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Simple Summary: Molecular targeted therapies have revolutionized the treatment of
numerous cancers, including non-small cell lung cancer (NSCLC). Despite these advances,
selecting the appropriate generation of tyrosine kinase inhibitors (TKIs) and determining
the best treatment line remain complex challenges due to the wide array of available options.
In this study, for the first time, we introduce the application of reinforcement learning—a
state-of-the-art machine learning technique—to optimize systemic treatment strategies for
patients with epidermal growth factor receptor (EGFR)-mutant advanced NSCLC, aiming
to maximize progression-free survival. The core model was derived from a retrospective

Cancers 2025, 17, 233 https://doi.org/10.3390/cancers17020233

https://doi.org/10.3390/cancers17020233
https://doi.org/10.3390/cancers17020233
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-9584-0827
https://orcid.org/0000-0002-0443-6966
https://orcid.org/0000-0001-8650-299X
https://orcid.org/0000-0001-7021-6139
https://orcid.org/0000-0002-2004-7741
https://orcid.org/0000-0002-2917-7999
https://orcid.org/0000-0002-0333-7405
https://orcid.org/0000-0002-4462-6393
https://orcid.org/0000-0002-7970-307X
https://orcid.org/0000-0002-7663-6182
https://doi.org/10.3390/cancers17020233
https://www.mdpi.com/article/10.3390/cancers17020233?type=check_update&version=1


Cancers 2025, 17, 233 2 of 15

group of EGFR-mutant NSCLC cases treated at 14 medical centers. Building on this
research, we created an experimental web application, freely available as an open-access
tool, which serves as a novel treatment recommendation system. This platform highlights
critical predictive features while demonstrating the potential of artificial intelligence to
advance thoracic oncology care.

Abstract: Background: Although higher-generation TKIs are associated with improved
progression-free survival in advanced NSCLC patients with EGFR mutations, the optimal
selection of TKI treatment remains uncertain. To address this gap, we developed a web
application powered by a reinforcement learning (RL) algorithm to assist in guiding initial
TKI treatment decisions. Methods: Clinical and mutational data from advanced NSCLC
patients were retrospectively collected from 14 medical centers. Only patients with com-
plete data and sufficient follow-up were included. Multiple supervised machine learning
models were tested, with the Extra Trees Classifier (ETC) identified as the most effective for
predicting progression-free survival. Feature importance scores were calculated by the ETC,
and features were then integrated into a Deep Q-Network (DQN) RL algorithm. The RL
model was designed to select optimal TKI generation and a treatment line for each patient
and was embedded into an open-source web application for experimental clinical use.
Results: In total, 318 cases of EGFR-mutant advanced NSCLC were analyzed, with a me-
dian patient age of 63. A total of 52.2% of patients were female, and 83.3% had ECOG scores
of 0 or 1. The top three most influential features identified were neutrophil-to-lymphocyte
ratio (log-transformed), age (log-transformed), and the treatment line of TKI administration,
as tested by the ETC algorithm, with an area under curve (AUC) value of 0.73, whereas
the DQN RL algorithm achieved a higher AUC value of 0.80, assigning distinct Q-values
across four TKI treatment categories. This supports the decision-making process in the
web-based ‘EGFR Mutant NSCLC Treatment Advisory System’, where clinicians can input
patient-specific data to receive tailored recommendations. Conclusions: The RL-based
web application shows promise in assisting TKI treatment selection for EGFR-mutant ad-
vanced NSCLC patients, underscoring the potential for reinforcement learning to enhance
decision-making in oncology care.

Keywords: non-small cell lung cancer; epidermal growth factor receptor; mutation; tyrosine
kinase inhibitors; deep learning; machine learning; artificial intelligence

1. Introduction
Molecular targeted therapies have profoundly transformed the treatment landscape

for various cancers, including non-small cell lung cancer (NSCLC) [1]. Following evidence
demonstrating the superiority of tyrosine kinase inhibitors (TKIs) over chemotherapy for
advanced NSCLC with epidermal growth factor receptor (EGFR) mutations, the treatment
landscape has rapidly advanced with the introduction of newer EGFR TKIs, such as
Osimertinib [2–4]. Importantly, studies have shown that EGFR TKIs extend both
progression-free survival (PFS) and overall survival (OAS) compared to comparator arms
in trials involving EGFR-mutant advanced NSCLC patients [5].

However, choosing the optimal TKI generation and treatment line remains challeng-
ing, especially with multiple options available, making it difficult to prescribe the most
effective anti-EGFR TKI treatment for this patient group. Additionally, data indicate that
the benefits of EGFR TKI treatment vary based on patient and disease characteristics and
the specific type of EGFR mutation [6]. Furthermore, access to EGFR testing may be limited
or delayed in certain settings, impacting the timing and choice of EGFR TKI treatment [7].
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Consequently, in real-world practice, prescribing the ideal EGFR TKI therapy for patients
with EGFR-mutant advanced NSCLC is a complex and highly individualized task.

Traditional oncology treatments have largely relied on clinical guidelines derived from
population-level data. However, recent advancements in machine learning (including the
use of decision trees such as Extra Trees Classifier (ETC), boosting algorithms, etc.), particu-
larly reinforcement learning (RL), provide opportunities for more personalized treatment
recommendations by analyzing individual patient characteristics and clinical histories.
Falling under the broader scope of AI, RL is gaining traction in oncology for optimizing
treatment decisions and personalizing patient care. Unlike traditional models, RL learns
dynamically through iterative feedback, using reward-based mechanisms to determine
optimal strategies for complex, sequential decision-making, such as selecting the most
effective treatment pathway for cancer patients. RL models, including Deep Q-Networks
(DQN) and Policy Gradient methods, have demonstrated potential in guiding adaptive
therapies by balancing treatment efficacy with side-effect management [8,9]. By simulating
possible treatment outcomes, RL can assist oncologists in tailoring therapies more closely
to each patient’s needs, ultimately improving survival rates and quality of life [10]. This
study introduces a RL-based approach to guide TKI treatment selection for advanced
EGFR-mutant NSCLC, incorporating patient, disease, and treatment features, along with
the neutrophil-to-lymphocyte ratio (NLR)—a biomarker reflecting the balance between
inflammatory and immune responses. As a result, the model has been implemented as a
web application to provide real-time clinical decision-making support.

2. Materials and Methods
2.1. Data Collection and Engineering

Clinical and mutational data for advanced NSCLC patients with EGFR mutations were
retrospectively collected by investigators from both online and offline databases and then
combined from 14 participating medical centers. Only patients with metastatic, advanced
disease who carried EGFR mutations, with complete clinical and mutational records were
included, with follow-up criteria requiring at least one year for those progression-free or
shorter if progression or death occurred within the first year following TKI initiation. Also,
patients with a very short follow-up period, i.e., a follow-up period of less than one month
of follow-up after initial TKI administration, were not included in this study. This curated
dataset was then used for model construction and evaluation, ensuring that the analysis
was based on comprehensive and clinically relevant information.

The collected data contained information on age, gender, Eastern Cooperative Oncol-
ogy Group (ECOG) performance status, the type of EGFR mutation, the treatment line of
first TKI administration, the name and generation of first TKI used, the number of metastatic
sites, the presence of bone or liver metastases, the presence of brain metastases, the presence
of significant comorbidity (coronary heart disease, chronic obstructive lung disease, renal
or liver failure, Diabetes Mellitus, etc.), smoking status, and pre TKI treatment neutrophil
and lymphocyte counts. The study participants were selected retrospectively without
any limitations regarding the recruitment timeframe. Data engineering was conducted
using these features to create new variables, two of which were retained for subsequent
modeling. These included a logarithmic transformation of the neutrophil-to-lymphocyte
ratio (NLR) and an “action” variable composed of four categories, resulting from the in-
teraction between the treatment line and the type of first TKI administered. The action
variable categories were as follows: 0; first-line, first-generation TKI, 1; first-line, second-
or higher-generation TKI, 2; second- or later-line, first-generation TKI, 3; and second- or
later-line, second- or higher-generation TKI. The NLR was assessed within the month
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immediately preceding the initiation of the first tyrosine kinase inhibitor (TKI) treatment to
ensure an unbiased and timely measurement.

A considerable proportion of cases did not document death as an endpoint, and
missing data led to the exclusion of 34% of the population. Consequently, overall survival
was not chosen as an endpoint for this study. Instead, progression-free survival (PFS) was
selected as the primary endpoint of interest. For the outcome of PFS, any progression or
death event was considered significant. To support subsequent phases of machine learning
modeling, a dichotomous variable (progression category) was created, indicating whether
or not patients achieved a progression-free survival duration of one year or more.

The line of initial tyrosine kinase inhibitor (TKI) administration in our cohort was
highly variable. To assess the impact of each additional TKI line on outcomes without
dividing cases into multiple categories, we treated this variable as quantitative in our
machine learning models, emphasizing feature importance and overall explainability.
However, since the line of initial TKI administration emerged as one of the top three most
influential factors in the ETC model and holds significant clinical relevance in the treatment
pathway, we handled it differently in our reinforcement learning (RL) algorithm. For the
RL model, which aims to provide practical treatment recommendations to enhance the
likelihood of being progression-free beyond one year, we dichotomized the line of initial
TKI administration to establish a clinically meaningful scenario.

This study was planned and conducted as a project of the Turkish Oncology Group
(TOG) Lung Cancer Subgroup, with a preliminary version presented as a poster at the 2024
European Society for Medical Oncology (ESMO) meeting [11]. Our current work expands
on the previous study by including additional cases and employing a different research
question, objective, and methodology. To enhance readability, we utilized ChatGPT-4 for
manuscript drafting; however, as authors, we reviewed and refined the content as needed
and take full responsibility for the publication’s content.

2.2. Extra Trees Classifier and Feature Importance Analysis

To calculate individual feature importance values, 15 machine learning models were
tested using the PyCaret library, which enables the application of cutting-edge machine
learning algorithms to tabular data [12]. Among these models, ETC demonstrated the
highest performance. Therefore, ETC was selected for feature importance analysis and to
generate the feature importance plot. The binary outcome variable used was the progression
category, as defined previously. Due to the imbalanced nature of the outcome variable,
the imblearn library was used to apply the Synthetic Minority Over-sampling Technique
(SMOTE) [13,14], a technique in machine learning that addresses class imbalance by creating
synthetic samples for the minority class, thus enhancing model reliability on imbalanced
datasets. The coding and analysis were conducted in Google Colab [15].

2.3. Reinforcement Learning Model Development

The Gymnasium library was employed for the development of the reinforcement
learning (RL) model. Gymnasium is an open-source toolkit designed for creating and
comparing RL algorithms, offering a standardized interface for a wide range of environ-
ments where RL agents can be trained and tested [16]. This library includes a variety of
benchmarks commonly used in RL research, supports multiple environments, and inte-
grates with other tools, making it an adaptable platform for RL model experimentation and
enhancing reproducibility across different algorithms and tasks. In our study, a simulated,
programmed agent interacted with an environment to achieve a specific goal: to determine
the optimal generation and treatment line of TKI for a given case. The objective was to
identify the best “action” for each patient, represented by an action variable that defines the
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model’s action space (four possible actions: Actions 0, 1, 2, and 3). Q values were generated
for each action, based on clinical outcomes, guiding the model’s decision-making process.
The action variable was previously detailed in the Data Collection and Engineering section.

We also employed the Boltzmann exploration technique in our reinforcement learning
model to optimize action selection [17]. This technique is especially valuable in reinforce-
ment learning as it balances exploration (testing new actions) with exploitation (selecting
actions that have previously shown high rewards). Boltzmann exploration relies on a
probabilistic approach, where actions are chosen based on their Q-values, and the prob-
ability of selecting each action is weighted by its Q-value after applying a “temperature”
parameter, tau. We manually tested different tau values to identify the optimal balance for
our RL model. Additionally, we branched the RL algorithm according to the line of first
TKI treatment, as this feature was among the top three most influential factors in the ETC
model and is clinically significant in the treatment pathway. Thus, we designed separate
scenarios for first-line TKI use and for second-line or later TKI use, prioritizing cases where
second-generation or higher TKIs were administered. This was achieved by adjusting and
testing reward points within the action space, as using higher-generation TKIs is linked to
improved progression-free survival (PFS) outcomes [18].

We utilized a Deep Q-Network (DQN) as our reinforcement learning approach,
employing Multi-Layer Perceptron—a type of neural network composed of intercon-
nected layers—as its decision-making framework [19,20]. The model was trained over
50,000 timesteps, during which it interacted with the treatment environment by assessing
each patient’s current condition, selecting an appropriate EGFR TKI therapy, and receiving
feedback in the form of rewards to enhance its treatment choices. Throughout the training
process, the DQN applied Q-learning to refine its strategy by estimating the expected
benefits (Q-values) of each treatment option for a given patient profile and adjusting its
neural network to improve these estimates. Over time, the model learned to select therapies
that maximized overall patient outcomes, specifically aiming to improve PFS. Additionally,
we generated partial dependence plots to illustrate how different treatment options interact
with patient characteristics, analyzed the frequency of each treatment choice, and calculated
summary Q-values for each EGFR TKI option.

2.4. EGFR Mutant NSCLC Treatment Advisory System and Web Application Deployment

The reinforcement learning model, named the EGFR Mutant NSCLC Treatment Advi-
sory System, was embedded into a web application using Streamlit, allowing oncologists
to input patient data and receive real-time treatment recommendations [21]. The web ap-
plication was developed separately using the Spyder integrated development environment
within the Anaconda framework [22,23]. The interface offers a user-friendly layout where
clinicians can enter patient demographics, mutational status, and other relevant clinical
details. For ease of access and scalability, the application was hosted on a cloud platform
via Streamlit.

3. Results
3.1. General Features and Feature Importance Analysis

Data were collected from 14 institutions, comprising 481 cases of advanced NSCLC
with EGFR mutations. Patients in our study were recruited over a twelve-year period,
spanning from 2013 to 2024. However, 163 cases (34%) were excluded due to inadequate
follow-up or missing data. As a result, a total of 318 EGFR mutant advanced NSCLC
cases with complete data and sufficient follow-up were recruited. The median age was
63, 52.2% were female, and 83.3% had an ECOG performance score of 0 or 1. The most
common treatment scenario involved the use of a first-generation TKI as the line of systemic
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treatment. Erlotinib was the most prescribed EGFR TKI, used in 73.3% of cases. The
median follow-up time was 16.5 months, with an Interquartile Range (IQR) of 22.2 months.
See Table 1 for patient, disease, and treatment details. Also, note that the Supplementary
File, Table S1, includes the database for cases recruited in this study.

Table 1. Patient and treatment details.

Features n % Mean Standard
Deviation

Percentile
50 Minimum Maximum

Total 318 100.0
Patient Features
Age 62.7 11.4 63 31 92
Gender

Male 152 47.8
Female 166 52.2

ECOG performance status
0 or 1 265 83.3
2 to 4 53 16.7

Smoking status
Currently not smoking 201 63.2

Currently smoking 117 36.8
Mutation category

Exon 19 mutation only 204 64.2
Exon 21 and/or other

mutations 114 35.8

Number of metastases
1 to 3 148 46.5

4 or more 170 53.5
Bone and/or lver metastasis

Absent 137 43.1
Present 181 56.9

Brain metastasis
Absent 200 62.9
Present 118 37.1

Neutrophil-to-Lymphocyte Ratio (NLR) 3.9 3.2 3.2 1 25
Present 512 10.2
Absent 4500 89.8

TKI Usage Details
Line of initial TKI administration 1.3 0.5 1 1 5
Name of initial TKI

Erlotinib 233 73.3
Gefitinib 27 8.5
Afatinib 45 14.2

Osimertinib 10 3.1
Dacomatinib 3 0.9

Initial TKI utilization in relation to line
of administration

1st line, 1st generation TKI 202 63.5
1st line, 2nd or higher

generation TKI 47 14.8

2nd or higher line, 1st
generation TKI 15 4.7

2nd or higher line, 2nd or
higher generation TKI 54 17.0

Initial TKI utilization in relation to type
of mutation

Exon 19 mutation only, 1st
generation TKI 140 44.1

Other mutations, 1st
generation TKI 64 20.1
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Table 1. Cont.

Features n % Mean Standard
Deviation

Percentile
50 Minimum Maximum

Exon 19 mutation only, 2nd
or higher generation TKI 77 24.2

Other mutations, 2nd or
higher generation TKI 31 11.6

Patient, treatment, and EGFR mutation details for the whole cohort of patients.

The initial distribution of the progression category for our cases on TKI treatment
consisted of 196 cases with progression and 122 cases without progression. After applying
the Synthetic Minority Over-sampling Technique (SMOTE), the class distribution was
balanced, resulting in 196 cases with progression and 196 cases without progression. This
adjustment led to the generation of 74 synthetic cases for the progression-absent category,
which accounted for 38% of the progression-absent group (74 out of 196 cases). No synthetic
samples were created for the progression-present category. Among the 15 machine learning
models evaluated, ETC achieved the highest performance, with an area under the curve
(AUC) of 0.73 and an accuracy score of 0.66. AUC values across the models ranged from
0.51 to 0.73. Detailed performance metrics and rankings for all the models are presented
in Table 2. The ETC model was used for the feature importance analysis, identifying the
top three important features as the logarithmic transformation of NLR, the logarithmic
transformation of age, and the line of first TKI use, with importance scores ranging from
0.10 to 0.25. The feature importance plot is shown in Figure 1. Notably, the NLR values did
not significantly differ based on progression status; an independent samples t-test indicated
no statistical difference between early and late progression cases (t = −1.02, df = 316,
p = 0.308).

Table 2. Comparison of machine learning models.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT
(Sec)

Extra Trees Classifier * 0.66 0.73 0.65 0.67 0.65 0.32 0.33 0.06
Random Forest

Classifier 0.65 0.72 0.66 0.65 0.65 0.30 0.30 0.08

Extreme Gradient
Boosting 0.63 0.68 0.64 0.64 0.63 0.27 0.27 0.03

Light Gradient
Boosting Machine 0.63 0.65 0.62 0.64 0.62 0.26 0.27 27.75

Gradient Boosting
Classifier 0.63 0.67 0.67 0.63 0.64 0.26 0.26 0.04

Quadratic
Discriminant Analysis 0.62 0.65 0.66 0.61 0.63 0.24 0.24 0.01

K Neighbors Classifier 0.61 0.64 0.57 0.63 0.59 0.22 0.22 0.02
Naive Bayes 0.60 0.62 0.62 0.61 0.61 0.20 0.20 0.02
Decision Tree

Classifier 0.59 0.59 0.58 0.61 0.58 0.17 0.18 0.01

Ada Boost Classifier 0.58 0.63 0.61 0.60 0.60 0.16 0.16 0.03
Ridge Classifier 0.58 0.62 0.62 0.58 0.60 0.15 0.15 0.01

Logistic Regression 0.57 0.63 0.61 0.57 0.59 0.14 0.15 0.47
Linear Discriminant

Analysis 0.56 0.61 0.61 0.57 0.58 0.13 0.13 0.01

SVM- Linear Kernel 0.53 0.57 0.71 0.58 0.58 0.07 0.10 0.01
Dummy Classifier 0.51 0.50 1.00 0.51 0.67 0.00 0.00 0.01

Performance metrics of the 15 machine learning models in this study to be employed for feature importance
analysis. * Extra Trees Classifier with the highest performance metrics. The yellow color shows highest figures of
efficacy for a selected efficacy measure.
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Figure 1. Feature importance plot. Variable importance figures for features in the study. Lognlr, loga-
rithmic transformation of neutrophil-to-lymphocyte ratio; logage, logarithmic transformation of age;
line_treatment, line of initial TKI usage; brain_met, presence or absence of brain metastases; ecog_cat,
ECOG performance status; mutation_cat, Exon 19 mutation or other mutations; smoking_status,
never or ever smoker; mets_number, number of metastases up to three or more; bone_or_liver_met,
presence or absence of bone and/or liver metastases.

For modeling and training, we utilized 90% of the SMOTE-enhanced dataset, compris-
ing 353 out of 392 cases. As mentioned above, our TKI treatment cohort initially included
196 cases with progression and 122 cases without progression. To balance the groups, we ap-
plied SMOTE, generating 74 synthetic cases and increasing the number of non-progression
cases to 196. This resulted in a total of 392 cases (196 with progression and 196 without
progression). The selected 353 cases were then used for modeling and training, ensuring a
balanced and representative dataset.

3.2. Reinforcement Learning Model and EGFR Mutant NSCLC Treatment Advisory System

Our DQN model was implemented using the stable-baselines3 library with the Mlp-
Policy, which comprises a multi-layer perceptron tailored for our specific application. The
architecture consists of an input layer matching the number of standardized patient fea-
tures, followed by two hidden layers, each containing 64 neurons with Rectified Linear Unit
(ReLU) activation functions, and an output layer with four neurons corresponding to the
four possible tyrosine kinase inhibitor (TKI) treatment actions. This structure was selected
to ensure sufficient capacity for learning complex patterns in the data while maintaining
computational efficiency and preventing overfitting. For hyperparameter optimization, we
employed a systematic tuning strategy to identify the most effective settings for our DQN
model. Key hyperparameters, including the learning rate, discount factor (γ), batch size,
and exploration temperature (τ), were initially set based on values commonly reported in
the literature and subsequently fine-tuned through iterative experimentation.

To determine the most suitable model for treatment recommendations, we compared
the efficacy of the ETC and RL models for developing the NSCLC treatment advisory
system. The RL model achieved a higher AUC (0.80 vs. 0.73 for ETC), indicating superior
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global ranking of treatment recommendations, which is the system’s primary goal. In
contrast, ETC showed a better F1 score (0.65 vs. 0.60), reflecting improved precision-
recall balance. Considering the RL model’s nearly 10% higher AUC, we selected it as the
foundation for the EGFR Mutant NSCLC Treatment Advisory System.

For patients receiving TKI as a first-line treatment (chemotherapy naïve), the RL model
predominantly recommended a second- or higher-generation TKI. Similarly, when TKI was
prescribed as a second- or later-line treatment (for chemotherapy refractory patients), the
model also favored second- or higher-generation TKIs. Figure 2 displays the frequency
of recommended actions in relation to the line of first TKI use. When the line of TKI
administration was not considered, the model’s Q values most frequently supported
Action 3—administering a second- or later-line, second- or higher-generation TKI —over
the other three actions (Actions 0, 1, and 2), with a mean Q value of 14.7. Table 3 provides
detailed Q values for each recommended action.
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Figure 2. Action frequencies with respect to the line of first TKI treatment. Action frequency figures
at first and subsequent lines of first TKI treatment (in chemotherapy naïve and refractory patients).
Action definitions: 0; first-line, first-generation TKI, 1; first-line, second- or higher-generation TKI, 2;
second- or later-line, first-generation TKI, 3; second- or later-line, second- or higher-generation TKI.
(a). Action frequencies at first line (chemotherapy naïve patients). (b). Action frequencies at second
or subsequent line (chemotherapy refractory patients).

Table 3. Q values with respect to actions.

Action 0 Action 1 Action 2 Action 3

Mean 14.0 14.1 13.5 14.7
Standard deviation 1.0 1.0 1.0 1.2

Minimum 11.5 11.8 11.2 11.0
Maximum 16.6 16.8 16.1 17.0

Summary data for Q values with respect to the action recommended by the Reinforcement Learning model.
Action definitions: 0; first-line, first-generation TKI, 1; first-line, second- or higher-generation TKI, 2; second- or
later-line, first-generation TKI, 3; second- or later-line, second- or higher-generation TKI.

Partial dependence plots examining the distribution of actions relative to other features
revealed that gender did not influence the type of recommendation, typically Action 3
(second- or later-line, second- or higher-generation TKI). However, male gender was
associated with higher Q values. Similarly, the type of EGFR mutation did not alter
the recommendation between Action 3 or 1, though Q values tended to be higher for
mutations other than Exon 19. Age also influenced the recommendations (Action 1 or 0
were more strongly recommended for younger patients, whereas Action 3 was favored
for older patients). Regarding the NLR, no interaction was observed with the primary
recommendation, Action 3. However, the second-best recommendation showed a marginal
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preference for Action 0 when the NLR was lower, whereas Action 1 was favored when the
NLR was higher. Selected partial dependence plots are shown in Figure 3a–d.
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The reinforcement learning (RL) algorithm was subsequently used to develop a web
application called the “EGFR Mutant NSCLC Treatment Advisory System”, intended for
experimental clinical use and accessible at “https://egfr-recommender.streamlit.app/, ac-
cessed on 6 January 2025”. This application utilizes the RL algorithm to generate treatment
recommendations for new advanced NSCLC cases with EGFR mutations, with the goal
of optimizing progression-free survival (PFS). Since the application is deployed on a free
platform, there may be occasional pauses when bringing it online. The user interface of the
application is shown in Figure 4.
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4. Discussion
In this study, we demonstrated the feasibility of using reinforcement learning (RL) to

guide treatment decisions for advanced EGFR-mutant NSCLC patients, with the objective
of optimizing progression-free survival (PFS). We also successfully implemented this
algorithm in a freely accessible web application, available for experimental use by medical
oncologists. To our knowledge, this is one of the first reported applications of RL as a
treatment recommendation system specifically for targeted cancer therapy. RL is already
seeing broader use in oncology, with applications in radiology for breast cancer screening
and liver lesion characterization, radiation oncology for prostate cancer IMRT treatment
planning, adaptive therapy for NSCLC, and beam orientation in Cyberknife treatment
planning [24]. Other emerging uses of RL in oncology include prostate biopsy planning,
drug discovery, and simulated clinical trials [25,26]. Thus, our study contributes to the
growing body of research supporting the potential for RL use in cancer screening, diagnosis,
and treatment.

Various machine learning models, aside from RL, have been applied to guide targeted
cancer therapies; however, these efforts have primarily focused on target identification,
virtual screening for drug design, and identifying genes and proteins linked to treatment
outcomes. Additionally, machine learning has been employed to analyze genomics, tran-
scriptomics, proteomics, radiomics, digital pathology images, and other complex data,
providing clinicians with a synthetic and comprehensive understanding of tumors rather
than direct treatment recommendations, as in our study [26,27]. Building on this foun-
dation, we integrated a RL algorithm into a web-based platform, presenting a practical,
patient-focused tool that assists clinicians in selecting tailored treatments for advanced
EGFR-mutant NSCLC. This tool identifies EGFR TKI options that are more likely to im-
prove progression-free survival PFS by taking into account the patient’s unique clinical
features, disease characteristics, and specific EGFR mutation profiles.

Recommendation systems are tools that suggest items or actions based on data reflect-
ing user preferences, behaviors, or specific characteristics. Traditionally used in fields such
as e-commerce or entertainment (e.g., product or movie recommendations), recommenda-
tion systems are gaining traction in healthcare. In this setting, they analyze large datasets
on patient characteristics, treatments, and outcomes to make personalized recommenda-
tions, supporting clinical decision-making. Similarly, our study presents a recommendation
system for patients with EGFR-mutant NSCLC, utilizing RL to recommend the optimal
generation and line of first EGFR TKI treatment. By analyzing patient-specific data, includ-
ing age, performance status, prior treatments, and other clinical attributes, the system aims
to provide treatment recommendations tailored to maximize progression-free survival and
improve overall treatment effectiveness, supporting oncologists in their daily clinical prac-
tice. Other treatment recommendation systems in medicine make use of various algorithms,
generally other than RL. For example, Alian et al. used a personalized recommender based
on forward chaining reasoning, in order to support diabetes management, and Zhang, et al.
made use of the Gated Recurrent Unit (GRU) to produce a personalized interpretable deep
representation of longitudinal electronic health records [28,29]. So, we have been able to
make use of the underutilized RL approach for our treatment recommendation system with
good effect. Our findings highlight the vast potential of RL algorithms to guide clinical
practice in medicine in general, and in oncology specifically.

In our study, the RL model proved effective for making dynamic treatment deci-
sions. It utilized Q-learning and Boltzmann exploration to simulate and optimize different
treatment pathways, enabling personalized recommendations that adapt to each patient’s
changing condition. Meanwhile, the ETC efficiently analyzed our dataset by addressing
data imbalances with SMOTE and identifying key predictive factors. For our purposes,
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the ETC was particularly valuable in determining which features were most important
for predicting treatment outcomes. In contrast, the RL model provided the added benefit
of offering real-time, dynamic, and adaptable treatment suggestions, as demonstrated in
our web-based application for managing EGFR-mutant advanced NSCLC. Together, these
methods complemented each other. The ETC guided the selection of important features,
whereas the RL model delivered customized and flexible treatment recommendations
tailored to each patient’s unique clinical profile.

It is crucial to emphasize that although our RL model recommended higher-generation
TKIs in most instances, consistent with current clinical guidelines, it identified specific sub-
sets of patients within both chemotherapy naïve and refractory cohorts who are predicted
to achieve better progression-free survival with first-generation TKIs compared to higher-
generation TKIs. This finding was not observed in randomized clinical trials, representing
a novel contribution of our research. Consequently, our RL model not only aligns with the
outcomes of established randomized controlled trials, but also reveals variations influenced
by the unique clinical and disease characteristics of individual patients. However, amid the
increasing integration of AI in healthcare, our RL model and accompanying web application
are designed to assist, not replace, medical practitioners by providing RL-based treatment
recommendations. Ultimately, clinicians retain full authority over treatment decisions,
ensuring that human expertise and individualized patient considerations—aligned with
international guidelines and findings from randomized controlled trials—remain central to
medical care.

The neutrophil-to-lymphocyte ratio (NLR) emerged as one of the top influential
features in the ETC model in our study. Although few studies have explored NLR as
a predictive factor for metastatic NSCLC patients treated with EGFR TKIs, those that
have suggest that a high NLR is associated with a worse prognosis [30,31]. In our study,
although NLR values did not significantly differ between early- and late-progressing
groups, the ETC model ranked it as the third most important feature. It is essential to note
that feature importance in machine learning is model-specific, meaning the score reflects
the feature’s contribution within the structure of that particular model. High importance
indicates that NLR significantly enhances prediction accuracy in the ETC model, though
it does not establish causation. We consider NLR an important predictor for treatment
selection in this setting, as demonstrated by our ETC model. However, it likely interacts
with other predictive features in complex ways that remain to be fully understood in this
patient population.

Our study has several limitations. Although a sample size of 318 cases without missing
data is significant, larger datasets in the thousands would likely enhance model accuracy,
as increased sample sizes are associated with improved precision in machine learning
models [32]. However, although our sample size is relatively modest for machine learning
and reinforcement learning applications, we consider this study to be a significant initial
effort. It lays the groundwork for future research that will analyze thousands of cases using
AI models with a comprehensive set of predictor features. Additionally, the retrospective
design of our study introduces some risk of confounding and bias compared to prospective
studies [33]. Another limitation is our use of progression-free survival (PFS) as the endpoint.
Although PFS is appropriate, overall survival would offer a more comprehensive measure
of treatment efficacy if patients were followed for a longer duration and a sufficient number
of events occurred. Furthermore, only a small proportion of patients in our study received
a third-generation EGFR TKI, with the majority treated using first- or second-generation
TKIs. This treatment distribution makes it more challenging to generalize our findings
across all generations of EGFR TKIs. Certainly, incorporating a greater number of cases
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involving the use of third-generation EGFR TKIs could have enhanced the accuracy of the
AI models utilized in this study.

Lastly, this study does not report on TKI toxicity, which is an important factor in
treatment selection, and should also be addressed in future studies. Future research with a
larger, prospectively designed cohort, a longer follow-up period, overall survival as the
primary endpoint, and a more balanced representation of patients treated with all EGFR
TKI generations would likely yield more accurate models and more reliable treatment
recommendations. Nonetheless, we believe this study provides a strong foundation for
such future investigations. Also, we acknowledge that prospective validation is crucial to
establish the tool’s effectiveness and reliability in a real-world clinical setting. Although
our current study focuses on the development and retrospective evaluation of the tool,
we recognize the need for future prospective studies. We plan to collaborate with clinical
partners to conduct prospective validation studies, which will assess the tool’s performance,
usability, and impact on clinical decision-making in real-time.

In summary, our study demonstrates the feasibility and potential of using RL as a
treatment recommendation system for EGFR-mutant advanced NSCLC patients undergo-
ing EGFR TKI therapy. By deploying this RL model through a web app, we introduce a
practical tool for clinicians, supporting easy integration into clinical workflows. We believe
this study highlights the broader applicability of RL in guiding diagnosis and treatment for
NSCLC and potentially for other cancers. Specifically, our work presents a novel approach
and tool to assist in the targeted treatment of EGFR-mutant advanced NSCLC.

5. Conclusions
Our study highlights the potential of RL as a decision-support system for recommend-

ing EGFR TKI therapies in patients with EGFR-mutant advanced NSCLC. Through the
development of a user-friendly web application, we present an experimental tool with
the potential to guide clinical workflows. This research highlights the wider potential of
RL in enhancing therapeutic decision-making for advanced EGFR-mutant NSCLC and
other cancers. Ultimately, our work introduces a novel approach to enable personalized
treatment strategies for EGFR-mutant advanced NSCLC.
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