Rapid Fluid Velocity Field Prediction in Microfluidic Mixers via Nine Grid Network Model
Abstract
:1. Introduction
2. Theory of Predicting Microfluidic Mixer Velocity
2.1. The NGN Model
2.2. Building a Dataset Using FEA
2.3. Training ANN Models to Predict the Fluid Field of a Microfluidic Mixer
3. Results and Discussion
3.1. Training of the ANN Library
3.2. Quantitative Analysis of the ANN Library
3.3. Three Designs for the Proof of Concept
3.4. Potential Applications of the Proposed NGN Model
3.4.1. Microfluidic Mixer for Sample Preparation
3.4.2. Bioreactors to Perform Chemical Reactions in Micro-/Nano-Liter Volumes
3.4.3. Microcooling Applications for Heterogeneous Integration-Based IC/Microsystems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, F.; Dan, G.; Liang, Q.L. Advances of microfluidic technologies applied in bio-analytical chemistry. Chin. J. Anal. Chem. 2016, 44, 1942–1949. [Google Scholar] [CrossRef]
- Shen, L.L.; Zhang, G.R.; Etzold, B.J. Paper-based microfluidics for electrochemical applications. ChemElectroChem 2020, 7, 10–30. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab A Chip 2017, 17, 1206–1249. [Google Scholar] [CrossRef] [PubMed]
- Chamoun, J.; Pattekar, A.; Afshinmanesh, F.; Martini, J.; Recht, M.I. Optical calorimetry in microfluidic droplets. Lab A Chip 2018, 18, 1581–1592. [Google Scholar] [CrossRef]
- Dannenberg, P.H.; Kang, J.; Martino, N.; Kashiparekh, A.; Forward, S.; Wu, J.; Liapis, A.C.; Wang, J.; Yun, S.H. Laser particle activated cell sorting in microfluidics. Lab A Chip 2022, 22, 2343–2351. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, R.H.; Zhukov, A.A.; Fullerton, J.N.; Want, A.J.; Hussain, F.; la Cour, M.F.; Bashtanov, M.E.; Gold, R.D.; Hailes, A.; Banham-Hall, E.; et al. Cell sorting actuated by a microfluidic inertial vortex. Lab A Chip 2019, 19, 2456–2465. [Google Scholar] [CrossRef]
- Zhukov, A.A.; Pritchard, R.H.; Withers, M.J.; Hailes, T.; Gold, R.D.; Hayes, C.; la Cour, M.F.; Hussein, F.; Rogers, S.S. Extremely high-throughput parallel microfluidic vortex-actuated cell sorting. Micromachines 2021, 12, 389. [Google Scholar] [CrossRef]
- Feng, J.; Neuzil, J.; Manz, A.; Iliescu, C.; Neuzil, P. Microfluidic trends in drug screening and drug delivery. TrAC Trends Anal. Chem. 2022, 158, 116821. [Google Scholar] [CrossRef]
- Monjezi, M.; Rismanian, M.; Jamaati, H.; Kashaninejad, N. Anti-Cancer Drug Screening with Microfluidic Technology. Appl. Sci. 2021, 11, 9418. [Google Scholar] [CrossRef]
- Zhai, J.; Yi, S.; Jia, Y.; Mak, P.I.; Martins, R.P. Cell-based drug screening on microfluidics. TrAC Trends Anal. Chem. 2019, 117, 231–241. [Google Scholar] [CrossRef]
- Nolan, J.; Pearce, O.M.; Screen, H.R.; Knight, M.M.; Verbruggen, S.W. Organ-on-a-Chip and Microfluidic Platforms for Oncology in the UK. Cancers 2023, 15, 635. [Google Scholar] [CrossRef]
- Xu, Z.; Li, E.; Guo, Z.; Yu, R.; Hao, H.; Xu, Y.; Sun, Z.; Li, X.; Lyu, J.; Wang, Q. Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl. Mater. Interfaces 2016, 8, 25840–25847. [Google Scholar] [CrossRef]
- Yu, F.; Nivasini, D.; Kumar, O.S.; Choudhury, D.; Foo, L.C.; Ng, S.H. Microfluidic platforms for modeling biological barriers in the circulatory system. Drug Discov. Today 2018, 23, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.S.; Je, K.; Min, J.W.; Park, D.; Han, K.Y.; Shin, S.H.; Park, W.Y.; Yoo, C.E.; Kim, S.H. Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing. Lab A Chip 2018, 18, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Jia, F.; Wei, Z.; Ma, Y.; Fang, Z.; Zhang, W.; Hu, Z. A Microfluidic Chip for Efficient Circulating Tumor Cells Enrichment, Screening, and Single-Cell RNA Sequencing. Proteomics 2021, 21, 2000060. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Moncayo, R.; Cedillo-Alcantar, D.F.; Guevara-Pantoja, P.E.; Chavez-Pineda, O.G.; Hernandez-Ortiz, J.A.; Amador-Hernandez, J.U.; Rojas-Velasco, G.; Sanchez-Muñoz, F.; Manzur-Sandoval, D.; Patino-Lopez, L.D.; et al. A high-throughput multiplexed microfluidic device for COVID-19 serology assays. Lab A Chip 2021, 21, 93–104. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, X.; Kim, C.N. A new electromagnetic micromixer for the mixing of two electrolyte solutions. J. Mech. Sci. Technol. 2019, 33, 5989–5998. [Google Scholar] [CrossRef]
- Essaouiba, A.; Okitsu, T.; Kinoshita, R.; Jellali, R.; Shinohara, M.; Danoy, M.; Legallais, C.; Sakai, Y.; Leclerc, E. Development of a pancreas-liver organ-on-chip coculture model for organ-to-organ interaction studies. Biochem. Eng. J. 2020, 164, 107783. [Google Scholar] [CrossRef]
- Takahashi, A.; Noda, K.; Watanabe, H.; Kawamoto, T. One million cyclable blue/colourless electrochromic device using K2Zn3 [Fe (CN)6]2 nanoparticles synthesized with a micromixer. RSC Adv. 2019, 9, 41083–41087. [Google Scholar] [CrossRef]
- Jain, S.; Unni, H.N. Numerical modeling and experimental validation of passive microfluidic mixer designs for biological applications. AIP Adv. 2020, 10, 105116. [Google Scholar] [CrossRef]
- Memon, A.; Memon, M.A.; Bhatti, K.; Jacob, K.; Sitthiwirattham, T.; Promsakon, C.; Khan, I. Modelling and Simulation of Fluid Flow through a Circular Cylinder with High Reynolds Number: A COMSOL Multiphysics 5.5 Study. J. Math. 2022, 2022, 5282980. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, T.; Liu, Z.; Zhang, Y.; Xu, Y.; Wang, J. A universal inverse design methodology for microfluidic mixers. Biomicrofluidics 2024, 18, 024102. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.M.; Liu, Z.; Zhang, Y.; Wang, J.; Ho, T.Y. Automated design of a 3D passive microfluidic particle sorter. Biomicrofluidics 2023, 17, 064102. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Ho, T.Y.; Wang, J.; Yao, H. Microfluidic design for concentration gradient generation using artificial neural network. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2019, 39, 2544–2557. [Google Scholar] [CrossRef]
- Hong, S.H.; Yang, H.; Wang, Y. Inverse design of microfluidic concentration gradient generator using deep learning and physics-based component model. Microfluid. Nanofluidics 2020, 24, 1–20. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, N.; Chen, J.; Su, G.; Yao, H.; Ho, T.Y.; Sun, L. Predicting the fluid behavior of random microfluidic mixers using convolutional neural networks. Lab A Chip 2021, 21, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, F.; Santin, G. Convergence Results in Image Interpolation with the Continuous SSIM. SIAM J. Imaging Sci. 2022, 15, 1977–1999. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, N.; Chen, J.; Rodgers, V.G.; Brisk, P.; Grover, W.H. Finding the optimal design of a passive microfluidic mixer. Lab A Chip 2019, 19, 3618–3627. [Google Scholar] [CrossRef]
- Lee, C.Y.; Wang, W.T.; Liu, C.C.; Fu, L.M. Passive mixers in microfluidic systems: A review. Chem. Eng. J. 2016, 288, 146–160. [Google Scholar] [CrossRef]
- Jung, W.; Han, J.; Choi, J.W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, J.; Xiao, B.; Chen, A. Microfluidic-assisted integrated nucleic acid test strips for POCT. Talanta 2024, 267, 125150. [Google Scholar] [CrossRef] [PubMed]
- Diercks, A.H.; Ozinsky, A.; Hansen, C.L.; Spotts, J.M.; Rodriguez, D.J.; Aderem, A. A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal. Biochem. 2009, 386, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Chen, M.H. Chip-oriented fluorimeter design and detection system development for DNA quantification in nano-liter volumes. Sensors 2009, 10, 146–166. [Google Scholar] [CrossRef] [PubMed]
- Rho, H.S.; Hanke, A.T.; Ottens, M.; Gardeniers, H. Mapping of enzyme kinetics on a microfluidic device. PLoS ONE 2016, 11, e0153437. [Google Scholar] [CrossRef]
- Mehling, M.; Tay, S. Microfluidic cell culture. Curr. Opin. Biotechnol. 2014, 25, 95–102. [Google Scholar] [CrossRef]
- Damiati, S.; Kompella, U.B.; Damiati, S.A.; Kodzius, R. Microfluidic devices for drug delivery systems and drug screening. Genes 2018, 9, 103. [Google Scholar] [CrossRef]
- Bar-Cohen, A.; Wang, P.; Rahim, E. Thermal management of high heat flux nanoelectronic chips. Microgravity Sci. Technol. 2007, 19, 48–52. [Google Scholar] [CrossRef]
- Hajmohammadi, M.; Alipour, P.; Parsa, H. Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks. Int. J. Heat Mass Transf. 2018, 126, 808–815. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, R.; Ye, R.; Singh, S.S.K.; Wu, S.; Chen, C. A review of thermal performance of 3D stacked chips. Int. J. Heat Mass Transf. 2024, 235, 126212. [Google Scholar] [CrossRef]
ANN | Position | Training Accuracy | Testing Accuracy | Training Loss | ANN | Position | Training Accuracy | Testing Accuracy | Training Loss |
---|---|---|---|---|---|---|---|---|---|
ANN | 97.5% | 96.8% | 0.019 | ANN | 97.9% | 97.5% | 0.015 | ||
99.0% | 98.6% | 0.020 | 99.5% | 99.4% | 0.017 | ||||
ANN | 98.6% | 97.1% | 0.012 | 96.8% | 96.6% | 0.017 | |||
99.5% | 98.9% | 0.012 | 99.2% | 99.1% | 0.020 | ||||
ANN | 98.6% | 96.1% | 0.012 | 96.9% | 96.6% | 0.019 | |||
99.6% | 99.1% | 0.012 | 99.1% | 99.0% | 0.016 | ||||
ANN | 97.8% | 95.1% | 0.016 | ANN | 96.8% | 96.7% | 0.014 | ||
99.2% | 98.1% | 0.015 | 99.4% | 99.3% | 0.018 | ||||
ANN | 98.6% | 97.9% | 0.012 | 96.9% | 96.7% | 0.020 | |||
99.6% | 99.5% | 0.015 | 99.2% | 99.0% | 0.020 | ||||
98.0% | 97.2% | 0.015 | 95.4% | 93.8% | 0.027 | ||||
99.5% | 99.2% | 0.016 | 98.5% | 98.3% | 0.023 | ||||
ANN | 98.7% | 98.0% | 0.012 | ANN | 97.0% | 96.8% | 0.015 | ||
99.6% | 99.4% | 0.012 | 98.9% | 98.8% | 0.015 | ||||
98.1% | 96.6% | 0.015 | 96.6% | 96.1% | 0.019 | ||||
99.5% | 99.2% | 0.014 | 99.3% | 99.1% | 0.020 | ||||
ANN | 98.4% | 97.7% | 0.012 | 95.6% | 94.7% | 0.023 | |||
99.5% | 99.4% | 0.014 | 98.9% | 98.5% | 0.027 | ||||
97.2% | 95.1% | 0.020 | ANN | 96.4% | 95.7% | 0.021 | |||
99.1% | 98.4% | 0.019 | 98.6% | 98.5% | 0.020 | ||||
ANN | 98.2% | 97.2% | 0.015 | 95.5% | 94.3% | 0.021 | |||
99.4% | 99.0% | 0.015 | 99.2% | 99.1% | 0.022 | ||||
97.8% | 96.5% | 0.015 | 95.5% | 94.2% | 0.029 | ||||
99.5% | 99.2% | 0.015 | 98.8% | 98.4% | 0.029 | ||||
ANN | 97.7% | 96.2% | 0.018 | ANN | 93.2% | 92.2% | 0.030 | ||
99.1% | 98.8% | 0.016 | 98.4% | 98.4% | 0.033 | ||||
96.8% | 93.9% | 0.024 | 90.2% | 88.7% | 0.039 | ||||
98.8% | 98.3% | 0.019 | 97.4% | 96.6% | 0.045 | ||||
ANN | 97.6% | 95.8% | 0.013 | 89.6% | 88.1% | 0.045 | |||
99.6% | 99.3% | 0.015 | 98.1% | 97.8% | 0.038 | ||||
97.5% | 95.0% | 0.017 | 85.2% | 82.3% | 0.058 | ||||
99.2% | 98.4% | 0.020 | 96.9% | 96.2% | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Chen, Y.; Sun, T.; Wang, J. Rapid Fluid Velocity Field Prediction in Microfluidic Mixers via Nine Grid Network Model. Micromachines 2025, 16, 5. https://doi.org/10.3390/mi16010005
Li Q, Chen Y, Sun T, Wang J. Rapid Fluid Velocity Field Prediction in Microfluidic Mixers via Nine Grid Network Model. Micromachines. 2025; 16(1):5. https://doi.org/10.3390/mi16010005
Chicago/Turabian StyleLi, Qian, Yuwei Chen, Taotao Sun, and Junchao Wang. 2025. "Rapid Fluid Velocity Field Prediction in Microfluidic Mixers via Nine Grid Network Model" Micromachines 16, no. 1: 5. https://doi.org/10.3390/mi16010005
APA StyleLi, Q., Chen, Y., Sun, T., & Wang, J. (2025). Rapid Fluid Velocity Field Prediction in Microfluidic Mixers via Nine Grid Network Model. Micromachines, 16(1), 5. https://doi.org/10.3390/mi16010005