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Abstract: Morse code recognition plays a very important role in the application of human–machine
interaction. In this paper, based on the carbon nanotube (CNT) and polyurethane sponge (PUS)
composite material, a flexible tactile CNT/PUS sensor with great piezoresistive characteristic is
developed for detecting Morse code precisely. Thirty-six types of Morse code, including 26 letters
(A–Z) and 10 numbers (0–9), are applied to the sensor. Each Morse code was repeated 60 times,
and 2160 (36 × 60) groups of voltage time-sequential signals were collected to construct the dataset.
Then, smoothing and normalization methods are used to preprocess and optimize the raw data.
Based on that, the long short-term memory (LSTM) model with excellent feature extraction and
self-adaptive ability is constructed to precisely recognize different types of Morse code detected by
the sensor. The recognition accuracies of the 10-number Morse code, the 26-letter Morse code, and
the whole 36-type Morse code are 99.17%, 95.37%, and 93.98%, respectively. Meanwhile, the Gated
Recurrent Unit (GRU), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Random
Forest (RF) models are built to distinguish the 36-type Morse code (letters of A–Z and numbers of
0–9) based on the same dataset and achieve the accuracies of 91.37%, 88.88%, 87.04%, and 90.97%,
respectively, which are all lower than the accuracy of 93.98% based on the LSTM model. All the
experimental results show that the CNT/PUS sensor can detect the Morse code’s tactile feature
precisely, and the LSTM model has a very efficient property in recognizing Morse code detected by
the CNT/PUS sensor.

Keywords: morse code; carbon nanotube (CNT); flexible tactile sensor; recognition; long short-term
memory (LSTM); accuracy

1. Introduction

Flexible tactile sensors can achieve highly sensitive and precise recognition of tactile
information, such as force, pressure, and shape changes, enabling machines to perceive and
understand the external environment more intelligently [1]. In recent years, researchers
have been attempting to use flexible sensors to acquire external information. They have
designed flexible tactile sensors with different structures and materials to achieve high-
sensitivity detection of various forces [2,3], enabling texture recognition [4,5] and tem-
perature sensing [6]. Inspired by the fingerprints and epidermal structures of the skin,
researchers have created stress sensors with porous structures or microstructures to fur-
ther broaden the range of perceptual forces, increase sensitivity, and further enhance the
performance of the sensors [7,8]. In addition, flexible sensors can sense the shape and
type of the object, and real-time monitoring and recognition of the shape of an object can
be realized by arranging flexible sensors on the surface of an object [9,10]. In the field of
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medical devices, sports monitoring, etc., human physiological signals can be monitored by
flexible sensors [11–13]. With the rapid development of wearable device technology, flexible
tactile sensors, as an important sensing technology, have attracted widespread attention
in the field of wearable devices. Arranging tactile sensors on the hand or arm is used to
validate the ability of tactile sensors to detect joint flexion, and in many works [14–17],
the task of hand pose recognition is accomplished by supervised learning using tactile
gloves. At the same time, tactile sensors can be used to sense hand-contact patterns, e.g.,
to categorize touch patterns [18], to recognize grasping objects [19], and to differentiate
scratching behavior [20].

It is increasingly important to promote the application and development of flexible
tactile sensor technology in the field of wearable devices. Song et al. [21] integrated
six flexible pressure-sensor units into a wristband and achieved recognition of seven
wrist gestures, five letter gestures, and eight sign language gestures with accuracies of
99.40%, 95%, and 98.44%, respectively. Gao et al. [22] integrated piezoresistive sensors
and piezoelectric sensors into tactile gloves to realize the recognition of shape, size, and
surface morphology of objects, and the recognition accuracy was 84%. Mekruksavanich
et al. [23] used Inertial and Stretch sensors, combined with deep-learning techniques, to
realize the recognition of human activity with a 97.68% recognition accuracy. Yu et al. [24]
used MWCNTs/PDMS to achieve recognition of the four states (sitting, standing, walking,
and running) with a recognition accuracy of 94%. For the research of flexible tactile
sensor application processes, researchers try to use the flexible sensor on the recognition
of Morse code. Adepu et al. [25] used two TeNWs/Ti3C2Tx nanohybrid-based sensors
representing dot and dash signals, respectively, to achieve a wireless transmission of Morse
code. Sadiq et al. [26] based their research on PDMS-CNTs film by detecting different
human movements and recognizing Morse code and words.

In this paper, a flexible piezoresistive tactile sensor is designed and prepared based on
the carbon nanotube (CNT) and polyurethane sponge (PUS) composite material to perceive
36 types of Morse code action precisely. To improve identification accuracy, the smoothing
and normalization methods are applied to preprocess the raw time-sequential voltage
signals collected from the CNT/PUS sensor for different Morse code. After that, the long
short-term memory (LSTM) model with high feature-extraction property is constructed to
recognize different Morse code signals, and excellent identification results are obtained. All
the experiment results demonstrate that the CNT/PUS sensor can distinguish the Morse
code feature signal precisely, and the LSTM model has a very efficient ability in recognizing
the voltage time-sequential signals for the Morse code from the sensor.

2. Design and Preparation
2.1. Structure Design of the CNT/PUS Sensor

Based on the piezoresistive effect, a flexible tactile sensor consisting of five layers is
designed, as shown in Figure 1. The sensitive layer is the core part of the tactile sensor,
which is very sensitive to tactile pressure, and it is composed of the CNT/PUS composite
with significant piezoresistive properties; the upper and lower electrode layers are made
of copper foil with excellent conductivity and ductility; and the two encapsulation layers
are made of polyimide tape with high-temperature resistance, corrosion resistance, and
flexibility, which are used to protect the sensitive layer from being worn.
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Figure 1. Schematic of the CNT/PUS sensor structure.

2.2. Preparation of the CNT/PUS Sensor

The key component of the flexible sensor is the pressure-sensitive layer, which is
mainly composed of the CNT/PUS composite. In this paper, CNT material with excellent
conductivity and stability is selected as the pressure-sensitive material of the flexible
piezoresistive sensor. The performance parameters of the CNT solution used to make the
CNT/PUS sensor are shown in Table 1.

Table 1. The performance parameters of the CNT solution.

Properties Value Unit

quality score 2 %
purity >98 %
length 10~30 µm

diameter 5~15 nm

The PUS is chosen as the flexible substrate material for the CNT/PUS composite in
the sensitive layer, which is provided by Fushun Polyurethane Products Co., Ltd. (Yantai,
China). The uniformly distributed porous structure of PUS makes it lightweight and highly
elastic, making it the ideal material for CNT deposition.

The preparation process of the CNT/PUS sensor is shown in Figure 2. Firstly, the
polyurethane sponge is cut into a size of 30 mm × 10 mm × 5 mm and washed with
deionized water for 5 min to remove surface impurities, resulting in a clean polyurethane
sponge. Then, the cleaned polyurethane sponge is placed in a drying oven set at 90 ◦C for
1.5 h to remove the residual moisture inside the sponge, resulting in a dried polyurethane
sponge, as shown in Figure 2b. The dried polyurethane sponge is immersed in a carbon
nanotube solution, as shown in Figure 2c, for 1 h to ensure uniform adsorption of carbon
nanotube on the skeleton of the polyurethane sponge pores. After immersion, the carbon
nanotube/polyurethane sponge is taken out and placed in a drying oven set at 90 ◦C for
2 h to remove the residual moisture in the sponge pore structure. Through the above steps,
the carbon nanotube/polyurethane sponge shown in Figure 2d is obtained, which is used
as the pressure-sensitive layer of the flexible tactile sensor. Attach copper foil to both ends
of the carbon nanotube/polyurethane sponge and lead out the wires, fix them firmly with
polyimide tape, and, finally, obtain the CNT/PUS sensor.

Before the encapsulation process, the copper foil and polyimide tape were accurately
cut to ensure their dimensions matched the carbon nanotube/polyurethane sponge’s size
of 30 mm × 10 mm. Paste the cut copper foil and polyimide tape on the upper and lower
surfaces of the CNT/PUS, and at the same time, lead the wires at the junction of the copper
foil and the PU sponge, and press the whole sensor with a finger to make it stick firmly.
The specific installation process is shown in Figure 3.
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2.3. Performance Testing of the CNT/PUS Sensor

Based on our previous work [27], the CNT/PUS sensor had high sensitivity (2.7% kPa−1),
prompt response (response/recovery time is 60/100 ms), and remarkable long-term stabil-
ity (with the range of 0−100 kPa at 0.1 Hz for a period of 18,000 s). To verify the superior
performance of the CNT/PUS sensor, a performance comparison of the sensor with the
existing sensors in terms of material, preparation method, and sensor performance (sensi-
tivity, response/recovery time, repeatability, and pressure range) has been done, as shown
in Table 2. From the comparison in Table 2, it can be seen that the CNT/PUS sensor has
better piezoresistive performance than the others.

Table 2. Performance comparison between the recently reported pressure sensors and this work.

Ref. Materials Preparation
Method

Sensitivity
(k·Pa−1)

Response/
Recovery
Time (ms)

Repeatability
(cycles)

Pressure Range
(k·Pa)

This work CNT/PUS soaking-drying 0.027 60/100 18,000 0~100
[28] MWCNT/PDMS scraping-coating 0.026 320/170 2000 0~31.83
[29] GNPs/MWCNTs/SR dipping-coating 0.062 45/83 2000 0~4.5
[30] MoS2/HEC/PUS soaking-drying 0.746 120/120 2000 0~250
[31] CuRGOMF dipping-drying 0.088 300/NA * 5000 0~18

* Where “NA” is not mentioned in the paper.
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To verify the deviation of the CNT/PUS sensor, deviation measurements were con-
ducted on the prepared sensors. The specific equation is as follows:

δL =
∆Lmax

YFS
× 100% (1)

where δL represents the value of deviation in the sensor response, ∆Lmax is the maximum
deviation of the sensor’s output response, and YFS is the maximum range of the sensor’s
output response.

Five CNT/PUS sensors were obtained according to the same preparation process and
encapsulation process. A pressure of 1 N was applied to each sensor for the same time
and then withdrawn, and the voltage of the sensor outputs during this time period was
recorded at all times. The voltage was recorded for the five sensor samples at 50, 150, 250,
350, and 450 frames, and the response curves are shown in Figure 4. Then, the sample
standard deviation of the response time of the sample five sensors at 50, 150, 250, 350, and
450 frames was calculated, and the sample standard deviation was used to measure the
degree of dispersion of each sample point with the following equation:

S =

√√√√ 1
N − 1

N

∑
I=1

(
Xi − X

)2 (2)

where X is the sample mean, S is the sample standard deviation, and N is the number
of samples.
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According to Equation (2), the sample standard deviations for the five sensors at
50, 150, 250, 350, and 450 frames were calculated as 0.038 V, 0.075 V, 0.026 V, 0.011 V, and
0.0277 V, respectively. The maximum voltage output of the sensor was 1.06 V, the maximum
deviation of the sensor’s output response ∆Lmax was 0.075 V, and the maximum range
of the sensor’s output response YFS was 1.06 V. Therefore, according to Equation (1), the
maximum deviation rate of the sensor samples δL was calculated to be 7.08%.

In summary, the CNT/PUS sensor prepared in this study exhibits excellent piezoresis-
tive performance and low deviation, making it well-suited for the perception and detection
of tactile signals. Based on the superior performance of this sensor, further research can be
conducted on the high-precision detection of Morse code.
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2.4. Sensing Mechanism of the Flexible Tactile Sensor

In this paper, a flexible tactile CNT/PUS sensor was prepared, and its performance
has been analyzed. The aim of this paper is to investigate the sensing mechanism of the
prepared CNT/PUS sensor.

At the microscopic level, when an external force is applied to the CNT/PUS sensor,
the structure of the sensor’s flexible substrate undergoes compression. This compres-
sion changes the number of conductive pathways in the internal structure, leading to a
significant change in the sensor’s resistance, as shown in Figure 5a.
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At the macroscopic level, assuming the total resistance of the CNT/PUS sensor is
Ra. This total resistance is the sum of three components: the electrode layer resistance Re,
the piezoresistive layer resistance Rs, and the contact resistance RC. Therefore, the total
resistance of the sensor in its initial state can be represented by Equation (3):

Ra = Re + Rs + RC (3)

When the pressure was applied on the sensor, the electrode layer resistance Re re-
mained almost unchanged due to the stability of its structure. However, the piezoresistive
layer undergoes compression under pressure due to its porous structure, leading to a sig-
nificant decrease in both the piezoresistive layer resistance Rs and the contact resistance Rc,
as shown in Figure 5b. By analyzing the sensing mechanism of the CNT/PUS sensor, it is
found that the change in sensor resistance is caused by the piezoresistive effect. This process
converts mechanical pressure signals into electrical signals, which is of great significance
for developing highly sensitive flexible tactile sensors.

The results indicate that the flexible tactile sensor, CNT/PUS sensor, prepared in this
study is based on the piezoresistive effect. The performance of this sensor is closely related
to its materials and structural design. These factors provide important bases for improving
its performance and expanding the sensor’s application.

3. Data Acquisition for Morse Code Expression

This work aims to prepare a piezoresistive flexible tactile sensor for Morse code
recognition. Tactile signals generated when expressing Morse code were captured using
the CNT/PUS sensor, achieving accurate recognition of Morse code.

3.1. The Expression of Morse Code

In the Morse code system, a character is composed of short signals (dot signal “•”) and
long signals (dash signal “-”), with different arrangements of signals representing different
English letters, numbers, and punctuation marks. Specifically, the duration of a dot signal
is one unit length, and the duration of a dash signal is three units in length. The interval
between each signal is one unit in length, and the interval between each character is seven
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units in length. Different combinations of dot and dash signals form the basic symbol set of
Morse code, as shown in Figure 6.
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There are various forms of Morse code, including those based on light signals [32],
electrical signals [33], and electrochromic signals [34], etc., and each form has its unique
advantages and application scenarios as shown in Table 3. By comparing gesture coding
with other forms of Morse code, the low cost and high flexibility of gesture coding have a
unique advantage in the case of limited resources or restricted environments. In this paper,
we use gesture coding to simulate Morse code signals.

Table 3. Advantages and disadvantages of different forms of Morse code.

Ref. Principle Advantages Disadvantages

This work Gesture-based High flexibility High complexity of
recognition

[32] Light-based Long-distance transmission
High-speed transmission

Environment-dependent
High visualization

requirements

[33] Electrical High stability
Easy to implement

Limited distance
Energy-consuming

[34] Electrochromic Low energy consumption
Visually intuitive

Slow response speed
Material limitations

This work proposes the use of index finger gestures to express the dot, dash, and
interval signals of Morse code. Specifically, a dot signal is simulated by quickly tapping
the index finger, a dash signal is simulated by sliding the index finger continuously in the
air, and an interval signal is simulated by briefly pausing the index finger in the air. This
gesture-based method of expression not only helps people communicate when electronic
devices are unavailable but also serves as an effective method in sign language and other
auxiliary communication techniques.

3.2. Data Collection for Morse Code from the CNT/PUS Sensor

During the data-collection process, experimenters performed gestures for 36 types
(letters of A–Z and numbers of 0–9) of Morse code. Each Morse code gesture was repeated
20 times, and only 15 high-quality tactile data points were retained for each Morse code
type. This strategy is used to prevent muscle fatigue and other incidental factors that
could lead to erroneous data due to long-term repetitive operations by experimenters. By
removing five low-quality Morse code tactile data points, a higher-quality Morse code
dataset was created.

When simulating Morse code using gesture movements, the proximal interphalangeal
(PIP) joint of the index finger (as shown in Figure 7) can effectively express Morse code
information. During data collection, experimenters wear nitrile gloves, fix the CNT/PUS
sensor at the PIP joint of the index finger, and perform the prescribed Morse code gestures,
as shown in Figure 8. They also collect the timing voltage information output by the
CNT/PUS sensor at the PIP joint of the index finger of nitrile gloves, and they simulate
Morse code meanings through index finger gestures, as shown in Table 4.
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Table 4. The meaning of Morse code simulated by index finger gestures.

Index Finger Behavior Morse Code Meaning

Short taps motion Dot signal
Long sliding motion Dash signal
Short pause motion Interval signal

The Arduino Mega 2560 board (Arduino Co., Ivrea, Italy) is used to collect the time-
sequential voltage data output in real time from the CNT/PUS sensor for Morse code.
Based on the dynamic response characteristics of the CNT/PUS sensor, the sensor sampling
frequency is set to 180 Hz to capture rapidly changing tactile information. In this paper,
we specify that each dot signal is expressed for 0.5 s, each dash signal is expressed for
1.5 s, and each interval signal is expressed for 0.5 s when expressing 36 types of Morse
code characters using gesture action simulation. Specifically, the shortest expression time
is for the letter E (“•”) at 0.5 s (including one dot signal), and the longest expression time
is for the number 0 (“-----”) at 9.5 s (including five dash signals and four interval signals).
To reduce errors caused by different expression times for individual letters or numbers
and to improve Morse code encoding efficiency [35,36], the sampling time for each type
of Morse code character (number/letter) tactile data sample is fixed at 10 s. The letter E
(“•”) has an expression time of 0.5 s followed by a 9.5-s interval, and the number 0 (“-----”)
has an expression time of 9.5 s followed by a 0.5-s interval. This configuration setting not
only ensures sufficient tactile information is collected but also avoids data redundancy due
to excessive time. Therefore, the collected time-sequential voltage data of Morse code is
one-dimensional; it contains 1800 frames (or 1800 features).

To increase the diversity and robustness of Morse code tactile data samples, four
experimenters (two males and two females, all with normal activity of the index finger
joints) participated in the collection of Morse code tactile data. Before the experiment, all
participants received standardized training to familiarize themselves with the operation
methods of simulating Morse code expressions using the CNT/PUS sensor. The training
content included an introduction to the basics of Morse code and gesture simulation experi-
ments. During the experiment, each participant continuously completed the expression of
36 Morse code characters within the specified time, followed by a 30-s rest. This process was
repeated 15 times until each of the four participants completed 15 rounds of high-quality
data collection. The time-sequential voltage signals output by the sensor were recorded
in real time. After completing the Morse code tactile data-collection experiment, a total of
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2160 Morse code data samples were obtained (four experimenters × 15 valid repetitions
for each Morse code × 36 Morse code).

4. Data Preprocessing

During the process of collecting Morse code data, there are various interfering factors.
For instance, the CNT/PUS sensor may experience output fluctuations due to mechanical
fatigue from prolonged operation. Additionally, issues such as data loss during trans-
mission can also affect the integrity of the original time-sequential voltage information.
Under the influence of these interference factors, the data may exhibit frequent and slight
fluctuations and may show pulse signals in some data frames. To improve data quality
and ensure that the collected data more accurately reflect the characteristics of Morse code,
the original data will be subjected to data smoothing and normalization. This aims to
reduce the impact of noise and outliers, making the Morse code tactile data more stable
and reliable.

4.1. Data Smoothing for the Morse Code from the Sensor

The collected Morse code time-sequential voltage data are processed for smoothing,
aiming to reduce the fluctuations caused by noise in the original sequential information.
The Simple Moving Average (SMA) algorithm is used to preprocess and smooth the data in
this work. The principle of the algorithm is to use the average of multiple samples within
the window to represent the value of the current sample so as to reduce the impact of
random noise on the signal. The specific equation is as follows:

y(k) =
x(k) + x(k − 1) + x(k − 2) + · · · x(k − M + 1)

M
(4)

where y(k) represents the moving average value at time k, x(k) represents the data point at
time k, and M is the window size.

The unprocessed raw data are compared to the smoothed data in Figure 9. The
enlarged portion of the black curve in the figure reflects the excessive response of the sensor
due to its own hysteresis effect. This response does not represent meaningful signals but
rather errors caused by the sensor’s structure. The red curve in the figure presents the
waveform of the data after smoothing, which reduces the noise level and smoothens the
transitions in Morse code tactile data, enhancing the stability of the data. This preprocessing
step lays a solid foundation for subsequent data analysis and Morse code recognition.
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4.2. Normalization for the Morse Code from the Sensor

Normalization can prevent many problems such as slow training speed, gradient
disappearance, or explosion in the training process of deep-learning models. Therefore,
it is necessary to normalize the data after the data-smoothing process is completed. This
Min–Max Normalization method is utilized to normalize the raw data in our work, which
can reduce errors caused by differences in magnitude. The specific equation is as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(5)

where Xnorm is the normalized value, X is the original data, Xmin is the minimum value in
the original data, and Xmax is the maximum value in the original data.

As shown in Figure 10, the normalized data are mapped to the [0, 1] interval. This
process not only enhances the data stability of the model training process but also helps
accelerate the convergence speed of the model, effectively preventing overfitting during
model training, thereby improving the performance of the model.
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Through the completion of smoothing and normalization preprocessing on the tactile
information of Morse code, the noise and outliers in the data have been effectively reduced,
improving the data quality. As a result, the classification accuracy and processing efficiency
of the Morse code recognition model are expected to be enhanced.

5. Morse Code Recognition Based on the LSTM Model

Through the tactile data-collection experiment of Morse code, we obtained the time-
sequential voltage information under Morse code gestures. The Long Short-Term Memory
(LSTM) model has shown excellent performance in handling sequence data with long-term
dependencies. Considering the characteristics of the time-sequential voltage information of
Morse code, this paper chooses to use the LSTM model for the recognition of Morse code.

5.1. Principle of the LSTM Network

The LSTM network captures long-term dependencies in sequential data through
the use of carefully designed internal states and gate mechanisms, enabling the effective
learning of lengthy sequences [37]. At the core of the LSTM network is its unique memory
unit, referred to as a cell, along with three crucial gate mechanisms: the forget gate, input
gate, and output gate. These components work together to ensure the effective flow
of time-sequential information and the retention of long-term memory, as illustrated in
Figure 11. Within the LSTM unit, the information flow is primarily divided into two parts:
one responsible for updating the cell state based on the control of the forget gate and input
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gate, and the other part performing autoregressive output computation under the control
of the output gate.
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The forget gate determines which information should be forgotten or discarded from
the current cell state. Its calculation method, as shown in Equation (6), involves multiplying
the input Xt by its weight matrix Wx f , adding it to the previous time step’s hidden state
Ht−1 multiplied by its weight matrix Wh f , then adding the bias vector b f . Finally, the
result is passed through the activation function σ(x) as shown in Equation (7), yielding
a value between 0 and 1. Here, the value 0 represents complete abandonment of the
corresponding information in the old cell state, while the value 1 represents complete
retention of this information.

Ft = σ
(

XtWx f + Ht−1Wh f + b f

)
(6)

σ(x) =
1

1 + exp(−x)
(7)

The input gate determines which new information will be stored in the cell state.
Firstly, by multiplying the input Xt by its weight matrix Wxi, adding it to the previous
time step’s hidden state Ht−1 multiplied by its weight matrix Whi, then adding the bias
vector bi, we obtain a value between 0 and 1 through the activation function σ(x), as shown
in Equation (8). At the same time, by multiplying the input Xt by its weight matrix Wxc,
adding it to the previous time step’s hidden state Ht−1, multiplied by its weight matrix

Whc, then adding the bias vector bc, we obtain a new candidate memory cell
∼
Ct through

the activation function tanh(x), which represents the new information to be updated, as
shown in Equation (9).

It = σ(XtWxi + Ht−1Whi + bi) (8)
∼
Ct = tanh(XtWxc + Ht−1Whc + bc) (9)

The output of the input gate It is multiplied by
∼
Ct to control how much of the new

data from the candidate memory cell should be used. Then, the output of the forget gate
Ft is multiplied by Ct−1 to control the retention of information from the past memory cell.
Finally, the two results are added together to obtain the updated cell state Ct as shown in
Equation (10). This design effectively alleviates the vanishing gradient problem and better
captures the long-term dependencies present in sequences.

Ct = Ft ⊙ Ct−1 + It ⊙
∼
Ct (10)

The output gate controls how much information from the cell state Ct will be used to
generate the current hidden state Ht. Its calculation method is as follows: by multiplying
the input Xt by its weight matrix Wxo, adding it to the previous time step’s hidden state



Micromachines 2024, 15, 864 12 of 19

Ht−1 multiplied by its weight matrix Who, then adding the bias vector bo, and, finally,
passing the result through the activation function σ(x) to obtain a value between 0 and 1,
as shown in Equation (11). Next, this value is multiplied by the updated value of the cell
state tanh(Ct) to obtain the final hidden state Ht, as shown in Equation (12).

Ot = σ(XtWxo + Ht−1Who + bo) (11)

Ht = Ot ⊙ tanh(Ct) (12)

Therefore, in performing the Morse code recognition task, the LSTM network, with
its unique design structure, can effectively capture the long-term dependencies present
in time-sequential tactile data, which is crucial for accurately recognizing the Morse code.
This study chose the LSTM network model for Morse code recognition, aiming to fully
leverage its advantages in handling time-sequential data, to achieve better classification
accuracy and model generalization ability.

5.2. Construction of the LSTM Model for the Preprocessed Tactile Data

In the paper, the time-sequential voltage information of simulated Morse code was
collected using the CNT/PUS sensor, and the LSTM model was constructed to classify
Morse code. The specific recognition process is shown in Figure 12.
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The LSTM model constructed in this paper is shown in Figure 13, which consists
of two LSTM layers for feature extraction and a dense layer. The model takes input
data from the tactile data-collection experiment of Morse code, including 36 types (letters
of A–Z and numbers of 0–9) of Morse code, with each Morse code category providing
60 samples, totaling 2160 samples. Each tactile data sample is a piece of one-dimensional,
time-sequential voltage information with 1800 features, which reflects the simulated Morse
code information of the CNT/PUS sensor.
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In the constructed LSTM model, LSTM network layers (each with 100 LSTM units) are
used to extract and abstract deep features, which are then passed to the dense layer (with
36 neuron nodes) for further processing until the final Morse code classification task is
completed. In this structure, the dense layer performs rich nonlinear transformations on the
features extracted by the LSTM layer, enabling the model to capture more complex patterns
in the tactile information. Through this multi-layered architecture, the LSTM model can
effectively capture the long-term dependencies present in the tactile information of Morse
code, providing an efficient and feasible solution for Morse code classification tasks.

5.3. Evaluation Metrics

In the multi-classification task of Morse code recognition, accuracy can only provide an
overall overview of the classification performance cannot reflect specific information about
false positives and false negatives, and it cannot provide detailed data on misclassifications.
This work employs multiple evaluation metrics to comprehensively assess the performance
of the LSTM model. Various evaluation metrics are used in this paper, including accuracy,
precision, recall, and F1 score.

Accuracy refers to the proportion of correctly predicted samples to all samples by the
model; precision refers to the proportion of samples predicted as the positive class by the
model that are actually positive; recall refers to the proportion of actual positive samples
that are correctly predicted as positive by the model; the F1 score is the mean of precision
and recall, aiming to balance the relationship between these two metrics. The formulas for
the selected evaluation metrics are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1-score = 2 × Precision × Recall
Precision + Recall

(16)

where TP represents the number of samples that are truly positive and are predicted by
the model as positive; FP represents the number of samples that are truly negative but are
predicted by the model as positive; FN represents the number of samples that are truly
positive but are predicted by the model as negative; TN represents the number of samples
that are truly negative and are predicted by the model as negative.

5.4. Analysis of Recognition Results
5.4.1. Recognition Results for Morse Code Based on the LSTM Model

The collected Morse code dataset is divided into 6:2:2 for training, validation, and
testing sets. The LSTM model is used to perform Morse code classification on datasets with
10 types (Morse code numbers of 0–9), 26 types (Morse code letters of A–Z), and 36 types
(Morse code numbers of 0–9 and letters of A–Z). For convenience, these three datasets are
shortened as Morse_10, Morse_26, and Morse_36, respectively. Meanwhile, to illustrate the
importance of the preprocessing process (smoothing and normalization), therefore, LSTM
was used to recognize the preprocessed and unprocessed Morse code datasets (Morse_10,
Morse_26, Morse_36), respectively, and the experimental results are shown in Table 5.
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Table 5. The recognition results for Morse code based on the LSTM model.

Dataset Status Dataset Accuracy Precision Recall F1-Score

Unprocessed
Morse_10 90.74% 91.90% 90.74% 91.32%
Morse_26 85.07% 86.12% 85.07% 85.59%
Morse_36 82.18% 83.37% 82.18% 82.77%

Preprocessed
Morse_10 99.17% 99.70% 99.17% 99.43%
Morse_26 95.37% 95.71% 95.37% 95.54%
Morse_36 93.98% 94.32% 93.98% 94.15%

From the results in Table 5, comparing the results after data preprocessing and un-
processed data, it is found that the evaluation metrics of the results of unprocessed LSTM
data for recognizing Morse_10, Morse_26, and Morse_36 are all lower than those after data
preprocessing, thus indicating that the preprocessed data can improve the classification
accuracy and generalization ability of the LSTM model, which proves the necessity of
data preprocessing. From the results of the LSTM recognizing preprocessed data, it can be
seen that the LSTM model achieved classification accuracies of 99.17%, 95.37%, and 93.98%
on the testing sets of Morse_10, Morse_26, and Morse_36, respectively. Meanwhile, the
LSTM model achieved a precision, recall, and F1 score of 94.32%, 93.98%, and 94.15% for
Morse_36, which indicates that LSTM performs excellently in recognizing Morse code.

To further analyze the performance of the LSTM model in Morse code recognition,
the preprocessed Morse_36 is recognized using the LSTM model, the evaluation metrics
of accuracy, precision, and recall are discussed in detail, and the classification results are
as follows:

From the results in Figure 14, the overall accuracy of the LSTM model in recognizing
Morse code (letters of A–Z and numbers of 0–9) is 93.98%. The accuracy of classification is
generally higher than that of letter classification. This is because Morse code letters have
higher morphological similarity, which increases the difficulty of differentiation and thus
the difficulty of model classification.
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From the precision results in Figure 15, the LSTM model achieves an average precision
of over 85% for all 36 Morse code classes. Among them, 18 classes have a precision of
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100%, but the precision for Morse code “K” and “O” is 81.82% and 83.33%, respectively.
This indicates that the LSTM model has achieved excellent overall results in the Morse
code recognition task (36 types), but there are certain shortcomings in the performance for
certain types.
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Figure 15. Precision of Morse code (36 types) recognition results.

From the results in Figure 16 regarding recall, the LSTM model achieves an average
recall of 93.98% for the 36 Morse code classes. Specifically, the recall for 27 Morse code
classes exceeds 90%, with 20 types having a recall of 100%. Compared to precision, more
Morse code classes have lower recall values. This is because recall is less important than
precision in the Morse code classification problem.
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In summary, the LSTM model achieved an accuracy of 93.98%, a precision of 94.32%, a
recall of 93.98%, and an F1 score of 94.15% in the classification of Morse code (36 types).
Therefore, the LSTM model has achieved excellent classification results in the Morse code
recognition task.

5.4.2. Comparison Based on Different Models for Morse Code Recognition

Comparing the classification performance of different models on the same dataset
can help reveal the strengths and limitations of each model, thereby providing a basis
for selecting the most suitable model for a specific classification task. Based on the same
preprocessed Morse code dataset (36 types), the classification performance of the Gated
Recurrent Unit (GRU) model, Multi-Layer Perceptron (MLP) model, k-Nearest Neighbor
(k-NN) model, Random Forest (RF) model, and Support Vector Machine (SVM) model
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were compared. The classification accuracy of each model on the testing set is shown in
Figure 17.
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From Figure 17, it can be seen that the LSTM model achieved the highest accuracy
in Morse code classification, reaching 93.98% (as shown in the red text color in Figure 17),
and the k-NN model has the lowest recognition accuracy at 76.85%. In our study, the
data acquisition from the CNT/PUS sensor, although stable, may generate noise or errors
under certain conditions, which may affect the recognition performance of some models. In
particular, for models such as k-NN, which may rely more on the accuracy and consistency
of the data, small fluctuations in the sensor may lead to a decrease in the recognition rate.
The LSTM model has a stronger capability for handling time-series data, allowing it to
better capture the sequential features in Morse code input. This enables LSTM to maintain
a high recognition rate even in noisy conditions. Additionally, the LSTM model exhibits
strong robustness to data fluctuations, effectively managing the uncertainties introduced
by the sensor. A comparison was conducted between the CNT/PUS sensor and existing
sensors in terms of model algorithms and accuracy. The results demonstrated that the
sensor utilized in this study, when combined with the LSTM model, exhibited a high level
of accuracy in recognizing Morse code, as shown in Table 6.

Table 6. Comparison of model algorithms and recognition accuracy between this work and others.

Ref. Sensor Model Application Accuracy

This work CNT/PUS LSTM Morse code
recognition 93.98%

[38] Graphene/Nylon Machine learning Morse code
recognition >90%

[39] Graphene aerogel Machine learning Gestures recognition 84.7%
[40] CB/PDMS LSTM + Dense Gestures recognition 87.38%

[41] CMOS sensor YFDM Morse code
recognition 91%

In order to better illustrate the effectiveness of using the LSTM model to recognize
Morse code, the GRU, SVM, MLP, and RF models are established to recognize the three
Morse code datasets Morse_10, Morse_26, and Morse_36 after data preprocessing, and the
recognition results are shown in Table 7.
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Table 7. Recognizing Morse code with different models.

Model Dataset Accuracy Precision Recall F1-Score

LSTM
Morse_10 99.17% 99.70% 99.17% 99.43%
Morse_26 95.37% 95.71% 95.37% 95.54%
Morse_36 93.98% 94.32% 93.98% 94.15%

GRU
Morse_10 98.33% 98.57% 98.33% 98.45%
Morse_26 94.22% 94.61% 94.22% 94.41%
Morse_36 91.37% 92.46% 91.37% 91.91%

SVM
Morse_10 94.17% 95.19% 94.17% 94.68%
Morse_26 91.35% 92.29% 91.35% 91.82%
Morse_36 88.88% 89.44% 88.88% 89.16%

MLP
Morse_10 92.50% 93.76% 92.50% 93.13%
Morse_26 89.42% 90.42% 89.42% 89.92%
Morse_36 87.04% 89.10% 87.04% 88.06%

RF
Morse_10 97.50% 98.00% 97.50% 97.75%
Morse_26 94.87% 95.29% 94.87% 95.08%
Morse_36 90.97% 91.68% 90.97% 91.32%

As shown in Table 7, the five different models have average accuracy rates for recog-
nizing Morse code datasets (Morse_10, Morse_26, and Morse_36) in the following order:
LSTM, GRU, RF, SVM, and MLP, with accuracies of 93.98%, 91.37%, 90.97%, 88.88%, and
87.04%, respectively. Comparing the evaluation metrics precision, recall, and F1 score, the
scores from highest to lowest are LSTM, GRU, RF, SVM, and MLP. Through comparison,
it is found that the LSTM model has the highest scores for the evaluation metrics, accu-
racy, precision, recall, and F1 score in recognizing the Morse_10, Morse_26, and Morse_36
datasets. From the Morse code dataset, including Morse_10, Morse_26, and Morse_36, it is
found that all the models achieve the highest accuracy in recognizing Morse_10 and the
lowest accuracy in recognizing Morse_36, and the models show consistency in recognizing
the dataset. Through comparison, it is found that the LSTM model has better performance
in recognizing Morse code classifications.

In summary, by comparing the models in Morse code recognition, the LSTM model
shows higher recognition accuracy and stability, indicating its superior performance in
Morse code recognition.

6. Conclusions

This study develops a flexible tactile sensor for recognizing Morse code. Initially, the
CNT/PUS sensor is designed and prepared to express 36 types (letters of A–Z and numbers
of 0–9) of Morse code gestures through different bending actions of the index finger. By
collecting 2160 sets of Morse code gesture sequential voltage signals and combining them
with the LSTM classification model, Morse code-recognition tasks are achieved. The results
show that the LSTM model achieved a classification accuracy of 93.98% for 36 types of
Morse code, with an average precision of 94.32%, an average recall of 93.98%, and an
average F1 score of 94.15%. In conclusion, the LSTM model can effectively recognize
tactile information outputs by the CNT/PUS sensor, enabling Morse code recognition. The
innovation of this study lies in the material and structural design of the sensor, as well as
the selection and application of the algorithm. By combining the CNT/PUS flexible tactile
sensor with the LSTM algorithm model, the accuracy of Morse code recognition is not
only improved but also demonstrates the potential of this method in the fields of flexible
electronics and human–computer interaction.
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