Novel Therapeutics in Soft Tissue Sarcoma
Simple Summary
Abstract
1. Introduction
2. Gastrointestinal Stromal Tumours (GIST)
3. Liposarcoma
3.1. Well-Differentiated and Dedifferentiated Liposarcoma
3.2. Myxoid Liposarcoma
4. Synovial Sarcoma
5. TCR-Based Therapies in MLPS and SS
6. Leiomyosarcoma
7. Undifferentiated Pleomorphic Sarcoma (UPS)
8. Recent Advances in Other Rare STS Subtypes
8.1. Angiosarcoma
8.2. Epithelioid Sarcoma
8.3. Alveolar Soft Part Sarcoma (ASPS)
8.4. NTRK Fusion Sarcomas
8.5. PEComa
9. Other Soft Tissue Tumours
Desmoid Tumours
10. Conclusions/Perspective
Author Contributions
Funding
Conflicts of Interest
Glossary
STS | Soft tissue sarcoma |
ALK | Anaplastic lymphoma kinase |
NTRK | Neurotrophic Tyrosine Receptor Kinase |
ER | Estrogen Receptor |
PR | Progesterone Receptor |
PFS | Progression-free survival |
ASPS | Alveolar Soft Part Sarcoma |
UPS | Undifferentiated Pleomorphic Sarcoma |
MFS | Myxofibrosarcoma |
PD-1 | Programmed cell death protein 1 |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
KIT | KIT Proto-Oncogene |
PDGFRA | Platelet-derived growth factor receptor alpha |
NF1 | Neurofibromatosis 1 |
BRAF | B-Raf Proto-Oncogene, Serine/Threonine Kinase |
SDH | Succinate Dehydrogenase |
ATP | adenosine triphosphate |
HSP90 | Heat shock protein 90 |
HIF1a | Hypoxia-Inducible Factor 1 Alpha |
HIF2a | Hypoxia-Inducible Factor 2 Alpha |
DR5 | death receptor 5 |
TRAIL | TNF-related apoptosis-inducing ligand |
ITT | Intention to treat population |
mPFS | median progression-free survival |
mOS | median overall survival |
FDA | Food and Drug Administration |
PPE | palmar-plantar erythrodysesthesia |
ctDNA | circulating tumour DNA |
NGS | next generation sequencing |
TRAEs | treatment-related adverse events |
FGF | Fibroblast Growth Factor |
PDX | Patient-derived xenograft |
FGFR | FGF receptor |
LPS | liposarcoma |
WDLPS | Well-differentiated liposarcoma |
DDLPS | dedifferentiated liposarcoma |
MDM2 | Mouse double minute 2 homolog |
CDK4 | Cyclin-dependent kinase 4 |
Jun | Jun Proto-Oncogene |
ASK1/MAP3K5 | Mitogen-Activated Protein Kinase Kinase Kinase 5 |
CI | confidence interval |
HR | Hazard ratio |
NE | not estimable |
DLT | Dose-limiting toxicity |
LMS | Leiomyosarcoma |
XPO1 | Exportin 1 |
CALB1 | calbindin 1 |
MLPS | myxoid round liposarcoma |
DDIT3 | DNA damage-inducible transcript 3 |
FUS | fused in sarcoma |
EWSR1 | EWS RNA Binding Protein 1 |
SS | synovial sarcoma |
SWI/SNF | Switch/Sucrose Non-Fermentable |
PRC | Polycomb Repressive Complex |
SMARCB1 | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 |
INI1 | Integrase Interactor 1 |
PRC1 | Polycomb Repressive Complex 1 |
PRC2 | Polycomb Repressive Complex 2 |
CTA | Cancer Testis Antigen |
MAGE-A4 | Melanoma-Associated Antigen-4 |
NY-ESO-1 | New York Esophageal Squamous Cell Carcinoma-1 |
PRAME | Preferentially Expressed Antigen in Melanoma |
HLA | leukocyte antigen |
afami-cel | afamitresgene autoleucel |
ORR | objective response rate |
PR | partial response |
SD | stable disease |
CR | complete response |
PD | progressive disease |
PFS | progression free survival |
OS | overall survival |
LPA | long peptide antigen |
CRS | Cytokine release syndrome |
CRISPR/Cas9 | Clustered regularly interspaced short palindrome repeats/Cas9 |
siRNA | Small interfering RNA |
TP53 | Tumor Protein P53 |
ATRX | ATRX Chromatin Remodeler |
RB1 | RB Transcriptional Corepressor 1 |
PTEN | Phosphatase And Tensin Homolog |
RAD51 | RAD51 Recombinase |
ATR | ataxia telangiectasia and Rad3 related |
UPS | Undifferentiated pleomorphic sarcoma |
CDKN2A | cyclin-dependent kinase inhibitor 2A |
NPR | non-progression rate |
HNFS | head, neck, face and scalp |
KDR | Kinase Insert Domain Receptor |
PIK3CA | Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha |
Mb | Megabase |
PD1 | Programmed Cell Death 1 |
EZH2 | Enhancer of zeste homolog 2 |
PROTACS | proteolysis targeting chimeras |
TIGIT | T cell immunoreceptor with Ig and ITIM domains |
mDOR | median duration of response |
NTRK | neurotrophic tyrosine receptor kinase |
TSC1 | tuberous sclerosis 1 |
TSC2 | tuberous sclerosis 2 |
mTOR | Mammalian target of rapamycin |
CTNNB1 | Catenin Beta 1 |
FAP | familial adenomatous polyposis |
APC | adenomatous polyposis coli |
MGD | molecular glue degraders |
TAZ | Transcriptional Co-activator with a PDZ-motif |
CAMTA1 | Calmodulin Binding Transcription Activator 1 |
YAP | Yes-associated Protein |
TFE3 | Transcription Factor E3 |
EWSR1 | EWS RNA Binding Protein 1 |
FLI1 | friend leukemia virus integration 1 |
FOXO1 | (forkhead box O1) |
PAX3 | (paired box 3) |
PAX7 | (paired box 7) |
References
- Sbaraglia, M.; Bellan, E.; Dei Tos, A.P. The 2020 WHO Classification of Soft Tissue Tumours: News and perspectives. Pathologica 2020, 113, 70–84. [Google Scholar] [CrossRef]
- Blay, J.-Y.; Soibinet, P.; Penel, N.; Bompas, E.; Duffaud, F.; Stoeckle, E.; Mir, O.; Adam, J.; Chevreau, C.; Bonvalot, S.; et al. Improved survival using specialized multidisciplinary board in sarcoma patients. Ann. Oncol. 2017, 28, 2852–2859. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, V.; George, S.; Cote, G.M. Molecular Advances in the Treatment of Advanced Gastrointestinal Stromal Tumor. The Oncologist 2023, 28, 671–681. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Van Tine, B.A. Synovial Sarcoma: Current Concepts and Future Perspectives. J. Clin. Oncol. 2018, 36, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Beird, H.C.; Wu, C.-C.; Ingram, D.R.; Wang, W.-L.; Alimohamed, A.; Gumbs, C.; Little, L.; Song, X.; Feig, B.W.; Roland, C.L.; et al. Genomic profiling of dedifferentiated liposarcoma compared to matched well-differentiated liposarcoma reveals higher genomic complexity and a common origin. Cold Spring Harb. Mol. Case Stud. 2018, 4, a002386. [Google Scholar] [CrossRef]
- Chudasama, P.; Mughal, S.S.; Sanders, M.A.; Hübschmann, D.; Chung, I.; Deeg, K.I.; Wong, S.-H.; Rabe, S.; Hlevnjak, M.; Zapatka, M.; et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat. Commun. 2018, 9, 144. [Google Scholar] [CrossRef]
- Gamboa, A.C.; Gronchi, A.; Cardona, K. Soft-tissue sarcoma in adults: An update on the current state of histiotype-specific management in an era of personalized medicine. CA A Cancer J. Clin. 2020, 70, 200–229. [Google Scholar] [CrossRef] [PubMed]
- Seddon, B.; Strauss, S.J.; Whelan, J.; Leahy, M.; Woll, P.J.; Cowie, F.; Rothermundt, C.; Wood, Z.; Benson, C.; Ali, N.; et al. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDDiS): A randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Tap, W.D.; Wagner, A.J.; Schöffski, P.; Martin-Broto, J.; Krarup-Hansen, A.; Ganjoo, K.N.; Yen, C.-C.; Abdul Razak, A.R.; Spira, A.; Kawai, A.; et al. Effect of Doxorubicin Plus Olaratumab vs Doxorubicin Plus Placebo on Survival in Patients With Advanced Soft Tissue Sarcomas: The Announce Randomized Clinical Trial. JAMA 2020, 323, 1266. [Google Scholar] [CrossRef] [PubMed]
- Judson, I.; Verweij, J.; Gelderblom, H.; Hartmann, J.T.; Schöffski, P.; Blay, J.-Y.; Kerst, J.M.; Sufliarsky, J.; Whelan, J.; Hohenberger, P.; et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: A randomised controlled phase 3 trial. Lancet Oncol. 2014, 15, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Sleijfer, S.; Ouali, M.; Van Glabbeke, M.; Krarup-Hansen, A.; Rodenhuis, S.; Le Cesne, A.; Hogendoorn, P.C.W.; Verweij, J.; Blay, J.-Y. Prognostic and predictive factors for outcome to first-line ifosfamide-containing chemotherapy for adult patients with advanced soft tissue sarcomas. Eur. J. Cancer 2010, 46, 72–83. [Google Scholar] [CrossRef]
- Goy, B.W.; Syed, S.; Padmanabhan, A.; Burchette, R.J.; Helmstedter, C.S. The role of Ifosfamide–doxorubicin chemotherapy in histology-specific, high grade, locally advanced soft tissue sarcoma, a 14-year experience. Radiother. Oncol. 2021, 165, 174–178. [Google Scholar] [CrossRef]
- D’Ambrosio, L.; Touati, N.; Blay, J.; Grignani, G.; Flippot, R.; Czarnecka, A.M.; Piperno-Neumann, S.; Martin-Broto, J.; Sanfilippo, R.; Katz, D.; et al. Doxorubicin plus dacarbazine, doxorubicin plus ifosfamide, or doxorubicin alone as a first-line treatment for advanced leiomyosarcoma: A propensity score matching analysis from the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Cancer 2020, 126, 2637–2647. [Google Scholar] [CrossRef] [PubMed]
- Maki, R.G.; Wathen, J.K.; Patel, S.R.; Priebat, D.A.; Okuno, S.H.; Samuels, B.; Fanucchi, M.; Harmon, D.C.; Schuetze, S.M.; Reinke, D.; et al. Randomized Phase II Study of Gemcitabine and Docetaxel Compared With Gemcitabine Alone in Patients With Metastatic Soft Tissue Sarcomas: Results of Sarcoma Alliance for Research Through Collaboration Study 002. J. Clin. Oncol 2007, 25, 2755–2763. [Google Scholar] [CrossRef] [PubMed]
- García-del-Muro, X.; López-Pousa, A.; Maurel, J.; Martín, J.; Martínez-Trufero, J.; Casado, A.; Gómez-España, A.; Fra, J.; Cruz, J.; Poveda, A.; et al. Randomized Phase II Study Comparing Gemcitabine Plus Dacarbazine Versus Dacarbazine Alone in Patients With Previously Treated Soft Tissue Sarcoma: A Spanish Group for Research on Sarcomas Study. J. Clin. Oncol 2011, 29, 2528–2533. [Google Scholar] [CrossRef] [PubMed]
- Van Der Graaf, W.T.; Blay, J.-Y.; Chawla, S.P.; Kim, D.-W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012, 379, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Kawai, A.; Araki, N.; Sugiura, H.; Ueda, T.; Yonemoto, T.; Takahashi, M.; Morioka, H.; Hiraga, H.; Hiruma, T.; Kunisada, T.; et al. Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: A randomised, open-label, phase 2 study. Lancet Oncol. 2015, 16, 406–416. [Google Scholar] [CrossRef]
- Demetri, G.D.; Von Mehren, M.; Jones, R.L.; Hensley, M.L.; Schuetze, S.M.; Staddon, A.; Milhem, M.; Elias, A.; Ganjoo, K.; Tawbi, H.; et al. Efficacy and Safety of Trabectedin or Dacarbazine for Metastatic Liposarcoma or Leiomyosarcoma After Failure of Conventional Chemotherapy: Results of a Phase III Randomized Multicenter Clinical Trial. J. Clin. Oncol 2016, 34, 786–793. [Google Scholar] [CrossRef]
- Demetri, G.D.; Schöffski, P.; Grignani, G.; Blay, J.-Y.; Maki, R.G.; Van Tine, B.A.; Alcindor, T.; Jones, R.L.; D’Adamo, D.R.; Guo, M.; et al. Activity of Eribulin in Patients With Advanced Liposarcoma Demonstrated in a Subgroup Analysis From a Randomized Phase III Study of Eribulin Versus Dacarbazine. J. Clin. Oncol 2017, 35, 3433–3439. [Google Scholar] [CrossRef]
- Khosroyani, H.M.; Klug, L.R.; Heinrich, M.C. TKI Treatment Sequencing in Advanced Gastrointestinal Stromal Tumors. Drugs 2023, 83, 55–73. [Google Scholar] [CrossRef]
- Navarrete-Dechent, C.; Mori, S.; Barker, C.A.; Dickson, M.A.; Nehal, K.S. Imatinib Treatment for Locally Advanced or Metastatic Dermatofibrosarcoma Protuberans: A Systematic Review. JAMA Dermatol. 2019, 155, 361. [Google Scholar] [CrossRef]
- Schöffski, P.; Sufliarsky, J.; Gelderblom, H.; Blay, J.-Y.; Strauss, S.J.; Stacchiotti, S.; Rutkowski, P.; Lindner, L.H.; Leahy, M.G.; Italiano, A.; et al. Crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumours with and without anaplastic lymphoma kinase gene alterations (European Organisation for Research and Treatment of Cancer 90101 CREATE): A multicentre, single-drug, prospective, non-randomised phase 2 trial. Lancet Respir. Med. 2018, 6, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Thanopoulou, E.; Judson, I. Hormonal therapy in gynecological sarcomas. Expert Rev. Anticancer Ther. 2012, 12, 885–894. [Google Scholar] [CrossRef]
- Tap, W.D.; Jones, R.L.; Van Tine, B.A.; Chmielowski, B.; Elias, A.D.; Adkins, D.; Agulnik, M.; Cooney, M.M.; Livingston, M.B.; Pennock, G.; et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: An open-label phase 1b and randomised phase 2 trial. Lancet 2016, 388, 488–497. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.P.; Mahoney, M.R.; Van Tine, B.A.; Atkins, J.; Milhem, M.M.; Jahagirdar, B.N.; Antonescu, C.R.; Horvath, E.; Tap, W.D.; Schwartz, G.K.; et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): Two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018, 19, 416–426. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.P.; Sharon, E.; O’Sullivan-Coyne, G.; Moore, N.; Foster, J.C.; Hu, J.S.; Van Tine, B.A.; Conley, A.P.; Read, W.L.; Riedel, R.F.; et al. Atezolizumab for Advanced Alveolar Soft Part Sarcoma. N. Engl. J. Med. 2023, 389, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Burgess, M.A.; Bolejack, V.; Schuetze, S.; Van Tine, B.A.; Attia, S.; Riedel, R.F.; Hu, J.S.; Davis, L.E.; Okuno, S.H.; Priebat, D.A.; et al. Clinical activity of pembrolizumab (P) in undifferentiated pleomorphic sarcoma (UPS) and dedifferentiated/pleomorphic liposarcoma (LPS): Final results of SARC028 expansion cohorts. J. Clin. Oncol 2019, 37, 11015. [Google Scholar] [CrossRef]
- Wagner, M.J.; Othus, M.; Patel, S.P.; Ryan, C.; Sangal, A.; Powers, B.; Budd, G.T.; Victor, A.I.; Hsueh, C.-T.; Chugh, R.; et al. Multicenter phase II trial (SWOG S1609, cohort 51) of ipilimumab and nivolumab in metastatic or unresectable angiosarcoma: A substudy of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART). J. Immunother. Cancer 2021, 9, e002990. [Google Scholar] [CrossRef] [PubMed]
- Florou, V.; Rosenberg, A.E.; Wieder, E.; Komanduri, K.V.; Kolonias, D.; Uduman, M.; Castle, J.C.; Buell, J.S.; Trent, J.C.; Wilky, B.A. Angiosarcoma patients treated with immune checkpoint inhibitors: A case series of seven patients from a single institution. J. Immunother. Cancer 2019, 7, 213. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Golčić, M. Recent advances in the systemic treatment of gastrointestinal stromal tumors. Cancer Biol. Med. 2023, 20, 701. [Google Scholar] [CrossRef] [PubMed]
- Blay, J.-Y.; Serrano, C.; Heinrich, M.C.; Zalcberg, J.; Bauer, S.; Gelderblom, H.; Schöffski, P.; Jones, R.L.; Attia, S.; D’Amato, G.; et al. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2020, 21, 923–934. [Google Scholar] [CrossRef]
- Lim, S.Y.; Ferro-López, L.; Barquin, E.; Lindsay, D.; Thway, K.; Smith, M.J.; Benson, C.; Jones, R.L.; Napolitano, A. Efficacy and Safety of Ripretinib in Advanced Gastrointestinal Stromal Tumors within an Expanded Access Program: A Cohort Study. Cancers 2024, 16, 985. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Jones, R.L.; Blay, J.-Y.; Gelderblom, H.; George, S.; Schöffski, P.; Von Mehren, M.; Zalcberg, J.R.; Kang, Y.-K.; Razak, A.A.; et al. Ripretinib Versus Sunitinib in Patients With Advanced Gastrointestinal Stromal Tumor After Treatment With Imatinib (INTRIGUE): A Randomized, Open-Label, Phase III Trial. J. Clin. Oncol 2022, 40, 3918–3928. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.C.; Jones, R.L.; George, S.; Gelderblom, H.; Schöffski, P.; Von Mehren, M.; Zalcberg, J.R.; Kang, Y.-K.; Razak, A.A.; Trent, J.; et al. Ripretinib versus sunitinib in gastrointestinal stromal tumor: ctDNA biomarker analysis of the phase 3 INTRIGUE trial. Nat. Med. 2024, 30, 498–506. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Blay, J.-Y.; Chi, P.; Jones, R.L.; Serrano, C.; Somaiah, N.; Reichmann, W.; Sprott, K.; Achour, H.; Sherman, M.L.; et al. INSIGHT: A phase 3, randomized, multicenter, open-label study of ripretinib vs sunitinib in patients with advanced gastrointestinal stromal tumor previously treated with imatinib harboring KIT exon 11 + 17 and/or 18 mutations. J. Clin. Oncol 2023, 41, TPS11582. [Google Scholar] [CrossRef]
- Heinrich, M.C.; Jones, R.L.; Von Mehren, M.; Schöffski, P.; Serrano, C.; Kang, Y.-K.; Cassier, P.A.; Mir, O.; Eskens, F.; Tap, W.D.; et al. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): A multicentre, open-label, phase 1 trial. Lancet Oncol. 2020, 21, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Serrano, C.; Von Mehren, M.; George, S.; Heinrich, M.C.; Kang, Y.-K.; Schöffski, P.; Cassier, P.A.; Mir, O.; Chawla, S.P.; et al. Avapritinib in unresectable or metastatic PDGFRA D842V-mutant gastrointestinal stromal tumours: Long-term efficacy and safety data from the NAVIGATOR phase I trial. Eur. J. Cancer 2021, 145, 132–142. [Google Scholar] [CrossRef]
- Kurokawa, Y.; Honma, Y.; Sawaki, A.; Naito, Y.; Iwagami, S.; Komatsu, Y.; Takahashi, T.; Nishida, T.; Doi, T. Pimitespib in patients with advanced gastrointestinal stromal tumor (CHAPTER-GIST-301): A randomized, double-blind, placebo-controlled phase III trial. Ann. Oncol. 2022, 33, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.J.; Severson, P.L.; Shields, A.F.; Patnaik, A.; Chugh, R.; Tinoco, G.; Wu, G.; Nespi, M.; Lin, J.; Zhang, Y.; et al. Association of Combination of Conformation-Specific KIT Inhibitors With Clinical Benefit in Patients With Refractory Gastrointestinal Stromal Tumors: A Phase 1b/2a Nonrandomized Clinical Trial. JAMA Oncol. 2021, 7, 1343. [Google Scholar] [CrossRef]
- Heinrich, M.C.; Somaiah, N.; Trent, J.C.; Wilky, B.A.; Burgess, M.A.; Singh, A.S.; Attia, S.; Agulnik, M.; Tap, W.D.; Bauer, S.; et al. Peak study: A phase 3, randomized, open-label multicenter clinical study of bezuclastinib (CGT9486) and sunitinib in combination versus sunitinib in patients with gastrointestinal stromal tumors (GIST). J. Clin. Oncol 2024, 42, TPS766. [Google Scholar] [CrossRef]
- Li, B.; Chen, H.; Yang, S.; Chen, F.; Xu, L.; Li, Y.; Li, M.; Zhu, C.; Shao, F.; Zhang, X.; et al. Advances in immunology and immunotherapy for mesenchymal gastrointestinal cancers. Mol. Cancer 2023, 22, 71. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Zhou, Z.; Zhou, Y.; Chen, J.; Wan, X.; Li, N.; Tao, K.; Li, Y.; Wu, X.; Chen, Z.; et al. Updated efficacy results of olverembatinib (HQP1351) in patients with tyrosine kinase inhibitor (TKI)-resistant succinate dehydrogenase (SDH)-deficient gastrointestinal stromal tumors (GIST) and paraganglioma. J. Clin. Oncol 2024, 42, 11502. [Google Scholar] [CrossRef]
- Yebra, M.; Bhargava, S.; Kumar, A.; Burgoyne, A.M.; Tang, C.-M.; Yoon, H.; Banerjee, S.; Aguilera, J.; Cordes, T.; Sheth, V.; et al. Establishment of Patient-Derived Succinate Dehydrogenase–Deficient Gastrointestinal Stromal Tumor Models for Predicting Therapeutic Response. Clin. Cancer Res. 2022, 28, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Flavahan, W.A.; Drier, Y.; Johnstone, S.E.; Hemming, M.L.; Tarjan, D.R.; Hegazi, E.; Shareef, S.J.; Javed, N.M.; Raut, C.P.; Eschle, B.K.; et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 2019, 575, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Thway, K. Well-differentiated liposarcoma and dedifferentiated liposarcoma: An updated review. Semin. Diagn. Pathol. 2019, 36, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Italiano, A.; Bianchini, L.; Keslair, F.; Bonnafous, S.; Cardot-Leccia, N.; Coindre, J.; Dumollard, J.; Hofman, P.; Leroux, A.; Mainguené, C.; et al. HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int. J. Cancer 2008, 122, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Fisher, C.; Al-Muderis, O.; Judson, I.R. Differential sensitivity of liposarcoma subtypes to chemotherapy. Eur. J. Cancer 2005, 41, 2853–2860. [Google Scholar] [CrossRef]
- Marine, J.-C.; Lozano, G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 2010, 17, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Yamato, K.; Hirai, S.; Moriwaki, T.; Fukuda, K.; Suzuki, H.; Abei, M.; Nakagawa, I.; Hyodo, I. Potent in vitro and in vivo antitumor effects of MDM2 inhibitor nutlin-3 in gastric cancer cells. Cancer Sci. 2011, 102, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Gounder, M.M.; Bauer, T.M.; Schwartz, G.K.; Weise, A.M.; LoRusso, P.; Kumar, P.; Tao, B.; Hong, Y.; Patel, P.; Lu, Y.; et al. A First-in-Human Phase I Study of Milademetan, an MDM2 Inhibitor, in Patients With Advanced Liposarcoma, Solid Tumors, or Lymphomas. J. Clin. Oncol. 2023, 41, 1714–1724. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.W.-W.; Sanfilippo, R.; Jones, R.L.; Schuetze, S.M.; Sebio Garcia, A.; Alvarez, R.M.; Bui, N.; Ahn, J.-H.; Loong, H.H.F.; Yen, C.-C.; et al. 76MO Efficacy and safety findings from MANTRA: A global, randomized, multicenter, phase III study of the MDM2 inhibitor milademetan vs trabectedin in patients with dedifferentiated liposarcomas. Ann. Oncol. 2023, 34, S1496. [Google Scholar] [CrossRef]
- LoRusso, P.; Yamamoto, N.; Patel, M.R.; Laurie, S.A.; Bauer, T.M.; Geng, J.; Davenport, T.; Teufel, M.; Li, J.; Lahmar, M.; et al. The MDM2–p53 Antagonist Brigimadlin (BI 907828) in Patients with Advanced or Metastatic Solid Tumors: Results of a Phase Ia, First-in-Human, Dose-Escalation Study. Cancer Discov. 2023, 13, 1802–1813. [Google Scholar] [CrossRef]
- Schöffski, P.; Lahmar, M.; Lucarelli, A.; Maki, R.G. Brightline-1: Phase II/III trial of the MDM2–p53 antagonist BI 907828 versus doxorubicin in patients with advanced DDLPS. Future Oncol. 2023, 19, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Gluck, W.L.; Gounder, M.M.; Frank, R.; Eskens, F.; Blay, J.Y.; Cassier, P.A.; Soria, J.-C.; Chawla, S.; De Weger, V.; Wagner, A.J.; et al. Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53 wild-type solid tumors or multiple myeloma. Investig. New Drugs 2020, 38, 831–843. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, M.; De Weger, V.A.; Dickson, M.A.; Langenberg, M.; Le Cesne, A.; Wagner, A.J.; Hsu, K.; Zheng, W.; Macé, S.; Tuffal, G.; et al. A phase I study of SAR405838, a novel human double minute 2 (HDM2) antagonist, in patients with solid tumours. Eur. J. Cancer 2017, 76, 144–151. [Google Scholar] [CrossRef]
- Wagner, A.J.; Banerji, U.; Mahipal, A.; Somaiah, N.; Hirsch, H.; Fancourt, C.; Johnson-Levonas, A.O.; Lam, R.; Meister, A.K.; Russo, G.; et al. Phase I Trial of the Human Double Minute 2 Inhibitor MK-8242 in Patients With Advanced Solid Tumors. J. Clin. Oncol. 2017, 35, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Ray-Coquard, I.; Blay, J.-Y.; Italiano, A.; Le Cesne, A.; Penel, N.; Zhi, J.; Heil, F.; Rueger, R.; Graves, B.; Ding, M.; et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: An exploratory proof-of-mechanism study. Lancet Oncol. 2012, 13, 1133–1140. [Google Scholar] [CrossRef]
- Dickson, M.A.; Schwartz, G.K.; Keohan, M.L.; D’Angelo, S.P.; Gounder, M.M.; Chi, P.; Antonescu, C.R.; Landa, J.; Qin, L.-X.; Crago, A.M.; et al. Progression-Free Survival Among Patients With Well-Differentiated or Dedifferentiated Liposarcoma Treated With CDK4 Inhibitor Palbociclib: A Phase 2 Clinical Trial. JAMA Oncol. 2016, 2, 937. [Google Scholar] [CrossRef] [PubMed]
- Dickson, M.A.; Koff, A.; D’Angelo, S.P.; Gounder, M.M.; Keohan, M.L.; Kelly, C.M.; Chi, P.; Antonescu, C.R.; Landa, J.; Qin, L.-X.; et al. Phase 2 study of the CDK4 inhibitor abemaciclib in dedifferentiated liposarcoma. J. Clin. Oncol. 2019, 37, 11004. [Google Scholar] [CrossRef]
- Dickson, M.A.; Ballman, K.V.; Weiss, M.C.; Attia, S.; Wagner, M.J.; Pollack, S.; Choy, E.; Wagner, A.J.; Wilky, B.A.; Davis, L.E.; et al. SARC041: A phase 3 randomized double-blind study of abemaciclib versus placebo in patients with advanced dedifferentiated liposarcoma. J. Clin. Oncol. 2023, 41, TPS11587. [Google Scholar] [CrossRef]
- Abdul Razak, A.R.; Bauer, S.; Suarez, C.; Lin, C.-C.; Quek, R.; Hütter-Krönke, M.L.; Cubedo, R.; Ferretti, S.; Guerreiro, N.; Jullion, A.; et al. Co-Targeting of MDM2 and CDK4/6 with Siremadlin and Ribociclib for the Treatment of Patients with Well-Differentiated or Dedifferentiated Liposarcoma: Results from a Proof-of-Concept, Phase Ib Study. Clin. Cancer Res. 2022, 28, 1087–1097. [Google Scholar] [CrossRef]
- Garg, M.; Kanojia, D.; Mayakonda, A.; Said, J.W.; Doan, N.B.; Chien, W.; Ganesan, T.S.; Huey Chuang, L.S.; Venkatachalam, N.; Baloglu, E.; et al. Molecular mechanism and therapeutic implications of selinexor (KPT-330) in liposarcoma. Oncotarget 2017, 8, 7521–7532. [Google Scholar] [CrossRef] [PubMed]
- Gounder, M.M.; Razak, A.A.; Somaiah, N.; Chawla, S.; Martin-Broto, J.; Grignani, G.; Schuetze, S.M.; Vincenzi, B.; Wagner, A.J.; Chmielowski, B.; et al. Selinexor in Advanced, Metastatic Dedifferentiated Liposarcoma: A Multinational, Randomized, Double-Blind, Placebo-Controlled Trial. J. Clin. Oncol. 2022, 40, 2479–2490. [Google Scholar] [CrossRef]
- Pollack, S.M.; Redman, M.W.; Baker, K.K.; Wagner, M.J.; Schroeder, B.A.; Loggers, E.T.; Trieselmann, K.; Copeland, V.C.; Zhang, S.; Black, G.; et al. Assessment of Doxorubicin and Pembrolizumab in Patients With Advanced Anthracycline-Naive Sarcoma: A Phase 1/2 Nonrandomized Clinical Trial. JAMA Oncol. 2020, 6, 1778. [Google Scholar] [CrossRef] [PubMed]
- Livingston, M.B.; Jagosky, M.H.; Robinson, M.M.; Ahrens, W.A.; Benbow, J.H.; Farhangfar, C.J.; Foureau, D.M.; Maxwell, D.M.; Baldrige, E.A.; Begic, X.; et al. Phase II Study of Pembrolizumab in Combination with Doxorubicin in Metastatic and Unresectable Soft-Tissue Sarcoma. Clin. Cancer Res. 2021, 27, 6424–6431. [Google Scholar] [CrossRef]
- Lee, A.T.J.; Thway, K.; Huang, P.H.; Jones, R.L. Clinical and Molecular Spectrum of Liposarcoma. J. Clin. Oncol. 2018, 36, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Engström, K.; Bergh, P.; Cederlund, C.-G.; Hultborn, R.; Willen, H.; Åman, P.; Kindblom, L.-G.; Meis-Kindblom, J.M. Irradiation of myxoid/round cell liposarcoma induces volume reduction and lipoma-like morphology. Acta Oncol. 2007, 46, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Di Giandomenico, S.; Frapolli, R.; Bello, E.; Uboldi, S.; Licandro, S.A.; Marchini, S.; Beltrame, L.; Brich, S.; Mauro, V.; Tamborini, E.; et al. Mode of action of trabectedin in myxoid liposarcomas. Oncogene 2014, 33, 5201–5210. [Google Scholar] [CrossRef]
- Gronchi, A.; Hindi, N.; Cruz, J.; Blay, J.-Y.; Lopez-Pousa, A.; Italiano, A.; Alvarez, R.; Gutierrez, A.; Rincón, I.; Sangalli, C.; et al. Trabectedin and RAdiotherapy in Soft Tissue Sarcoma (TRASTS): Results of a Phase I Study in Myxoid Liposarcoma from Spanish (GEIS), Italian (ISG), French (FSG) Sarcoma Groups. EClinicalMedicine 2019, 9, 35–43. [Google Scholar] [CrossRef]
- Sanfilippo, R.; Hindi, N.; Cruz Jurado, J.; Blay, J.-Y.; Lopez-Pousa, A.; Italiano, A.; Alvarez, R.; Gutierrez, A.; Rincón-Perez, I.; Sangalli, C.; et al. Effectiveness and Safety of Trabectedin and Radiotherapy for Patients With Myxoid Liposarcoma: A Nonrandomized Clinical Trial. JAMA Oncol. 2023, 9, 656. [Google Scholar] [CrossRef]
- Iura, K.; Kohashi, K.; Ishii, T.; Maekawa, A.; Bekki, H.; Otsuka, H.; Yamada, Y.; Yamamoto, H.; Matsumoto, Y.; Iwamoto, Y.; et al. MAGEA4 expression in bone and soft tissue tumors: Its utility as a target for immunotherapy and diagnostic marker combined with NY-ESO-1. Virchows Arch. 2017, 471, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Hemminger, J.A.; Ewart Toland, A.; Scharschmidt, T.J.; Mayerson, J.L.; Kraybill, W.G.; Guttridge, D.C.; Iwenofu, O.H. The cancer-testis antigen NY-ESO-1 is highly expressed in myxoid and round cell subset of liposarcomas. Mod. Pathol. 2013, 26, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Hemminger, J.A.; Toland, A.E.; Scharschmidt, T.J.; Mayerson, J.L.; Guttridge, D.C.; Iwenofu, O.H. Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma. Mod. Pathol. 2014, 27, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Tsimberidou, A.-M.; Van Morris, K.; Vo, H.H.; Eck, S.; Lin, Y.-F.; Rivas, J.M.; Andersson, B.S. T-cell receptor-based therapy: An innovative therapeutic approach for solid tumors. J. Hematol. Oncol. 2021, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Blay, J.-Y.; Von Mehren, M.; Jones, R.L.; Martin-Broto, J.; Stacchiotti, S.; Bauer, S.; Gelderblom, H.; Orbach, D.; Hindi, N.; Dei Tos, A.; et al. Synovial sarcoma: Characteristics, challenges, and evolving therapeutic strategies. ESMO Open 2023, 8, 101618. [Google Scholar] [CrossRef] [PubMed]
- Kadoch, C.; Crabtree, G.R. Reversible Disruption of mSWI/SNF (BAF) Complexes by the SS18-SSX Oncogenic Fusion in Synovial Sarcoma. Cell 2013, 153, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Iura, K.; Maekawa, A.; Kohashi, K.; Ishii, T.; Bekki, H.; Otsuka, H.; Yamada, Y.; Yamamoto, H.; Harimaya, K.; Iwamoto, Y.; et al. Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1. Hum. Pathol. 2017, 61, 130–139. [Google Scholar] [CrossRef]
- Brien, G.L.; Remillard, D.; Shi, J.; Hemming, M.L.; Chabon, J.; Wynne, K.; Dillon, E.T.; Cagney, G.; Van Mierlo, G.; Baltissen, M.P.; et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 2018, 7, e41305. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Shimomura, A.; Kubo, T.; Sekimizu, M.; Seo, T.; Watanabe, S.-I.; Kawai, A.; Yamamoto, N.; Tamura, K.; Kohno, T.; et al. BRAF V600E mutation is a potential therapeutic target for a small subset of synovial sarcoma. Mod. Pathol. 2020, 33, 1660–1668. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Gazzah, A.; Lassen, U.; Stein, A.; Wen, P.Y.; Dietrich, S.; De Jonge, M.J.A.; Blay, J.-Y.; et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: The phase 2 ROAR trial. Nat. Med. 2023, 29, 1103–1112. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Araujo, D.M.; Abdul Razak, A.R.; Agulnik, M.; Attia, S.; Blay, J.-Y.; Carrasco Garcia, I.; Charlson, J.A.; Choy, E.; Demetri, G.D.; et al. Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): An international, open-label, phase 2 trial. Lancet 2024, 403, 1460–1471. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Noujaim, J.C.; Thistlethwaite, F.; Abdul Razak, A.R.; Stacchiotti, S.; Chow, W.A.; Haanen, J.B.A.G.; Chalmers, A.W.; Robinson, S.I.; Van Tine, B.A.; et al. IGNYTE-ESO: A master protocol to assess safety and activity of letetresgene autoleucel (lete-cel; GSK3377794) in HLA-A*02+ patients with synovial sarcoma or myxoid/round cell liposarcoma (Substudies 1 and 2). J. Clin. Oncol. 2021, 39, TPS11582. [Google Scholar] [CrossRef]
- Kawai, A.; Ishihara, M.; Nakamura, T.; Kitano, S.; Iwata, S.; Takada, K.; Emori, M.; Kato, K.; Endo, M.; Matsumoto, Y.; et al. Safety and Efficacy of NY-ESO-1 Antigen-Specific T-Cell Receptor Gene-Transduced T Lymphocytes in Patients with Synovial Sarcoma: A Phase I/II Clinical Trial. Clin. Cancer Res. 2023, 29, 5069–5078. [Google Scholar] [CrossRef]
- Ishihara, M.; Nishida, Y.; Kitano, S.; Kawai, A.; Muraoka, D.; Momose, F.; Harada, N.; Miyahara, Y.; Seo, N.; Hattori, H.; et al. A phase 1 trial of NY-ESO -1-specific TCR -engineered T-cell therapy combined with a lymph node-targeting nanoparticulate peptide vaccine for the treatment of advanced soft tissue sarcoma. Int. J. Cancer 2023, 152, 2554–2566. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.D.; Babichev, Y.; Fuligni, F.; Comitani, F.; Layeghifard, M.; Venier, R.E.; Dentro, S.C.; Maheshwari, A.; Guram, S.; Wunker, C.; et al. Lineage-defined leiomyosarcoma subtypes emerge years before diagnosis and determine patient survival. Nat. Commun. 2021, 12, 4496. [Google Scholar] [CrossRef] [PubMed]
- Lacuna, K.; Bose, S.; Ingham, M.; Schwartz, G. Therapeutic advances in leiomyosarcoma. Front. Oncol. 2023, 13, 1149106. [Google Scholar] [CrossRef]
- Pautier, P.; Italiano, A.; Piperno-Neumann, S.; Chevreau, C.; Penel, N.; Firmin, N.; Boudou-Rouquette, P.; Bertucci, F.; Lebrun-Ly, V.; Ray-Coquard, I.; et al. Doxorubicin–Trabectedin with Trabectedin Maintenance in Leiomyosarcoma. N. Engl. J. Med. 2024, 391, 789–799. [Google Scholar] [CrossRef]
- Ingham, M.; Allred, J.B.; Chen, L.; Das, B.; Kochupurakkal, B.; Gano, K.; George, S.; Attia, S.; Burgess, M.A.; Seetharam, M.; et al. Phase II Study of Olaparib and Temozolomide for Advanced Uterine Leiomyosarcoma (NCI Protocol 10250). J. Clin. Oncol. 2023, 41, 4154–4163. [Google Scholar] [CrossRef]
- Mei, L.; Zhang, J.; He, K.; Zhang, J. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: Where we stand. J. Hematol. Oncol. 2019, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. NCT04807816. Available online: https://clinicaltrials.gov/study/NCT04807816 (accessed on 8 March 2024).
- Gordon, E.; Tellez, W.A.; Brigham, D.A.; Valencia, C.; Chawla, S.P.; Chua-Alcala, V.; Moradhkani, A. 1483O Results of a phase I/II combination regimen with ipilimumab (I), nivolumab (N) and trabectedin (T) as first line therapy for advanced leiomyosarcoma. Ann. Oncol. 2022, 33, S1225. [Google Scholar] [CrossRef]
- Martin Broto, J.; Diaz Beveridge, R.; Moura, D.; Ramos, R.; Martinez-Trufero, J.; Carrasco-Garcia, I.; Lopez-Pousa, A.; Gonzalez -Billalabeitia, E.; Gutierrez, A.; Cruz Jurado, J.; et al. ImmunoSarc2: A Spanish Sarcoma Group (GEIS) phase Ib trial of doxorubicin and dacarbazine plus nivolumab in first line treatment of advanced leiomyosarcoma. J. Clin. Oncol. 2023, 41, 11502. [Google Scholar] [CrossRef]
- Smrke, A.; Ostler, A.; Napolitano, A.; Vergnano, M.; Asare, B.; Fotiadis, N.; Thway, K.; Zaidi, S.; Miah, A.B.; Van Der Graaf, W.; et al. 1526MO GEMMK: A phase I study of gemcitabine (gem) and pembrolizumab (pem) in patients (pts) with leiomyosarcoma (LMS) and undifferentiated pleomorphic sarcoma UPS). Ann. Oncol. 2021, 32, S1114. [Google Scholar] [CrossRef]
- Nathenson, M.; Choy, E.; Carr, N.D.; Hibbard, H.D.; Mazzola, E.; Catalano, P.J.; Thornton, K.A.; Morgan, J.A.; Cote, G.M.; Merriam, P.; et al. Phase II study of eribulin and pembrolizumab in patients (pts) with metastatic soft tissue sarcomas (STS): Report of LMS cohort. J. Clin. Oncol. 2020, 38, 11559. [Google Scholar] [CrossRef]
- Somaiah, N.; Conley, A.P.; Parra, E.R.; Lin, H.; Amini, B.; Solis Soto, L.; Salazar, R.; Barreto, C.; Chen, H.; Gite, S.; et al. Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: A single-centre phase 2 trial. Lancet Oncol. 2022, 23, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Toulmonde, M.; Brahmi, M.; Giraud, A.; Chakiba, C.; Bessede, A.; Kind, M.; Toulza, E.; Pulido, M.; Albert, S.; Guégan, J.-P.; et al. Trabectedin plus Durvalumab in Patients with Advanced Pretreated Soft Tissue Sarcoma and Ovarian Carcinoma (TRAMUNE): An Open-Label, Multicenter Phase Ib Study. Clin. Cancer Res. 2022, 28, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.J.; Zhang, Y.; Cranmer, L.D.; Loggers, E.T.; Black, G.; McDonnell, S.; Maxwell, S.; Johnson, R.; Moore, R.; Hermida De Viveiros, P.; et al. A Phase 1/2 Trial Combining Avelumab and Trabectedin for Advanced Liposarcoma and Leiomyosarcoma. Clin. Cancer Res. 2022, 28, 2306–2312. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, P.; Andreou, D.; Flörcken, A.; Groß, T.; Richter, S.; Kessler, T.; Kortüm, M.; Schmidt, C.A.; Kasper, B.; Wardelmann, E.; et al. Efficacy and safety of nivolumab and trabectedin in pretreated patients with advanced soft tissue sarcomas (STS): Results of a phase II trial of the German Interdisciplinary Sarcoma Group (GISG-15, NitraSarc). J. Clin. Oncol. 2023, 41, 11500. [Google Scholar] [CrossRef]
- Gordon, E.M.; Chawla, S.P.; Tellez, W.A.; Younesi, E.; Thomas, S.; Chua-Alcala, V.S.; Chomoyan, H.; Valencia, C.; Brigham, D.A.; Moradkhani, A.; et al. SAINT: A Phase I/Expanded Phase II Study Using Safe Amounts of Ipilimumab, Nivolumab and Trabectedin as First-Line Treatment of Advanced Soft Tissue Sarcoma. Cancers 2023, 15, 906. [Google Scholar] [CrossRef]
- Haddox, C.L.; Nathenson, M.J.; Mazzola, E.; Lin, J.-R.; Baginska, J.; Nau, A.; Weirather, J.L.; Choy, E.; Marino-Enriquez, A.; Morgan, J.A.; et al. Phase II Study of Eribulin plus Pembrolizumab in Metastatic Soft-tissue Sarcomas: Clinical Outcomes and Biological Correlates. Clin. Cancer Res. 2024, OF1–OF12. [Google Scholar] [CrossRef] [PubMed]
- Wilky, B.A.; Maleddu, A.; Mailhot, A.; Cartwright, C.; Gao, D.; Moreno Tellez, C.; Powers, K.; Kemp, L.; Therrien, N.; Patel, J.M.; et al. A single-arm, open-label phase 2 trial of doxorubicin plus zalifrelimab, a CTLA-4 inhibitor, with balstilimab, a PD-1 inhibitor, in patients with advanced/metastatic soft tissue sarcomas. J. Clin. Oncol. 2023, 41, 11501. [Google Scholar] [CrossRef]
- Wilky, B.A.; Trucco, M.M.; Subhawong, T.K.; Florou, V.; Park, W.; Kwon, D.; Wieder, E.D.; Kolonias, D.; Rosenberg, A.E.; Kerr, D.A.; et al. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: A single-centre, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Martin-Broto, J.; Hindi, N.; Grignani, G.; Martinez-Trufero, J.; Redondo, A.; Valverde, C.; Stacchiotti, S.; Lopez-Pousa, A.; D’Ambrosio, L.; Gutierrez, A.; et al. Nivolumab and sunitinib combination in advanced soft tissue sarcomas: A multicenter, single-arm, phase Ib/II trial. J. Immunother. Cancer 2020, 8, e001561. [Google Scholar] [CrossRef] [PubMed]
- Cousin, S.; Bellera, C.; Guegan, J.-P.; Valentin, T.; Bahleda, R.; Metges, J.-P.; Cassier, P.A.; Cantarel, C.; Spalato Ceruso, M.; Kind, M.; et al. 1494P Regomune—A phase II study of regorafenib + avelumab in solid tumors: Results of the soft tissue sarcoma (STS) cohort. Ann. Oncol. 2022, 33, S1230. [Google Scholar] [CrossRef]
- Van Tine, B.A.; Eulo, V.; Toeniskoetter, J.; Ruff, T.; Luo, J.; Kemp, L.; Moreno Tellez, C.; Weiss, M.C.; Hirbe, A.C.; Meyer, C.F.; et al. Randomized phase II trial of cabozantinib combined with PD-1 and CTLA-4 inhibition versus cabozantinib in metastatic soft tissue sarcoma. J. Clin. Oncol. 2023, 41, LBA11504. [Google Scholar] [CrossRef]
- Cho, H.J.; Yun, K.-H.; Shin, S.-J.; Lee, Y.H.; Kim, S.H.; Baek, W.; Han, Y.D.; Kim, S.K.; Ryu, H.J.; Lee, J.; et al. Durvalumab plus pazopanib combination in patients with advanced soft tissue sarcomas: A phase II trial. Nat. Commun. 2024, 15, 685. [Google Scholar] [CrossRef] [PubMed]
- Robles-Tenorio, A.; Solis-Ledesma, G. Undifferentiated Pleomorphic Sarcoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK570612/ (accessed on 8 March 2024).
- Toulmonde, M.; Lucchesi, C.; Verbeke, S.; Crombe, A.; Adam, J.; Geneste, D.; Chaire, V.; Laroche-Clary, A.; Perret, R.; Bertucci, F.; et al. High throughput profiling of undifferentiated pleomorphic sarcomas identifies two main subgroups with distinct immune profile, clinical outcome and sensitivity to targeted therapies. eBioMedicine 2020, 62, 103131. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Mahoney, M.R.; George, S.; Antonescu, C.R.; Liebner, D.A.; Van Tine, B.A.; Milhem, M.M.; Tap, W.D.; Streicher, H.; Schwartz, G.K.; et al. A multicenter phase II study of nivolumab +/− ipilimumab for patients with metastatic sarcoma (Alliance A091401): Results of expansion cohorts. J. Clin. Oncol. 2020, 38, 11511. [Google Scholar] [CrossRef]
- Florou, V.; Wilky, B.A. Current Management of Angiosarcoma: Recent Advances and Lessons From the Past. Curr. Treat. Option Oncol. 2021, 22, 61. [Google Scholar] [CrossRef]
- Painter, C.A.; Jain, E.; Tomson, B.N.; Dunphy, M.; Stoddard, R.E.; Thomas, B.S.; Damon, A.L.; Shah, S.; Kim, D.; Gómez Tejeda Zañudo, J.; et al. The Angiosarcoma Project: Enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nat. Med. 2020, 26, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Meissner, M.; Napolitano, A.; Thway, K.; Huang, P.; Jones, R.L. Pharmacotherapeutic strategies for epithelioid sarcoma: Are we any closer to a non-surgical cure? Expert Opin. Pharmacother. 2023, 24, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Tazemetostat in Combination with Doxorubicin as Frontline Therapy for Advanced Epithelioid Sarcoma. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04204941 (accessed on 25 March 2024).
- Mavroeidis, L.; Lopez, L.F.F.; Pozas, J.; D’Arienzo, P.D.; Wall, A.; Napolitano, A.; Benson, C.; Thway, K.; Jones, R.L. 88P Real-world evidence of the efficacy of ipilimumab plus nivolumab in patients with epithelioid sarcoma. ESMO Open 2024, 9, 102477. [Google Scholar] [CrossRef]
- Pecora, A.; Halpern, S.; Weber, M.; Paleoudis, E.G.; Panush, D.; Patterson, F.; Toretsky, J. Rapid and Complete Response to Combination Anti-CTLA-4 and Anti-PD-1 Checkpoint Inhibitor Therapy in a Patient With Stage IV Refractory End-stage Epithelioid Sarcoma: A Case Report. J. Immunother. 2020, 43, 286–290. [Google Scholar] [CrossRef]
- Blay, J.-Y.; Chevret, S.; Le Cesne, A.; Brahmi, M.; Penel, N.; Cousin, S.; Bertucci, F.; Bompas, E.; Ryckewaert, T.; Soibinet, P.; et al. Pembrolizumab in patients with rare and ultra-rare sarcomas (AcSé Pembrolizumab): Analysis of a subgroup from a non-randomised, open-label, phase 2, basket trial. Lancet Oncol. 2023, 24, 892–902. [Google Scholar] [CrossRef]
- Ngo, C.; Postel-Vinay, S. Immunotherapy for SMARCB1-Deficient Sarcomas: Current Evidence and Future Developments. Biomedicines 2022, 10, 650. [Google Scholar] [CrossRef]
- Fujiwara, T.; Kunisada, T.; Nakata, E.; Nishida, K.; Yanai, H.; Nakamura, T.; Tanaka, K.; Ozaki, T. Advances in treatment of alveolar soft part sarcoma: An updated review. Jpn. J. Clin. Oncol. 2023, 53, 1009–1018. [Google Scholar] [CrossRef]
- Tanaka, M.; Chuaychob, S.; Homme, M.; Yamazaki, Y.; Lyu, R.; Yamashita, K.; Ae, K.; Matsumoto, S.; Kumegawa, K.; Maruyama, R.; et al. ASPSCR1::TFE3 orchestrates the angiogenic program of alveolar soft part sarcoma. Nat. Commun. 2023, 14, 1957. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Fang, Z.; Hong, X.; Yao, Y.; Sun, P.; Wang, G.; Du, F.; Sun, Y.; Wu, Q.; Qu, G.; et al. Safety and Efficacy of Anlotinib, a Multikinase Angiogenesis Inhibitor, in Patients with Refractory Metastatic Soft-Tissue Sarcoma. Clin. Cancer Res. 2018, 24, 5233–5238. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.; Takebe, N.; Kummar, S.; Razak, A.; Chawla, S.P.; George, S.; Patel, S.R.; Keohan, M.L.; Movva, S.; O’Sullivan Coyne, G.; et al. Randomized Phase II Trial of Sunitinib or Cediranib in Alveolar Soft Part Sarcoma. Clin. Cancer Res. 2023, 29, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Stacchiotti, S.; Negri, T.; Zaffaroni, N.; Palassini, E.; Morosi, C.; Brich, S.; Conca, E.; Bozzi, F.; Cassinelli, G.; Gronchi, A.; et al. Sunitinib in advanced alveolar soft part sarcoma: Evidence of a direct antitumor effect. Ann. Oncol. 2011, 22, 1682–1690. [Google Scholar] [CrossRef]
- O’Sullivan Coyne, G.; Kummar, S.; Hu, J.; Ganjoo, K.; Chow, W.A.; Do, K.T.; Zlott, J.; Bruns, A.; Rubinstein, L.; Foster, J.C.; et al. Clinical Activity of Single-Agent Cabozantinib (XL184), a Multi-receptor Tyrosine Kinase Inhibitor, in Patients with Refractory Soft-Tissue Sarcomas. Clin. Cancer Res. 2022, 28, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, T.M.; Keam, B.; Kim, Y.J.; Paeng, J.C.; Moon, K.C.; Kim, D.-W.; Heo, D.S. A Phase II Trial of Pazopanib in Patients with Metastatic Alveolar Soft Part Sarcoma. Oncologist 2019, 24, 20-e29. [Google Scholar] [CrossRef]
- Demetri, G.D.; Antonescu, C.R.; Bjerkehagen, B.; Bovée, J.V.M.G.; Boye, K.; Chacón, M.; Dei Tos, A.P.; Desai, J.; Fletcher, J.A.; Gelderblom, H.; et al. Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: Expert recommendations from the World Sarcoma Network. Ann. Oncol. 2020, 31, 1506–1517. [Google Scholar] [CrossRef]
- Siozopoulou, V.; Smits, E.; De Winne, K.; Marcq, E.; Pauwels, P. NTRK Fusions in Sarcomas: Diagnostic Challenges and Clinical Aspects. Diagnostics 2021, 11, 478. [Google Scholar] [CrossRef]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; Van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Qin, H.; Patel, M. The Challenge and Opportunity of NTRK Inhibitors in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2022, 23, 2916. [Google Scholar] [CrossRef]
- Bourgmayer, A.; Nannini, S.; Bonjean, P.; Kurtz, J.-E.; Malouf, G.G.; Gantzer, J. Natural History and Treatment Strategies of Advanced PEComas: A Systematic Review. Cancers 2021, 13, 5227. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, A.M.; Skoczylas, J.; Bartnik, E.; Świtaj, T.; Rutkowski, P. Management Strategies for Adults with Locally Advanced, Unresectable or Metastatic Malignant Perivascular Epithelioid Cell Tumor (PEComa): Challenges and Solutions. Cancer Manag. Res. 2023, 15, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.J.; Ravi, V.; Riedel, R.F.; Ganjoo, K.; Van Tine, B.A.; Chugh, R.; Cranmer, L.; Gordon, E.M.; Hornick, J.L.; Du, H.; et al. Phase II Trial of nab- Sirolimus in Patients With Advanced Malignant Perivascular Epithelioid Cell Tumors (AMPECT): Long-Term Efficacy and Safety Update. J. Clin. Oncol. 2024, 42, 1472–1476. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.J.; Ravi, V.; Riedel, R.F.; Ganjoo, K.; Van Tine, B.A.; Chugh, R.; Cranmer, L.; Gordon, E.M.; Hornick, J.L.; Du, H.; et al. nab -Sirolimus for Patients With Malignant Perivascular Epithelioid Cell Tumors. J. Clin. Oncol. 2021, 39, 3660–3670. [Google Scholar] [CrossRef] [PubMed]
- Bektas, M.; Bell, T.; Khan, S.; Tumminello, B.; Fernandez, M.M.; Heyes, C.; Oton, A.B. Desmoid Tumors: A Comprehensive Review. Adv. Ther. 2023, 40, 3697–3722. [Google Scholar] [CrossRef] [PubMed]
- Gounder, M.; Ratan, R.; Alcindor, T.; Schöffski, P.; Van Der Graaf, W.T.; Wilky, B.A.; Riedel, R.F.; Lim, A.; Smith, L.M.; Moody, S.; et al. Nirogacestat, a γ-Secretase Inhibitor for Desmoid Tumors. N. Engl. J. Med. 2023, 388, 898–912. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, C.; Khalifa, E.; Laizet, Y.; Soubeyran, I.; Mathoulin-Pelissier, S.; Chomienne, C.; Italiano, A. Targetable Alterations in Adult Patients With Soft-Tissue Sarcomas: Insights for Personalized Therapy. JAMA Oncol. 2018, 4, 1398. [Google Scholar] [CrossRef] [PubMed]
- Pacini, C.; Duncan, E.; Gonçalves, E.; Gilbert, J.; Bhosle, S.; Horswell, S.; Karakoc, E.; Lightfoot, H.; Curry, E.; Muyas, F.; et al. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization. Cancer Cell 2024, 42, 301–316.e9. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Dependency Map (DepMap) Consortium. DepMap Portal. Available online: https://depmap.org/portal/ (accessed on 6 April 2024).
- Shihabi, A.A.; Tebon, P.J.; Nguyen, H.T.; Chantharasamee, J.; Sartini, S.; Davarifar, A.; Jensen, A.; Diaz-Infante, M.; Cox, H.; Gonzalez, A.; et al. Abstract 203: A characterization of drug sensitivity and resistance in sarcoma. Cancer Res. 2023, 83, 203. [Google Scholar] [CrossRef]
- Hattori, E.; Oyama, R.; Kondo, T. Systematic Review of the Current Status of Human Sarcoma Cell Lines. Cells 2019, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, S.D.; Sivakumar, H.; Erali, R.A.; Wajih, N.; Li, W.; Shen, P.; Levine, E.A.; Miller, K.E.; Skardal, A.; Votanopoulos, K.I. Patient-Specific Sarcoma Organoids for Personalized Translational Research: Unification of the Operating Room with Rare Cancer Research and Clinical Implications. Ann. Surg. Oncol. 2022, 29, 7354–7367. [Google Scholar] [CrossRef] [PubMed]
- Petitprez, F.; De Reyniès, A.; Keung, E.Z.; Chen, T.W.-W.; Sun, C.-M.; Calderaro, J.; Jeng, Y.-M.; Hsiao, L.-P.; Lacroix, L.; Bougoüin, A.; et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020, 577, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Italiano, A.; Bessede, A.; Pulido, M.; Bompas, E.; Piperno-Neumann, S.; Chevreau, C.; Penel, N.; Bertucci, F.; Toulmonde, M.; Bellera, C.; et al. Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid structures: A phase 2 PEMBROSARC trial cohort. Nat. Med. 2022, 28, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yu, T.; Li, X.; Zhang, N.; Foster, L.J.; Peng, C.; Huang, W.; He, G. Recent advances in targeting the “undruggable” proteins: From drug discovery to clinical trials. Sig. Transduct. Target. Ther. 2023, 8, 335. [Google Scholar] [CrossRef]
- KOODAC Team. Cancer Grand Challenges. Available online: https://cancergrandchallenges.org/teams/koodac?utm_source=CancerNews&utm_medium=OrganicSocialAndEmail&utm_campaign=TeamKOODAC (accessed on 15 April 2024).
- Fountzilas, E.; Tsimberidou, A.M.; Vo, H.H.; Kurzrock, R. Clinical trial design in the era of precision medicine. Genome Med. 2022, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Mavroeidis, L.; Napolitano, A.; Huang, P.; Jones, R.L. Real-world evidence for ultra rare cancers. Rare Tumors 2024, 16, 20363613241234207. [Google Scholar] [CrossRef] [PubMed]
Clinical Trial Identifier | Title | Phase | Biologic Rationale | Population | Estimated Completion Date |
---|---|---|---|---|---|
GIST | |||||
NCT05489237 | A First-in-human (FIH) Study of IDRX-42 in Participants With Metastatic and/or Unresectable Gastrointestinal Stromal Tumours (GIST) | 1/1b | Novel TKI | GIST | September 2026 |
NCT04936178 | A Multicenter Phase 1, Open-Label Study of NB003 to Assess Safety, Tolerability, Pharmacokinetics, and Efficacy in Patients With Advanced Malignancies | 1 | Novel TKI | GIST | December 2025 |
NCT05208047 | (Peak) A Phase 3 Randomised Trial of CGT9486 + Sunitinib vs. Sunitinib in Subjects With Gastrointestinal Stromal Tumours | 3 | Combination of two TKIs for a broader control of resistance mutations | GIST | September 2026 |
NCT04924075 | Belzutifan/MK-6482 for the Treatment of Advanced Pheochromocytoma/Paraganglioma (PPGL), Pancreatic Neuroendocrine Tumour (pNET), Von Hippel-Lindau (VHL) Disease-Associated Tumours, Advanced Gastrointestinal Stromal Tumour (wt GIST), or Solid Tumours With HIF-2α Related Genetic Alterations (MK-6482-015) | 2 | To target the elevated HIF2a expression in SDH-deficient GIST | Wild-type GIST PPGL pNET (VHL) disease-associated tumors Tumours with HIF-2α related genetic alterations | February 2027 |
NCT05661643 | The Efficacy and Safety of Temozolomide in SDH-deficient GIST (GIST) | 2 | To target the selectively sensitive to temozolomide SDH-deficient GIST | Wild-type GIST | December 2027 |
NCT03715933 | Phase 1 Study of INBRX-109 in Subjects With Locally Advanced or Metastatic Solid Tumours Including Sarcomas | 1 | SDH-deficient solid tumours or GIST: to target the selectively sensitive to temozolomide SDH-deficient GIST in combination with a human death receptor 5 (DR5) agonist, given that temozolomide increases DR5 expression | GIST SDH-deficient tumours Sarcoma Pleural mesothelioma Gastric adenocarcinoma CRC Pancreatic adenocarcinoma | July 2026 |
DDLPS | |||||
NCT04967521 | SARC041: Study of Abemaciclib Versus Placebo in Patients With Advanced Dedifferentiated Liposarcoma | 3 | To target CDK4 | DDLPS | November 2024 |
NCT05827614 | Study of the CHK1 Inhibitor BBI-355, an ecDNA-directed Therapy (ecDTx), in Subjects With Tumours With Oncogene Amplifications (POTENTIATE) | 1/2 | To exploit the replication stress-associated with oncogene amplifications in extrachromosomal DNA | Tumours with evidence of oncogene amplification, including liposarcoma | September 2027 |
NCT05694871 | Testing the Addition of Cemiplimab to Palbociclib for the Treatment of Advanced Dedifferentiated Liposarcoma | 2 | To combine inhibition of CDK4 with anti-PD-1 | DDLPS | May 2027 |
LMS | |||||
NCT05432791 | Testing Olaparib and Temozolomide Versus the Usual Treatment for Uterine Leiomyosarcoma After Chemotherapy Has Stopped Working | 2/3 | To combine parp inhibition with temozolomide and target homologous recombination deficiency | Uterine LMS | March 2030 |
NCT04807816 | Targeting ATR in Soft-tissue Sarcomas (TARSARC) | 2 | To leverage DNA damage response by combining ATR inhibition with chemotherapy | LMS | April 2026 |
NCT06088290 | Study of Lurbinectedin in Combination With Doxorubicin Versus Doxorubicin Alone as First-line Treatment in Participants With Metastatic Leiomyosarcoma (SaLuDo) | 2b/3 | Combination of 2 chemotherapeutics followed by maintenance chemotherapy | LMS | November 2026 |
UPS & MFS | |||||
NCT04480502 | ENVASARC: Envafolimab And Envafolimab With Ipilimumab In Patients With Undifferentiated Pleomorphic Sarcoma Or Myxofibrosarcoma (ENVASARC) | 2 | To combine anti-PD-L1 with anti-CTLA-4 | UPS MFS | June 2024 |
NCT03425279 | A Phase 1/2 Dose Escalation and Dose Expansion Study of Mecbotamab Vedotin (BA3011) Alone and in Combination With Nivolumab in Adult and Adolescent Patients 12 Years and Older With Advanced Solid Tumours | 1/2 | To selectively target tumour cells with anti-AXL antibody-drug conjugate alone and in combination with anti-PD-1 | UPS MFS | December 2024 |
Angiosarcoma | |||||
NCT03860272 | A Phase 1 Study of AGEN1181, an Fc-Engineered Anti-CTLA-4 Monoclonal Antibody as Monotherapy and in Combination With AGEN2034 (Balstilimab), an Anti-PD-1 Monoclonal Antibody, in Subjects With Advanced Cancer | 1 | Combination of anti-PD-1 with Fc-engineered anti-CTLA-4 to harness a novel mechanism for enhanced FcγR-dependent functionality | Angiosarcoma HCC NSCLC Prostate cancer Breast cancer | December 2026 |
NCT05799612 | Phase I Study of TH1 Dendritic Cell Immunotherapy for the Treatment of Cutaneous Angiosarcoma | 1 | To combine paclitaxel, mRNA plus lysate-loaded dendritic cell vaccine, pegylated-interferon alpha, and filgrastim | Cutaneous head and neck angiosarcoma | December 2029 |
ES and INI1-deficient tumours | |||||
NCT04416568 | Study of Nivolumab and Ipilimumab in Children and Young Adults With INI1-Negative Cancers | 2 | To combine anti-PD-1 and anti-CTLA-4 in INI1-negative or SMARCA4-deficient tumours | ES Other INI1- or SMARCA4-deficient malignant tumours Chordoma (poorly differentiated or dedifferentiated) ATRT MRT RTK | October 2025 |
NCT05407441 | TAZNI: A Phase I/II Combination Trial of Tazemetostat With Nivolumab and Ipilimumab for Children With INI1-Negative or SMARCA4-Deficient Tumours | 1/2 | To combine EZH2 inhibition with anti-PD-1 and anti-CTLA-4 in INI1-negative or SMARCA4-deficient tumours | ES Other INI1- or SMARCA4-deficient malignant tumours Chordoma (poorly differentiated or dedifferentiated) ATRT MRT RTK | February 2029 |
NCT05286801 | Tiragolumab and Atezolizumab for the Treatment of Relapsed or Refractory SMARCB1 or SMARCA4 Deficient Tumours | 1/2 | To combine anti-TIGIT and anti-PD-L1 immune checkpoint inhibitors | ES Other SMARCB1- or SMARCA4-deficient malignant tumours Chordoma (poorly differentiated) ATRT MRT RMC | September 2025 |
ASPS | |||||
NCT03141684 | Testing Atezolizumab Alone or Atezolizumab Plus Bevacizumab in People With Advanced Alveolar Soft Part Sarcoma | 2 | To combine immunotherapy (anti-PD-L1) with antiangiogenic (anti-VEGFA) | ASPS | October 2025 |
NCT05333458 | Testing Atezolizumab With or Without Selinexor in Patients ≥ 18 Years Old With Alveolar Soft Part Sarcoma, the Axiom StudyA Phase II study, with a safety lead-in, to evaluate ATX-101, a peptide drug targeting | 2 | To combine immunotherapy (anti-PD-L1) with selective inhibitors of nuclear export (selinexor) | ASPS | May 2025 |
NCT04999761 | Platform Study of AB122-Based Treatments in Patients With Advanced Solid Tumours | 1 | ASPS cohort: to combine anti-PD1 (AB122) immunotherapy with an antiangiogenic TKI (TAS-115) | ASPS Pancreatic cancer CRC NSCLC Gastric cancer | May 2026 |
Miscellaneous sarcomas | |||||
NCT03277924 | Trial of Sunitinib and/or Nivolumab Plus Chemotherapy in Advanced Soft Tissue and Bone Sarcomas (ImmunoSarc) | 1/2 | Cohort 1–6: To combine an antiangiogenic TKI (sunitinib) with anti-PD-1 (nivolumab) Cohort 7: To combine chemotherapy with anti-PD-1 Cohort 8: To combine chemotherapy with anti-PD-1 | Cohort 1–6: DDCS, EMC, vascular sarcoma, SFT, ASPS, CCS Cohort 7: UPS, LMS Cohort 8: osteosarcoma | June 2025 |
NCT05182164 | Combination of Pembrolizumab and Cabozantinib in Patients With Advanced Sarcomas (PEMBROCABOSARC) | 2 | To combine a broad antiangiogenic TKI with anti-PD-1 | UPS Osteosarcoma Ewing sarcoma | October 2025 |
NCT04668300 | A Phase II Multi-Arm Study to Test the Efficacy of Oleclumab and Durvalumab in Multiple Sarcoma Subtypes | 2 | To combine immunotherapy with anti-PD-L1 and anti-CD73 | Angiosarcoma DDLPS Osteosarcoma | June 2024 |
NCT05492682 | A Study to Evaluate the Safety and Immune Activity of PeptiCRAd-1 in Combination With Pembrolizumab in Patients With Injectable Solid Tumours in Indications Known to Express NY-ESO-1 and MAGE-A3 | 1 | Oncolytic virus coated with MAGE-A3 and NY-ESO-1 peptides to direct cytotoxic T cells to target tumours expressing these antigens | SS MLS Melanoma TNBC NSCLC CRC | September 2025 |
Desmoid tumours | |||||
NCT04871282 | A Study of AL102 in Patients With Progressing Desmoid Tumours (RINGSIDE) | 2/3 | To block notch signalling with a γ-secretase inhibitor (AL102) | Desmoid tumours | February 2025 |
Title/Regimen | Phase | Population | Outcome | Reference |
---|---|---|---|---|
Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, Phase 2 trial | 2 | UPS, DDLPS, SS, LMS | ORR: 18% (95% CI, 7–33%), mPFS: 18 weeks (95% CI, 8–21), 12-week PFS rate: 55% (95% CI, 40–70) | [28] |
A non-comparative multi-center randomized Phase II study of nivolumab +/− ipilimumab for patients with metastatic sarcoma (Alliance A091401) | 2 | Multiple sarcoma histologies | Monotherapy armORR: 5% (92% CI, 1–15%), mPFS:1.7 months (95% CI, 1.4–4.3) Combination arm ORR: 16% (92% CI, 7–29%),mPFS: 4.1 months (95% CI, 2.6–4.7) | [27] |
Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: a single-centre Phase 2 trial | 2 | LPS, LMS, angiosarcoma, UPS, synovial sarcoma, osteosarcoma, alveolar soft-part sarcoma, chordoma, and other sarcomas | ORR: 12% (95% CI, 5–24), mPFS: 2.8 months (95% CI, 1.8–6.4), 12-month PFS: 28% (95% CI, 17–40) | [98] |
Trabectedin plus Durvalumab in Patients with Advanced Pretreated Soft Tissue Sarcoma and Ovarian Carcinoma (TRAMUNE): An Open-Label, Multicenter Phase Ib Study | 1b | LMS, DDLPS, other | ORR: 7% (95% CI, 0.2–33.9), mPFS: 2 months, 1-year PFS rate: 14.3% (95% CI, 2.3–36.6) | [99] |
A Phase 1/2 Trial Combining Avelumab and Trabectedin for Advanced Liposarcoma and Leiomyosarcoma | 1/2 | LMS, LPS | ORR: 13%, 6-month PFS rate: 52% (95% CI, 35–77), mPFS: 8.3 months (95% CI, 2.5–infinity) | [100] |
Efficacy and safety of nivolumab and trabectedin in pretreated patients with advanced soft tissue sarcomas (STS): Results of a Phase II trial of the German Interdisciplinary Sarcoma Group (GISG-15, NitraSarc) | 2 | Group A: LMS, LPS Group B: pleomorphic, spindle cell, fibromyxoid, synovial, epithelial | Group A: 6-month PFS: 47.6%, mPFS: 5.5 months Group B: 6-month PFS: 14.6%, mPFS: 2.3 months | [101] |
SAINT: A Phase I/Expanded Phase II Study Using Safe Amounts of Ipilimumab, Nivolumab and Trabectedin as First-Line Treatment of Advanced Soft Tissue Sarcoma | 1/2 | LMS, LPS, UPS, rhabdomyosarcoma, SS, other | ORR: 25.3%, mPFS: 6.7 months (94% CI, 4.4–7.9), 6-month PFS rate: 53.2% | [102] |
GEMMK: A Phase I study of gemcitabine (gem) and pembrolizumab (pem) in patients (pts) with leiomyosarcoma (LMS) and undifferentiated pleomorphic sarcoma UPS) | 1 | LMS, UPS | mPFS: 5.1 months (95% CI, 2–9) | [96] |
Phase II Study of Eribulin plus Pembrolizumab in Metastatic Soft-tissue Sarcomas: Clinical Outcomes and Biological Correlates | II | LMS, LPS, UPS, other | LMS ORR: 10.5%, mPFS: 11.1 weeks (90% CI, 6.5–18.7), 12-week PFS rate: 36.8% (90% CI, 22.5–60.4) | [103] |
LPS ORR: 15%, mPFS: 31.7 weeks (90% CI, 12.4—not reached), 12-week PFS rate: 69.6% (90% CI, 54.5–89.0) | ||||
UPS/other ORR: 17%, mPFS: 12.4 weeks (90% CI, 6.1–30.4), 12-week PFS rate: 52.6% (36.8–75.3) | ||||
Assessment of Doxorubicin and Pembrolizumab in Patients With Advanced Anthracycline-Naive Sarcoma | 1/2 | LMS, DDLPS, UPS, chondrosarcoma, other | ORR: 19%, mPFS: 8.1 months (95% CI, 7.6–10.8), 12-month PFS rate: 27% (95% CI, 14–42) | [67] |
Phase II Study of Pembrolizumab in Combination with Doxorubicin in Metastatic and Unresectable Soft-Tissue Sarcoma | 2 | LMS, DDLPS, UPS, other | ORR: 36.7% (95% CI, 19.9–56.1), mPFS: 5.7 months (95% CI, 4.1–8.9), 12-month PFS rate: 20.3% (95% CI, 6.8–38.8) | [68] |
A single-arm, open-label Phase 2 trial of doxorubicin plus zalifrelimab, a CTLA-4 inhibitor, with balstilimab, a PD-1 inhibitor, in patients with advanced/metastatic soft tissue sarcomas | 2 | Multiple STS histologies | ORR: 36% (95% CI, 19–56), mPFS: 25.6 weeks (95%CI, 24.0–44.9), 6-month PFS rate: 52% (95%CI, 31–72) | [104] |
ImmunoSarc2: A Spanish Sarcoma Group (GEIS) Phase Ib trial of doxorubicin and dacarbazine plus nivolumab in first line treatment of advanced leiomyosarcoma | 1b | LMS | ORR: 56.2%, mPFS: 8.67 months (95% CI, 7.96–9.37) | [95] |
Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: a single-centre, single-arm, Phase 2 trial | ASPS, UPS, Leiomyosarcoma, DDLPS, other | ORR: 25% (95% CI, 12.1–43.8), mPFS: 4.7 months (95% CI, 3.0 to 9.4), 6-month PFS:46.9%(95% CI, 29.2 to 62.8) | [105] | |
Nivolumab and sunitinib combination in advanced soft tissue sarcomas: a multicenter, single-arm, Phase Ib/II trial | 1b/2 | UPS, Extraskeletal myxoid chondrosarcoma ASPS, SFT, ES, CCS, angiosarcoma | ORR: 13%, mPFS: 5.6 months (95% CI, 3.0–8.1), 6-month PFS rate: 48% (95% CI, 41 to 55) | [106] |
Regomune—a Phase II study of regorafenib + avelumab in solid tumours: Results of the soft tissue sarcoma (STS) cohort | 2 | LMS, LPS, SS, UPS, other | ORR: 9.3%, mPFS: 1.8 months (95% CI, 1.7–3.5), 6-month PFS rate: 22.1% (95% CI, 11–35.7) | [107] |
Randomised Phase II trial of cabozantinib combined with PD-1 and CTLA-4 inhibition versus cabozantinib in metastatic soft tissue sarcoma | 2 | Multiple STS histologies | Combination arm ORR: 11%, mPFS: 5.4 months Monotherapy(cabozantinib) ORR: 6%, mPFS: 3.8 months | [108] |
Durvalumab plus pazopanib combination in patients with advanced soft tissue sarcomas: a Phase II trial | 2 | LMS, MPNST, SS, MFS, DSRCT, UPS, DDLPS, CCS, ASPS, ESS, angiosarcoma, other | ORR: 30.4%, mPFS: 7.7 months (95% CI, 5.7–10.4) | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavroeidis, L.; Napolitano, A.; Huang, P.; Jones, R.L. Novel Therapeutics in Soft Tissue Sarcoma. Cancers 2025, 17, 10. https://doi.org/10.3390/cancers17010010
Mavroeidis L, Napolitano A, Huang P, Jones RL. Novel Therapeutics in Soft Tissue Sarcoma. Cancers. 2025; 17(1):10. https://doi.org/10.3390/cancers17010010
Chicago/Turabian StyleMavroeidis, Leonidas, Andrea Napolitano, Paul Huang, and Robin L. Jones. 2025. "Novel Therapeutics in Soft Tissue Sarcoma" Cancers 17, no. 1: 10. https://doi.org/10.3390/cancers17010010
APA StyleMavroeidis, L., Napolitano, A., Huang, P., & Jones, R. L. (2025). Novel Therapeutics in Soft Tissue Sarcoma. Cancers, 17(1), 10. https://doi.org/10.3390/cancers17010010