the transistors is illustrated for the first epoch (b) and
the last epoch (c).
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Figure 5. (a) The I4-t curves at various V4 with and without gate pulse stimulation. (b) The image
grayscale matrix. (c) I4-t curves of the 9 x 3 device array. The V4 values correspond to the grayscale
in (b). (d) The zoom in graphs of the weight updated devices in (c).
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Figure 6a shows the recognition accuracy when the images have various noises. When
increasing the conductance of corresponding devices, the accuracy increases with each
epoch. The accuracy can reach 100% by epoch 4 for these three images without noise
(Figure 6a, black curve). With an increasing noise degree ¢, the accuracy decreases.
When ¢ = 0.4, the accuracy can reach 85% by epoch 19 (Figure 6a, purple curve). The
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decrease in the accuracy with ¢ is probably because of the variation in conductance. The
effect of the AG on accuracy has been estimated as shown in Figure 6b. The definition of
AG in Figure 6b is the ratio of the conductance with inputting gate voltage pulses and the
conductance without inputting gate voltage pulses. The accuracy tends to increase with AG
when it is below 100, and then it remains almost constant. Figure 6c—e depict the evolution
of the output, namely the summed current, over the course of training. When the input
image is z, the corresponding summed current 01 increases with training and surpasses
the 0, and o3, indicating successful recognition of image z. With the same weight mapping,
the corresponding summed current can increase to the maximum among the three outputs
when either image v or n is inputted.
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Figure 6. (a) The accuracy of image recognition at various noises ¢. (b) The estimated effect of AG on
accuracy at o = 0.4. (c—e) Examples of input images z, v, and n, where the current z-I4, v-I, and n-I4
represent the outputs 01, 0, and o3 in Figure 3a, respectively. The largest current indicates that the
recognition result corresponds to the respective image.

In addition to the implementation of image recognition, conductance can be used to
map characters. The conductance at appropriate locations was modulated by gate pulses
(amplitude: 10 V, width: 50 ms) and read at V4 = 0.1 V after 10 s. The 3 x 3 devices can
represent images such as z, v, and n (Figure 7). The contrast ratio, namely the current ratio,
can attain a value of about 10%.

a(8)

@) (b) () 104
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10710

Figure 7. The programming conductance mapping of 3 x 3 AlOy/InOy TFTs representing the charac-
ters (a) z, (b) v and (c) n. The scale bar is ranged from 10~10'S (blue) to 10~% S (red). The red pixels
represent devices with high conductance, which form the simple characters in 3 x 3 pixel images.
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4. Conclusions

The synaptic transistors with AlO, as the electrolyte layer and InOy as the semiconduc-
tor layer were used to implement an ANN for image recognition. Through controlling the
ion accumulation at the interface by gate voltage, the conductance of the AlO,/InOy tran-
sistors shows long-term potentiation. We implemented an ANN comprising 9 x 3 synaptic
transistors. By constructing appropriate weight maps, the network shows a high accuracy
of 85% in recognizing three types of 3 x 3 pixel images with a high noise of 40%. This
work presents a feasible approach for oxide synaptic transistors to construct a network and
recognize noisy images.
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