Leadless Pacing: Current Status and Ongoing Developments
Abstract
:1. Introduction
2. Structure, Function, and Limitations of Transvenous Cardiac Pacemaker Leads
3. Development of Leadless Pacemakers (LPs)
4. Structure of Leadless Pacemakers
5. Clinical Trials Investigating Leadless Pacing’s Safety and Efficacy
6. Implantation Techniques
7. Indications for Leadless Pacing
8. Risks and Complications of Leadless Pacing
9. Advantages and Disadvantages of LPs
10. Investigational Devices *
11. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Hyman, A.S. Resuscitation of the Stopped Heart by Intracardial Therapy: II. Experimental use of an Artificial Pacemaker. Arch. Intern. Med. 1932, 50, 283–305. [Google Scholar] [CrossRef]
- Furman, S. Early history of cardiac pacing and defibrillation. Indian Pacing Electrophysiol. J. 2002, 2, 2–3. [Google Scholar] [PubMed] [PubMed Central]
- Madias, C.; Trohman, R.G. Cardiac resynchronization therapy: The state of the art. Expert. Rev. Cardiovasc. Ther. 2014, 12, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, W.G.; Callaghan, J.C.; Hopps, J.A. General hypothermia for experimental intracardiac surgery; the use of electrophrenic respirations, an artificial pacemaker for cardiac standstill and radio-frequency rewarming in general hypothermia. Ann. Surg. 1950, 132, 531–539. [Google Scholar] [CrossRef]
- Zoll, P.M. Resuscitation of the heart in ventricular standstill by external electric stimulation. N. Engl. J. Med. 1952, 247, 768–771. [Google Scholar] [CrossRef]
- Lemberg, L.; Castellanos, A., Jr.; Berkovits, B.V. Pacemaking on Demand in AV Block. JAMA 1965, 191, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.F.J.; Linde, C.; Benditt, D.G. History of electrical therapy for the heart. Eur. Heart J. Suppl. 2007, 9 (Suppl. SI), I3–I10. [Google Scholar] [CrossRef]
- Rickards, A.F.; Norman, J. Relation between QT interval and heart rate. New design of physiologically adaptive cardiac pacemaker. Br. Heart J. 1981, 45, 56–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cazeau, S.; Ritter, P.; Bakdach, S.; Lazarus, A.; Limousin, M.; Henao, L.; Mundler, O.; Daubert, J.C.; Mugica, J. Four chamber pacing in dilated cardiomyopathy. Pacing Clin. Electrophysiol. 1994, 17 Pt 2, 1974–1979. [Google Scholar] [CrossRef] [PubMed]
- Daubert, J.C.; Ritter, P.; Le Breton, H.; Gras, D.; Leclercq, C.; Lazarus, A.; Mugica, J.; Mabo, P.; Cazeau, S. Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing Clin. Electrophysiol. 1998, 21 Pt 2, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Nichols, M. European Perspectives. Spotlight: Angelo Auricchio, MD, PhD, FESC. Circulation 2009, 120, f85–f90. [Google Scholar]
- Auricchio, A.; Klein, H.; Tockman, B.; Sack, S.; Stellbrink, C.; Neuzner, J.; Kramer, A.; Ding, J.; Pochet, T.; Maarse, A.; et al. Transvenous biventricular pacing for heart failure: Can the obstacles be overcome? Am. J. Cardiol. 1999, 83, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.S.; Vijayaraman, P. His Bundle Pacing Or Biventricular Pacing For Cardiac Resynchronization Therapy In Heart Failure: Discovering New Methods For An Old Problem. J. Atr. Fibrillation 2016, 9, 1501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arnold, A.D.; Shun-Shin, M.J.; Keene, D.; Howard, J.P.; Sohaib, S.M.A.; Wright, I.J.; Cole, G.D.; Qureshi, N.A.; Lefroy, D.C.; Koa-Wing, M.; et al. His Resynchronization Versus Biventricular Pacing in Patients With Heart Failure and Left Bundle Branch Block. J. Am. Coll. Cardiol. 2018, 72, 3112–3122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ponnusamy, S.S.; Arora, V.; Namboodiri, N.; Kumar, V.; Kapoor, A.; Vijayaraman, P. Left bundle branch pacing: A comprehensive review. J. Cardiovasc. Electrophysiol. 2020, 31, 2462–2473. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraman, P.; Zalavadia, D.; Haseeb, A.; Dye, C.; Madan, N.; Skeete, J.R.; Vipparthy, S.C.; Young, W.; Ravi, V.; Rajakumar, C.; et al. Clinical outcomes of conduction system pacing compared to biventricular pacing in patients requiring cardiac resynchronization therapy. Heart Rhythm. 2022, 19, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Link, M.S. Pacing System Malfunction: Evaluation and Management. Available online: https://www.uptodate.com/contents/pacing-system-malfunction-evaluation-and-management?search=pacing%20lead%20problems&source=search_result&selectedTitle=3%7E150&usage_type=default&display_rank=3 (accessed on 5 July 2024).
- Ohlow, M.A.; Roos, M.; Lauer, B.; Von Korn, H.; Geller, J.C. Incidence, predictors, and outcome of inadvertent malposition of transvenous pacing or defibrillation lead in the left heart. Europace 2016, 18, 1049–1054. [Google Scholar] [CrossRef]
- Trohman, R.G.; Wilkoff, B.L.; Byrne, T.; Cook, S. Successful percutaneous extraction of a chronic left ventricular pacing lead. Pacing Clin. Electrophysiol. 1991, 14, 1448–1451. [Google Scholar] [CrossRef] [PubMed]
- Mulpuru, S.K.; Madhavan, M.; McLeod, C.J.; Cha, Y.-M.; Friedman, P.A. Cardiac Pacemakers: Function, Troubleshooting, and Management: Part 1 of a 2-Part Series. J. Am. Coll. Cardiol. 2017, 69, 189–210. [Google Scholar] [CrossRef]
- Knight, B.P. Subtle Differences in IS-1 Pacing Leads from Different Companies Result in a New Lead-Device Compatibility Problem. EP Lab. Digest. 2018, 18. Available online: https://www.hmpgloballearningnetwork.com/site/eplab/articles/subtle-differences-1-pacing-leads-different-companies-results-new-lead-device (accessed on 5 July 2024).
- Pfensig, S.; Arbeiter, D.; Stiehm, M.; Grabow, N.; Schmitz, K.-P.; Siewert, S. In vitro biostability of cardiac pacemaker lead insulations under static mechanical loading. Curr. Dir. Biomed. Eng. 2022, 8, 447–450. [Google Scholar] [CrossRef]
- Haqqani, H.M.; Epstein, L.M.; Cooper, J.M. Engineering and Construction of Pacemaker and ICD Leads. Available online: https://Clinicalgate.com/ (accessed on 11 June 2024).
- Trohman, R.G.; Sharma, P.S. Detecting and managing device leads inadvertently placed in the left ventricle. Cleve Clin. J. Med. 2018, 85, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Spickler, J.W.; Rasor, N.S.; Kezdi, P.; Misra, S.N.; Robins, K.E.; LeBoeuf, C. Totally self-contained intracardiac pacemaker. J. Electrocardiol. 1970, 3, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Knops, R.E.; Sperzel, J.; Miller, M.A.; Petru, J.; Simon, J.; Sediva, L.; de Groot, J.R.; Tjong, F.V.; Jacobson, P.; et al. Permanent leadless cardiac pacing: Results of the LEADLESS trial. Circulation 2014, 129, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Micra™. AV Product Specifications. Available online: https://www.medtronic.com/content/dam/medtronic-wide/public/united-states/products/cardiac-vascular/cardiac-rhythm/pacing-systems/micra-av2-spec-sheet.pdf (accessed on 24 November 2024).
- Micra™. VR2 Leadless Pacemaker. Available online: https://www.medtronic.com/en-us/healthcare-professionals/products/cardiac-rhythm/pacing-systems/pacemakers/micra-vr2-leadless-pacemaker.html (accessed on 24 November 2024).
- Aveir™. Leadless Pacemaker, Model LSP201A, LSP202V Specifications and Characterisitics. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf15/P150035S003B.pdf (accessed on 24 November 2024).
- Breeman, K.T.N.; Tjong, F.V.Y.; Miller, M.A.; Neuzil, P.; Dukkipati, S.; Knops, R.E.; Reddy, V.Y. Ten Years of Leadless Cardiac Pacing. J. Am. Coll. Cardiol. 2024, 84, 2131–2147. [Google Scholar] [CrossRef] [PubMed]
- Knops, R.E.; Tjong, F.V.; Neuzil, P.; Sperzel, J.; Miller, M.A.; Petru, J.; Simon, J.; Sediva, L.; de Groot, J.R.; Dukkipati, S.R.; et al. Chronic performance of a leadless cardiac pacemaker: 1-year follow-up of the LEADLESS trial. J. Am. Coll. Cardiol. 2015, 65, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Exner, D.V.; Cantillon, D.J.; Doshi, R.; Bunch, T.J.; Tomassoni, G.F.; Friedman, P.A.; Estes, N.A., 3rd; Ip, J.; Niazi, I.; et al. Percutaneous Implantation of an Entirely Intracardiac Leadless Pacemaker. N. Engl. J. Med. 2015, 373, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Exner, D.V.; Doshi, R.; Tomassoni, G.; Bunch, T.J.; Estes, N.M.; Neužil, P.; Paulin, F.L.; Guerrero, J.J.G.; Cantillon, D.J. Primary Results on Safety and Efficacy From the LEADLESS II–Phase 2 Worldwide Clinical Trial. J. Am. Coll. Cardiol. EP 2022, 8, 115–117. [Google Scholar] [CrossRef]
- Ritter, P.; Duray, G.Z.; Steinwender, C.; Soejima, K.; Omar, R.; Mont, L.; Boersma, L.V.; Knops, R.E.; Chinitz, L.; Zhang, S.; et al. Early performance of a miniaturized leadless cardiac pacemaker: The Micra Transcatheter Pacing Study. Eur. Heart J. 2015, 36, 2510–2519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reynolds, D.; Duray, G.Z.; Omar, R.; Soejima, K.; Neuzil, P.; Zhang, S.; Narasimhan, C.; Steinwender, C.; Brugada, J.; Lloyd, M.; et al. A Leadless Intracardiac Transcatheter Pacing System. N. Engl. J. Med. 2016, 374, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Duray, G.Z.; Ritter, P.; El-Chami, M.; Narasimhan, C.; Omar, R.; Tolosana, J.M.; Zhang, S.; Soejima, K.; Steinwender, C.; Rapallini, L.; et al. Long-term performance of a transcatheter pacing system: 12-Month results from the Micra Transcatheter Pacing Study. Heart Rhythm. 2017, 14, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Soto, G.E. Pacemaker syndrome: Thinking beyond atrioventricular dyssynchrony. HeartRhythm Case Rep. 2024, 10, 273–275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roberts, P.R.; Clementy, N.; Al Samadi, F.; Garweg, C.; Martinez-Sande, J.L.; Iacopino, S.; Johansen, J.B.; Vinolas Prat, X.; Kowal, R.C.; Klug, D.; et al. A leadless pacemaker in the real-world setting: The Micra Transcatheter Pacing System Post-Approval Registry. Heart Rhythm. 2017, 14, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- El-Chami, M.F.; Garweg, C.; Clementy, N.; Al-Samadi, F.; Iacopino, S.; Martinez-Sande, J.L.; Roberts, P.R.; Tondo, C.; Johansen, J.B.; Vinolas-Prat, X.; et al. Leadless pacemakers at 5-year follow-up: The Micra transcatheter pacing system post-approval registry. Eur. Heart J. 2024, 45, 1241–1251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knops, R.E.; Reddy, V.Y.; Ip, J.E.; Doshi, R.; Exner, D.V.; Defaye, P.; Canby, R.; Bongiorni, M.G.; Shoda, M.; Hindricks, G.; et al. A Dual-Chamber Leadless Pacemaker. N. Engl. J. Med. 2023, 388, 2360–2370. [Google Scholar] [CrossRef] [PubMed]
- Mond, H.G.; Proclemer, A. The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: Calendar year 2009--a World Society of Arrhythmia’s project. Pacing Clin. Electrophysiol. 2011, 34, 1013–1027. [Google Scholar] [CrossRef] [PubMed]
- Unmatched Innovation: Setting the Pace with FDA-Approved AVEIR™ AR Atrial Leadless Pacemaker. Available online: https://www.cardiovascular.abbott/us/en/hcp/products/cardiac-rhythm-management/blog/unmatched-innovation-setting-pace-with-fda-approved-aveir-ar.html (accessed on 23 July 2024).
- Abbott Receives FDA Approval for World’s First Dualchamber Leadless Pacemaker. Available online: https://abbott.mediaroom.com/2023-07-05-Abbott-Receives-FDA-Approval-for-Worlds-First-Dual-Chamber-Leadless-Pacemaker (accessed on 23 July 2024).
- El-Chami, M.F.; Bhatia, N.K.; Merchant, F.M. Atrio-ventricular synchronous pacing with a single chamber leadless pacemaker: Programming and trouble shooting for common clinical scenarios. J. Cardiovasc. Electrophysiol. 2021, 32, 533–539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Micra AV2 and Micra VR2 Pacemakers-Updated Features. Available online: https://www.medtronicacademy.com/en-us/learning-plan/micra-leadless-pacing-systems (accessed on 31 July 2024).
- Steinwender, C.; Khelae, S.K.; Garweg, C.; Chan, J.Y.S.; Ritter, P.; Johansen, J.B.; Sagi, V.; Epstein, L.M.; Piccini, J.P.; Pascual, M.; et al. Atrioventricular Synchronous Pacing Using a Leadless Ventricular Pacemaker: Results From the MARVEL 2 Study. JACC Clin. Electrophysiol. 2020, 6, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Chinitz, L.A.; El-Chami, M.F.; Sagi, V.; Garcia, H.; Hackett, F.K.; Leal, M.; Whalen, P.; Henrikson, C.A.; Greenspon, A.J.; Sheldon, T.; et al. Ambulatory atrioventricular synchronous pacing over time using a leadless ventricular pacemaker: Primary results from the AccelAV study. Heart Rhythm. 2023, 20, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Puette, J.A.; Malek, R.; Ellison, M.B. Pacemaker. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK526001/ (accessed on 12 September 2022).
- Medtronic Receives CE Mark for Its Next Generation Micra Leadless Pacing Systems. Available online: https://news.medtronic.com/2024-01-05-Medtronic-receives-CE-Mark-for-its-next-generation-Micra-leadless-pacing-systems (accessed on 25 July 2024).
- Molitor, N.; Saleem-Talib, S.; Ramanna, H.; Hofer, D.; Breitenstein, A.; Steffel, J. Leadless pacemaker implantation via the internal jugular vein. Europace 2024, 26, euae199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El-Chami, M.F.; Shah, A.D. How to implant leadless pacemakers and mitigate major complications. Heart Rhythm. 2023, 20, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Atti, V.; Turagam, M.K.; Garg, J.; Koerber, S.; Angirekula, A.; Gopinathannair, R.; Natale, A.; Lakkireddy, D. Subclavian and Axillary Vein Access Versus Cephalic Vein Cutdown for Cardiac Implantable Electronic Device Implantation: A Meta-Analysis. JACC Clin. Electrophysiol. 2020, 6, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Cantillon, D.J.; Exner, D.V.; Badie, N.; Davis, K.; Gu, N.Y.; Nabutovsky, Y.; Doshi, R. Complications and Health Care Costs Associated With Transvenous Cardiac Pacemakers in a Nationwide Assessment. JACC Clin. Electrophysiol. 2017, 3, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Vouliotis, A.I.; Roberts, P.R.; Dilaveris, P.; Gatzoulis, K.; Yue, A.; Tsioufis, K. Leadless Pacemakers: Current Achievements and Future Perspectives. Eur. Cardiol. 2023, 18, e49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malaczynska-Rajpold, K.; Elliot, M.; Wijesuriya, N.; Mehta, V.; Wong, T.; Rinaldi, C.A.; Behar, J.M. Leadless Cardiac Pacing: New Horizons. Cardiol. Ther. 2023, 12, 21–33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Della Rocca, D.G.; Gianni, C.; Di Biase, L.; Natale, A.; Al-Ahmad, A. Leadless Pacemakers: State of the Art and Future Perspectives. Card. Electrophysiol. Clin. 2018, 10, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Halleran, S.M.; Krishnan, K.; Trohman, R.G. Rescue permanent iliac vein pacing after epicardial lead failure: An unusual reversal of pacing fortune. Europace 2008, 10, 1236–1238. [Google Scholar] [CrossRef] [PubMed]
- Boveda, S.; Lenarczyk, R.; Haugaa, K.H.; Iliodromitis, K.; Finlay, M.; Lane, D.; Prinzen, F.W.; Dagres, N. Use of leadless pacemakers in Europe: Results of the European Heart Rhythm Association survey. Europace 2018, 20, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: Developed by the Task Force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC) With the special contribution of the European Heart Rhythm Association (EHRA). Eur. Heart J 2021, 42, 3427–3520, Corrigendum at Eur. Heart J. 2021, 42, 4901https://doi.org/10.1093/eurheartj/ehab670.. [Google Scholar] [CrossRef]
- Haddadin, F.; Majmundar, M.; Jabri, A.; Pecha, L.; Scott, C.; Daher, M.; Kumar, A.; Kalra, A.; Fram, R.; Haddadin, F.; et al. Clinical outcomes and predictors of complications in patients undergoing leadless pacemaker implantation. Heart Rhythm. 2022, 19, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Leadless Pacemaker. Available online: https://my.clevelandclinic.org/health/treatments/17166-pacemakers-leadless-pacemaker (accessed on 2 November 2024).
- Aveir DR Dual-Chamber Leadless Pacemaker Looks Solid at 1 Year. Available online: https://www.tctmd.com/news/aveir-dr-dual-chamber-leadless-pacemaker-looks-solid-1-year#:~:text=Knops%20acknowledged%20that%20all%20of%20that%20communication%20between,device%20and%2011.3%20years%20for%20the%20ventricular%20device (accessed on 2 November 2024).
- Pasupula, D.K.; Rajaratnam, A.; Rattan, R.; Munir, M.B.; Ahmad, S.; Adelstein, E.; Jain, S.; Wang, N.C.; Saba, S. Trends in hospital admissions for and readmissions after cardiac implantable electronic device procedures in the United States: An analysis from 2010 to 2014 using the National Readmission Database. Mayo. Clin. Proc. 2019, 94, 588–598. [Google Scholar] [CrossRef] [PubMed]
- El-Chami, M.F.; Clementy, N.; Garweg, C.; Omar, R.; Duray, G.Z.; Gornick, C.C.; Leyva, F.; Sagi, V.; Piccini, J.P.; Soejima, K.; et al. Leadless pacemaker implantation in hemodialysis patients: Experience with the Micra Transcatheter Pacemaker. J. Am. Coll. Cardiol. EP 2019, 5, 162–170. [Google Scholar]
- El-Chami, M.F.; Johansen, J.B.; Zaidi, A.; Faerestrand, S.; Reynolds, D.; Garcia-Seara, J.; Mansourati, J.; Pasquie, J.L.; McElderry, H.T.; Roberts, P.R.; et al. Leadless pacemaker implant in patients with pre-existing infections: Results from the Micra postapproval registry. J. Cardiovasc. Electrophysiol. 2019, 30, 569–574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Modular CRM (mCRM™) System. Available online: https://www.bostonscientific.com/en-US/products/defibrillators/emblem-s-icd-system/modular-crm-system.html (accessed on 24 July 2024).
- Knops, R.E.; Lloyd, M.S.; Roberts, P.R.; Wright, D.J.; Boersma, L.V.; Doshi, R.; Friedman, P.A.; Neuzil, P.; Blomström-Lundqvist, C.; Bongiorni, M.G.; et al. A Modular Communicative Leadless Pacing-Defibrillator System. N. Engl. J. Med. 2024. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Tjong, F.V.; Reddy, V.Y. Permanent Leadless Cardiac Pacemaker Therapy: A Comprehensive Review. Circulation 2017, 135, 1458–1470. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.; Khoury, A.; El-Chami, M.F. Leadless Pacing: Where We Currently Stand and What the Future Holds. Curr. Cardiol. Rep. 2022, 24, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.G.; Gornick, C.C.; Abdelhadi, R.H.; Tang, C.Y.; Casey, S.A.; Sengupta, J.D. Major adverse clinical events associated with implantation of a leadless intracardiac pacemaker. Heart Rhythm. 2021, 18, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Piccini, J.P.; Cunnane, R.; Steffel, J.; El-Chami, M.F.; Reynolds, D.; Roberts, P.R.; Soejima, K.; Steinwender, C.; Garweg, C.; Chinitz, L.; et al. Development and validation of a risk score for predicting pericardial effusion in patients undergoing leadless pacemaker implantation: Experience with the Micra transcatheter pacemaker. Europace 2022, 24, 1119–1126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boersma, L.V.; El-Chami, M.; Steinwender, C.; Lambiase, P.; Murgatroyd, F.; Mela, T.; Theuns, D.A.M.J.; Khelae, S.K.; Kalil, C.; Zabala, F.; et al. Practical considerations, indications, and future perspectives for leadless and extravascular cardiac implantable electronic devices: A position paper by EHRA/HRS/LAHRS/APHRS. Europace 2022, 24, 1691–1708. [Google Scholar] [CrossRef] [PubMed]
- MODULAR ATP Trial: Evaluating Safety, Effectiveness and Performance of the Modular CRM (mCRM™) System and EMPOWER™ Leadless Pacemaker (LP). Available online: https://www.bostonscientific.com/en-US/products/defibrillators/emblem-s-icd-system/clinical-data/appraise-modular-trials.html (accessed on 25 July 2024).
- Zeineh, N.S.; Prutkin, J.M. The Subcutaneous Implantable Cardioverter-defibrillator: New Features and Implant Techniques and Future Developments. J. Innov. Card. Rhythm. Manag. 2018, 9, 3417–3424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knops, R.E.; Pepplinkhuizen, S.; Delnoy, P.P.H.M.; Boersma, L.V.A.; Kuschyk, J.; El-Chami, M.F.; Bonnemeier, H.; Behr, E.R.; Brouwer, T.F.; Kaab, S.; et al. Device-related complications in subcutaneous versus transvenous ICD: A secondary analysis of the PRAETORIAN trial. Eur. Heart J. 2022, 43, 4872–4883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Friedman, P.; Murgatroyd, F.; Boersma, L.V.; Manlucu, J.; O’donnell, D.; Knight, B.P.; Clémenty, N.; Leclercq, C.; Amin, A.; Merkely, B.P.; et al. Efficacy and Safety of an Extravascular Implantable Cardioverter-Defibrillator. N. Engl. J. Med. 2022, 387, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.K.; Patton, K.K.; Lau, C.-P.; Forno, A.R.D.; Al-Khatib, S.M.; Arora, V.; Birgersdotter-Green, U.M.; Cha, Y.-M.; Chung, E.H.; Cronin, E.M.; et al. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm 2023, 20, e17–e91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trohman, R.G.; Kim, M.H.; Pinski, S.L. Cardiac pacing: The state of the art. Lancet 2004, 364, 1701–1719. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, G.A.; Cherian, T.; Shatz, D.Y.; Beaser, A.D.; Aziz, Z.; Ozcan, C.; Broman, M.T.; Nayak, H.M.; Tung, R. Intracardiac delineation of septal conduction in left bundle-branch block patterns: Mechanistic evidence of left intrahisian block circumvented by His bundle pacing. Circulation 2019, 139, 1876–1888. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Miller, M.A.; Neuzil, P.; Søgaard, P.; Butter, C.; Seifert, M.; Delnoy, P.P.; van Erven, L.; Schalji, M.; Boersma, L.V.A.; et al. Cardiac Resynchronization Therapy With Wireless Left Ventricular Endocardial Pacing: The SELECT-LV Study. J. Am. Coll. Cardiol. 2017, 69, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- Okabe, T.; Hummel, J.D.; Bank, A.J.; Niazi, I.K.; McGrew, F.A.; Kindsvater, S.; Oza, S.R.; Scherschel, J.A.; Walsh, M.N.; Singh, J.P. Leadless left ventricular stimulation with WiSE-CRT System—Initial experience and results from phase I of SOLVE-CRT Study (nonrandomized, roll-in phase). Heart Rhythm. 2022, 19, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Sieniewicz, B.J.; Betts, T.R.; James, S.; Turley, A.; Butter, C.; Seifert, M.; Boersma, L.V.A.; Riahi, S.; Neuzil, P.; Biffi, M.; et al. Real-world experience of leadless left ventricular endocardial cardiac resynchronization therapy: A multicenter international registry of the WiSE-CRT pacing system. Heart Rhythm. 2020, 17, 1291–1297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- EBR Systems’ Pivotal SOLVE-CRT Trial Meets Endpoints: Excellent Interim Analysis Results Lead to Early Trial Halt for Success. Available online: https://www.prnewswire.com/news-releases/ebr-systems-pivotal-solve-crt-trial-meets-endpoints-excellent-interim-analysis-results-lead-to-early-trial-halt-for-success-301830654.html (accessed on 25 July 2024).
- Pivotal SOLVE-CRT Trial Meets Endpoints: Excellent Interim Analysis Results Lead to Early Trial Halt for Success. Available online: https://www.ebrsystemsinc.com/blog/pivotal-solve-crt-trial-meets-endpoints-excellent-interim-analysis-results-lead-to-early-trial-halt-for-success (accessed on 8 August 2024).
- Singh, J.P.; Rinaldi, C.A.; Sanders, P.; Kubo, S.H.; James, S.; Niazi, I.K.; Betts, T.R.; Butter, C.; Okabe, T.; Latacha, M.P.; et al. LB-456088-4 Safety and efficacy of a leadless ultrasound-based cardiac resynchronization pacing system in heart failure—Results from the SOLVE-CRT study. Heart Rhythm 2023, 20, 1096–1097. [Google Scholar] [CrossRef]
- Funasako, M.; Neuzil, P.; Dujka, L.; Petru, J.; Sediva, L.; Simon, J.; Hauser, T.; Baroch, J.; Reddy, V.Y. Successful implementation of a totally leadless biventricular pacing approach. HeartRhythm Case Rep. 2019, 6, 153–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carabelli, A.; Jabeur, M.; Jacon, P.; Rinaldi, C.A.; Leclercq, C.; Rovaris, G.; Arnold, M.; Venier, S.; Neuzil, P.; Defaye, P. European experience with a first totally leadless cardiac resynchronization therapy pacemaker system. EP Europace 2021, 23, 740–747. [Google Scholar] [CrossRef]
Date (Year) | Investigator (s) | Milestone |
---|---|---|
1932 | Hyman | Used a machine that produced electricity and plunged a needle through the chest wall into the heart for resuscitation of cardiac standstill. |
1950 | Bigelow et al. | Introduced a bipolar lead via the right internal jugular vein and stimulated the right atrium during open-heart surgery. |
1952 | Zoll | Developed external pacing. |
1958 | Furman | Used a transvenous electrode to successfully stimulate the right ventricle (RV) for 96 days. |
1958 | Lillihei and Bakken | Reported efficacy of a battery-powered external pacemaker in 18 patients. |
1958 | Senning and Elmqvist | Implanted the first pacemaker using an epicardial lead. |
Circa 1965 | Berkovitz | Credited with the innovation of demand (signal-sensed) pacing. Introduced the concept of Universal DDD pacing. |
1977 | Funke | Introduced atrial synchronous and atrioventricular (AV) sequential (DDD) pacing. |
1981 | Rickards and Norman | Designed a physiologically adaptive cardiac pacemaker which sensed the interval between the delivered stimulus and the evoked T wave and used the stimulus-evoked T wave interval to set the subsequent pacemaker escape interval. |
1994 | Cazeau et al. | Contributed a landmark report of successful four-chamber [biventricular (BiV)] pacing for heart failure. Initially, left ventricular (LV) lead placement was surgical. |
1998 | Daubert et al. | Described permanent left ventricular pacing via leads advanced to the coronary sinus and positioned in the cardiac veins. |
1999 | Auricchio et al. | Used balloon occlusive angiography (for road map of cardiac veins), reshaped guide catheters, and advanced leads over guidewires. |
2018 | Arnold et al. | His bundle pacing provided better ventricular resynchronization and improvement in hemodynamics compared to biventricular pacing. |
2020 | Ponnusamy et al. | Left bundle branch pacing (LBBP) effective in overcoming His-bundle pacing’s limitations, providing lead stability, low stable pacing thresholds, and correcting distal conduction system disease. |
2022 | Vijayaraman et al. | Conduction system pacing improved clinical outcomes compared to biventricular pacing in a large cohort of patients with an indication for cardiac resynchronization therapy. |
Nanostim | Aveir VR | Micra VR a | Micra AV b | Aveir AR c | Empower d | |
---|---|---|---|---|---|---|
Dimensions (mm) | 42 × 5.99 | 38 × 6.5 | 25.9 × 6.7 | 25.9 × 6.7 | 32.2 × 6.5 | 32.0 × 6.1 |
Volume (cc) | 1.0 | 1.1 | 0.8 | 0.8 | 1.0 | 0.75 |
Sheath size, F, ID/OD | 18/21 | 25/27 | 23/27 | 23/27 | 25/27 | 21/23 |
Pacing mode | VVI(R) | VVI(R) | VVI(R) | VVI(R) or VDD(R) | AAI(R) | VVI(R) + SCD diraected ATP |
Able to use as dual chamber LP | No | Yes | No | No | Yes | No |
Fixation | Screw-in helix | Screw-in helix | 4 nitinol tines | 4 nitinol tines | Screw-in helix | 4 nitinol tines |
Battery | Lithium carbon monofluoride | Lithium carbon monofluoride | Lithium-hybrid carbon monofluoride silver vanadium oxide | Lithium-hybrid carbon monofluoride silver vanadium oxide | Lithium carbon monofluoride | Lithium carbon monofluoride |
Battery longevity at standard settings (years) | N/A | 9.9 VVIR 7.3 DDDR | 4.7 VVIR | 4.8 VVIR | 6.8 AAI(R) 5 DDI(R) | N/A |
Battery longevity at alternate setting e | N/A | 16.1 (1.25 V at 0.4 ms. 60 bpm, 100% VP, 500 ohm, single chamber mode); 9.8 (1.25 V at 0.4 ms. 60 bpm, 100% VP, 500 ohm, dual chamber mode). | 9.6 (1.5 V at 0.4 ms. 60 bpm, 100% VP, 500 ohm) | 8.6 (1.5 V at 0.4 ms. 60 bpm, 100% VP, 500 ohm) | N/A | |
MRI-compatible | 1.5 T | 1.5 T, 3 T | 1.5 T, 3 T | 1.5 T, 3 T | 1.5 T, 3 T | 1.5 T, 3 T |
Remote monitoring | No | No | Carelink | Carelink | No | No |
Magnet mode | 100 bpm for 8 cycles, then rate dependent on battery status | 100 bpm for 5 cycles, then rate dependent on battery status | No | No | Yes, AOO (VOO in case of dual chamber pacing) at 100 bpm for 5 cycles, then rate dependent on battery status | N/A |
Clinical Outcomes | |
All-cause death | 513 (6.6) |
Acute venous thromboembolism | 443 (5.7) |
Acute stroke | 285 (3.6) |
Any bleeding | 1179 (15.1) |
Blood transfusion | 693 (8.9) |
Immediate procedural outcomes | |
Total procedure-related complication rates * | 588 (7.5) |
All vascular complications | 181 (2.31) |
Vascular complications requiring repair | 26 (0.33) |
Procedure-related bleeding | 194 (2.48) |
Pericardial effusion without requiring pericardiocentesis | 146 (1.9) |
Pericardial effusion without pericardiocentesis | 82 (1.0) |
Thoracotomy among patients with effusion † | 26 (11.5) |
Device dislodgment | 40 (0.51) |
Removal or repositioning of leadless pacemaker | 253 (3.25) |
Resource Utilization | |
Post-procedure length of stay (d) | 2 days (1–6) |
Cost (US$) | $34,483 (23,602–57,040) |
Leadless | Leadless II | Leadless Observational | Leadless II Phase 2 | Micra IDE | Micra PAR | MAP EMEA | Italian Registry | Total | |
---|---|---|---|---|---|---|---|---|---|
LP model | Nanostim | Nanostim | Nanostim | Aveir VR | Micra VR | Micra VR | Micra VR | Micra VR | |
Short-term complication rate, % | 6.1 | 5.8 | 5.3 | 4.8 | 2.9 | 2.5 | 2.6 | 0.5 | 3.0 |
No. of patients | 33 | 718 | 300 | 210 | 726 | 1809 | 928 | 665 | 5389 |
Follow-up duration, months | 3 | 1 | 6 a | 1.5 | 1 | 1 | 1 | 1 | 1.3 |
Pericardial effusion/cardiac perforation | 3.0 | 1.5 | 1.3 | 1.9 | 1.4 | 0.4 | 0.6 | 0.0 | 0.8 |
Dislodgement during procedure | 0.0 | 0.3 | 0.0 | 1.4 | 0.0 | 0.1 | 0.0 | n/a | 0.1 |
Dislodgement after procedure | 0.0 | 1 | 0.3 | 0.0 | 0.0 | 0.1 | 0.0 | 0.2 | 0.2 |
Vascular complications | 0.0 | 2.2 | 1.3 | 1.0 | 1.2 | 0.6 | 1.1 | 0.2 | 0.7 |
Other | 3.0 | 1.1 | 3.0 | 1.0 | 0.7 | 1.6 | 0.9 | 0.2 | 1.4 |
Long-term complication rate, % b | 3.0 | 0.6 | n/a | 1.9 | 1.1 c | 1.8 | 1.0 | 0.0 | 1.1 |
No. of patients | 33 | 718 | n/a | 210 | 726 | 1809 | 928 | 665 | 5089 |
Mean follow-up duration, months | 38 d | 10.6 d | n/a | 14.4 | 16.4 | 51.1 d | 9.7 | 39 e | 29.7 |
Dislodgement | 0.0 | 0.0 | n/a | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Infection | 0.0 | 0.0 | n/a | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 |
Other | 3.0 | 0.6 | n/a | 1.9 | 1.1 | 1.8 | 1.1 | 0.0 | 1.2 |
All Complications | ||||||||
---|---|---|---|---|---|---|---|---|
LPs | TVPMs | |||||||
Type of Analysis | Follow-Up (Months) | n | Rate, % | n | Rate, % | p-Value | HR (95% CI) | |
Leadless II (Nanostim) | Matched.1:2 short-term complications. Matched. 1:2 long-term complications. | 1 LPs 10.6 TV-PM 13.4 b | 718 718 | 5.8 0.6 | 1435 1435 | 9.4 4.9 | 0.010 <0.001 | Overall 0.44 (0.32–0.60) |
Micra IDE (MicraVR) | Unmatched, unadjusted a Matched. 1:1. | 12 12 | 726 726 | 4.0 4.0 | 2667 726 | 7.6 n/a | 0.001 <0.001 | 0.46 (0.35–0.77) 0.52 (0.30–0.72) |
Micra PAR (MicraVR) | Unmatched, unadjusted. Adjusted rates of complications. | 36-month estimate 36-month estimate | 1809 1809 | 4.1 n/a | 2667 2667 | 8.5 n/a | <0.001 <0.001 | 0.47 (0.36–0.61) 0.43 (0.29–0.65) |
Micra CED (MicraVR) | Adjusted rates of short-term complications. Adjusted rates of long-term complications. c | 1 3-year estimate | 5746 6219 | 7.7 4.9 | 9662 10,212 | 7.4 7.1 | 0.49 <0.0001 | Not reported 0.68 (0.59–0.78) |
Micra AV CED (Micra AV) | Adjusted rates of short-term complications. Adjusted rates of long-term complications. c | 1 6-month estimate | 7471 7471 | 8.6 3.5 | 107,800 107,800 | 11.0 7.0 | <0.0001 <0.0001 | Not reported 0.50 (0.43–0.57) |
U.S. data (NRD 2017-2019; Micra VR) d | Unmatched, unadjusted. | In hospital | 5986 | 16.0 | 131,746 | 6.4 | <0.001 | Not reported |
U.S. data (NIS 2017-2019; Micra VR) d | Unmatched, unadjusted. Matched. 1:1. | In hospital In hospital | 16,825 3084 | 8.6 8.0 | 565,845 3084 | 11.2 13.2 | <0.001 <0.001 | Not reported Not reported |
Italian Registry (MicraVR d) | Unmatched, unadjusted. Matched. 1:1. | 39 e 39 e | 665 442 | 0.5 0.7 | 2004 442 | 2.8 1.3 | 0.003 0.129 | Not reported Not reported |
LP Advantages | LP Disadvantages |
---|---|
Reduced risk of pocket infection, hematoma LP implantation after extraction of an infected TVPM has been performed without recurrent infection [65] | Potential cardiac perforation, effusion, and tamponade [69,70,71,72] |
Should be strongly considered in dialysis recipients to preserve upper extremity venous access and limit the risk of transient bacteremia and device infection [64] | Inexperienced operators may have poorer results [30,68] |
No risk of lead dislodgement, fracture or insulation break | Device may dislodge and retrieval may be needed (this is not always easy or even feasible) |
AVEIR DR uses 2 devices to provide AV synchrony [62] Micra AV permits atrial tracking and ventricular pacing | Micra limited to single chamber pacing |
Cosmetic: No chest incision or bulging [61] | Uncertain whether old or dysfunctional devices should be routinely removed |
Micra VR2 provides rate response | No defibrillation capabilities * [61,65,66] |
Battery life of single chamber devices comparable to transvenous devices (~16–17 years) [49] | Battery life of dual chamber devices reduced (particularly atrial device in AVEIR DR [6.4 years]) [62] |
Usually safe for MRI, but there may be a limit based on the strength of the magnet in the MRI machine [61] | Indications are evolving and are incompletely defined. |
Length of hospital stay may be shorter [67] | 30-day all-cause readmission rates have been reported to be significantly higher (17.9% vs. ~13%) than for transvenous PPM procedures [60,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trohman, R.G. Leadless Pacing: Current Status and Ongoing Developments. Micromachines 2025, 16, 89. https://doi.org/10.3390/mi16010089
Trohman RG. Leadless Pacing: Current Status and Ongoing Developments. Micromachines. 2025; 16(1):89. https://doi.org/10.3390/mi16010089
Chicago/Turabian StyleTrohman, Richard G. 2025. "Leadless Pacing: Current Status and Ongoing Developments" Micromachines 16, no. 1: 89. https://doi.org/10.3390/mi16010089
APA StyleTrohman, R. G. (2025). Leadless Pacing: Current Status and Ongoing Developments. Micromachines, 16(1), 89. https://doi.org/10.3390/mi16010089