A GWAS Suggesting Genetic Modifiers to Increase the Risk of Colorectal Cancer from Antibiotic Use
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cases and Controls for First GWAS Analysis
2.1.1. Cases
2.1.2. Controls
2.2. Cases and Controls for Replication GWAS
2.2.1. Cases
2.2.2. Controls
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef] [PubMed]
- Valle, L. Genetic predisposition to colorectal cancer: Where we stand and future perspectives. World J. Gastroenterol. 2014, 20, 9828–9849. [Google Scholar] [CrossRef] [PubMed]
- Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.S.M.; Mohammed, Z.; Häggström, C.; Myte, R.; Lindquist, E.; Gylfe, Å.; Van Guelpen, B.; Harlid, S. Antibiotics Use and Subsequent Risk of Colorectal Cancer: A Swedish Nationwide Population-Based Study. J. Natl. Cancer Inst. 2022, 114, 38–46. [Google Scholar] [CrossRef]
- Weng, L.; Jin, F.; Shi, J.; Qiu, Z.; Chen, L.; Li, Q.; He, C.; Cheng, Z. Antibiotics use and risk of colorectal neoplasia: An updated meta-analysis. Int. J. Colorectal Dis. 2022, 37, 2291–2301. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Nguyen, L.H.; Emilsson, L.; Chan, A.T.; Ludvigsson, J.F. Antibiotic Use Associated with Risk of Colorectal Polyps in a Nationwide Study. Clin. Gastroenterol. Hepatol. 2021, 19, 1426–1435.e6. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Liu, T.; Xing, J.; Zhang, H.; Wang, D.; Tang, D. Bidirectional effects of intestinal microbiota and antibiotics: A new strategy for colorectal cancer treatment and prevention. J. Cancer Res. Clin. Oncol. 2022, 148, 2387–2404. [Google Scholar] [CrossRef]
- Hong, J.; Guo, F.; Lu, S.-Y.; Shen, C.; Ma, D.; Zhang, X.; Xie, Y.; Yan, T.; Yu, T.; Sun, T.; et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021, 70, 2123–2137. [Google Scholar] [CrossRef]
- Yang, J.; Wei, H.; Zhou, Y.; Szeto, C.-H.; Li, C.; Lin, Y.; Coker, O.O.; Lau, H.C.H.; Chan, A.W.; Sung, J.J.; et al. High-Fat Diet Promotes Colorectal Tumorigenesis Through Modulating Gut Microbiota and Metabolites. Gastroenterology 2022, 162, 135–149.e2. [Google Scholar] [CrossRef]
- Wong, C.C.; Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 2023, 20, 429–452. [Google Scholar] [CrossRef]
- Forsberg, A.; Keränen, A.; VON Holst, S.; Picelli, S.; Papadogiannakis, N.; Ghazi, S.; Lindblom, A. Defining New Colorectal Cancer Syndromes in a Population-based Cohort of the Disease. Anticancer Res. 2017, 37, 1831–1835. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Mahdessian, H.; Helgadottir, H.; Zhou, X.; Thutkawkorapin, J.; Jiao, X.; Wolk, A.; Lindblom, A.; The Swedish Low-risk Colorectal Cancer Study Group. Colorectal cancer risk susceptibility loci in a Swedish population. Mol. Carcinog. 2022, 61, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Schmit, S.L.; Edlund, C.K.; Schumacher, F.R.; Gong, J.; Harrison, T.A.; Huyghe, J.R.; Qu, C.; Melas, M.; Van Den Berg, D.J.; Wang, H.; et al. Novel Common Genetic Susceptibility Loci for Colorectal Cancer. J. Natl. Cancer Inst. 2019, 111, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Illumina. Infinium OncoArray-500K. Available online: http://www.illumina.com/products/by-type/microarray-kits/infinium-oncoarray-500k.html (accessed on 5 November 2024).
- Liu, W.; Jiao, X.; Thutkawkorapin, J.; Mahdessian, H.; Lindblom, A. Cancer risk susceptibility loci in a Swedish population. Oncotarget 2017, 8, 110300–110310. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Boursi, B.; Haynes, K.; Mamtani, R.; Yang, Y.-X. Impact of antibiotic exposure on the risk of colorectal cancer. Pharmacoepidemiol. Drug Saf. 2015, 24, 534–542. [Google Scholar] [CrossRef]
- Aneke-Nash, C.; Yoon, G.; Du, M.; Liang, P. Antibiotic use and colorectal neoplasia: A systematic review and meta-analysis. BMJ Open Gastroenterol. 2021, 8, e000601. [Google Scholar] [CrossRef]
- Van der Meer, J.; Mamouris, P.; Nassiri, V.; Vaes, B.; Akker, M.v.D. Use of antibiotics and colorectal cancer risk: A primary care nested case-control study in Belgium. BMJ Open 2021, 11, e053511. [Google Scholar] [CrossRef]
- Ma, W.; Chan, A.T. Antibiotic use and colorectal cancer: A causal association? Gut 2020, 69, 1913–1914. [Google Scholar] [CrossRef]
- Jiang, F.; Boakye, D.; Sun, J.; Wang, L.; Yu, L.; Zhou, X.; Zhao, J.; Bian, Z.; Song, P.; He, Y.; et al. Association between antibiotic use during early life and early-onset colorectal cancer risk overall and according to polygenic risk and FUT2 genotypes. Int. J. Cancer 2023, 153, 1602–1611. [Google Scholar] [CrossRef]
- Mondot, S.; de Wouters, T.; Doré, J.; Lepage, P. The human gut microbiome and its dysfunctions. Dig. Dis. 2013, 31, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Tetel, M.J.; de Vries, G.J.; Melcangi, R.C.; Panzica, G.; O’Mahony, S.M. Steroids, stress and the gut microbiome-brain axis. J. Neuroendocrinol. 2018, 30, e12548. [Google Scholar] [CrossRef] [PubMed]
- Willing, B.P.; Russell, S.L.; Finlay, B.B. Shifting the balance: Antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 2011, 9, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Barnekow, E.; Liu, W.; Helgadottir, H.T.; Michailidou, K.; Dennis, J.; Bryant, P.; Thutkawkorapin, J.; Wendt, C.; Czene, K.; Hall, P.; et al. A Swedish Genome-Wide Haplotype Association Analysis Identifies a Novel Breast Cancer Susceptibility Locus in 8p21.2 and Characterizes Three Loci on Chromosomes 10, 11 and 16. Cancers 2022, 14, 1206. [Google Scholar] [CrossRef]
- Barnekow, E.; Hasslow, J.; Liu, W.; Bryant, P.; Thutkawkorapin, J.; Wendt, C.; Czene, K.; Hall, P.; Margolin, S.; Lindblom, A. A Swedish Familial Genome-Wide Haplotype Analysis Identified Five Novel Breast Cancer Susceptibility Loci on 9p24.3, 11q22.3, 15q11.2, 16q24.1 and Xq21.31. Int. J. Mol. Sci. 2023, 24, 4468. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Z.; Zhang, A.; Liu, C.; Sun, Y.; Peng, Z.; Liu, Y. Membrane-cytoplasm translocation of annexin A4 is involved in the metastasis of colorectal carcinoma. Aging 2021, 13, 10312–10325. [Google Scholar] [CrossRef]
- Peng, B.; Guo, C.; Guan, H.; Liu, S.; Sun, M.-Z. Annexin A5 as a potential marker in tumors. Clin. Chim. Acta 2014, 427, 42–48. [Google Scholar] [CrossRef]
- Guo, C.; Liu, S.; Sun, M.Z. Potential role of Anxa1 in cancer. Future Oncol. 2013, 9, 1773–1793. [Google Scholar] [CrossRef]
- Piepoli, A.; Palmieri, O.; Maglietta, R.; Panza, A.; Cattaneo, E.; Latiano, A.; Laczko, E.; Gentile, A.; Carella, M.; Mazzoccoli, G.; et al. The expression of leucine-rich repeat gene family members in colorectal cancer. Exp. Biol. Med. 2012, 237, 1123–1128. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, X.; Yu, S.; Shou, L.; Zhang, R.; Xie, H.; Liang, Z.; Sun, X.; Feng, J.; Duan, T.; et al. Identification of genes modified by N6-methyladenosine in patients with colorectal cancer recurrence. Front. Genet. 2022, 13, 1043297. [Google Scholar] [CrossRef]
- Arang, N.; Gutkind, J.S. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett. 2020, 594, 4201–4232. [Google Scholar] [CrossRef]
- Chan, Q.K.; Ngan, H.Y.; Ip, P.P.C.; Liu, V.W.; Xue, W.; Cheung, A.N. Tumor suppressor effect of follistatin-like 1 in ovarian and endometrial carcinogenesis: A differential expression and functional analysis. Carcinogenesis 2009, 30, 114–121. [Google Scholar] [CrossRef]
Demographics | Number | |
---|---|---|
Gender | Male | 75 |
Female | 68 | |
Age range | <50 years | 5 |
>50 years | 138 | |
Family history | Sporadic | 108 |
Familial | 35 | |
Location | Left | 86 |
Right | 25 | |
Caecum | 15 | |
Unknown | 17 | |
Stage | Dukes A | 18 |
Dukes B | 56 | |
Dukes C | 47 | |
Dukes D | 17 | |
Unknown | 5 |
Demographics | Number | |
---|---|---|
Gender | Male | 253 |
Female | 217 | |
Unknown | 2 | |
Age range | <50 years | 25 |
>50 years | 445 | |
Unknown | 2 | |
Family history | Sporadic | 368 |
Familial | 102 | |
Unknown | 2 | |
Location | Left | 268 |
Right | 85 | |
Caecum | 60 | |
Unknown | 59 | |
Stage | Dukes A | 80 |
Dukes B | 176 | |
Dukes C | 146 | |
Dukes D | 50 | |
Unknown | 20 |
Locus | SNP1-SNP2 | F | OR | STAT | p-Value | Gene |
---|---|---|---|---|---|---|
2p13.3 | rs12468494-rs2278933 | 0.04 | 3.65 | 32 | 1.5 × 10−8 | ANXA4 |
3q13.33 | rs2035669-rs4676787 | 0.01 | 8.01 | 33.5 | 7.1 × 10−9 | GPR156, LRRC58, FSTL1 |
4q32.3 | rs6834993-chr4_168828489_A_G | 0.13 | 2.48 | 34.3 | 4.6 × 10−9 | no gene |
5q31.3 | rs9686896-rs17208551 | 0.02 | 5.68 | 31.5 | 2 × 10−8 | no gene |
8q21.11 | chr8_76013093_C_T-chr8_76034604_C_T | 0.04 | 4.09 | 34.6 | 4 × 10−9 | no gene |
11q22.1 | rs1452575-rs12225356 | 0.03 | 4.86 | 33.5 | 7.3 × 10−9 | RPA2P3 (pseudogene) |
Locus | SNP1-SNP2 | F | OR | STAT | p-Value | Gene |
---|---|---|---|---|---|---|
2p13.3 | rs12468494-rs2278933 | 0.05 | 2.63 | 14.3 | 2 × 10−4 | ANXA4 |
3q13.33 | rs2035669-rs4676787 | 0.01 | 6.12 | 12.8 | 4 × 10−4 | GPR156, LRRC58, FSTL1 |
4q32.3 | rs6834993-chr4_168828489_A_G | 0.15 | 2.29 | 21.9 | 2.95 × 10−6 | no gene |
5q31.3 | rs9686896-rs17208551 | 0.02 | 4.01 | 10.9 | 1 × 10−3 | no gene |
8q21.11 | chr8_76013093_C_T chr8_76034604_C_T | 0.04 | 4.38 | 23 | 1.63 × 10−6 | no gene |
11q22.1 | rs1452575-rs12225356 | 0.04 | 2.68 | 10.5 | 1.21 × 10−3 | RPA2P3 (pseudogene) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermani, L.; Wolk, A.; Lindblom, A., on behalf of the Swedish Low-Risk Colorectal Cancer Study Group. A GWAS Suggesting Genetic Modifiers to Increase the Risk of Colorectal Cancer from Antibiotic Use. Cancers 2025, 17, 12. https://doi.org/10.3390/cancers17010012
Vermani L, Wolk A, Lindblom A on behalf of the Swedish Low-Risk Colorectal Cancer Study Group. A GWAS Suggesting Genetic Modifiers to Increase the Risk of Colorectal Cancer from Antibiotic Use. Cancers. 2025; 17(1):12. https://doi.org/10.3390/cancers17010012
Chicago/Turabian StyleVermani, Litika, Alicja Wolk, and Annika Lindblom on behalf of the Swedish Low-Risk Colorectal Cancer Study Group. 2025. "A GWAS Suggesting Genetic Modifiers to Increase the Risk of Colorectal Cancer from Antibiotic Use" Cancers 17, no. 1: 12. https://doi.org/10.3390/cancers17010012
APA StyleVermani, L., Wolk, A., & Lindblom, A., on behalf of the Swedish Low-Risk Colorectal Cancer Study Group. (2025). A GWAS Suggesting Genetic Modifiers to Increase the Risk of Colorectal Cancer from Antibiotic Use. Cancers, 17(1), 12. https://doi.org/10.3390/cancers17010012