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Abstract: Renewable energy sources play a critical role in all governments’ and organizations’
energy management and sustainability plans. The solar cell represents one such renewable energy
resource, generating power in a population-free circumference. Integrating these renewable sources
with the smart grids leads to the generation of green smart grids. Smart grids are critical for
modernizing electricity distribution by using new communication technologies that improve power
system efficiency, reliability, and sustainability. Smart grids assist in balancing supply and demand
by allowing for real-time monitoring and administration, as well as accommodating renewable
energy sources and reducing outages. However, their execution presents considerable problems.
High upfront expenditures and the need for substantial and reliable infrastructure changes present
challenges. Despite these challenges, shifting to green smart grids is critical for a resilient and
adaptable energy future that can fulfill changing consumer demands and environmental aims. To
this end, this work considers developing a reliable Internet of Things (IoT)-based green smart grid.
The proposed green grid integrates traditional grids with solar energy and provides a control unit
between the generation and consumption parts of the grid. The work deploys intelligent IoT units
to control energy demands and manage energy consumption effectively. The proposed framework
deploys the paradigm of distributed edge computing in four levels to provide efficient data offloading
and power management. The developed green grid outperformed traditional grids in terms of its
reliability and energy efficiency. The proposed green grid reduces energy consumption over the
distribution area by an average of 24.3% compared to traditional grids.

Keywords: smart grids; IoT; green smart grids; energy consumption; reliability; distributed computing

1. Introduction

Traditionally, the conventional power grid’s primary function is to provide power
from the main bulky generators used by fossil fuels to the different end users. The power
grid gradually became smarter at the beginning of the 20th century. By integrating multiple
sensors and controllers over the whole grid, the smart grid (SG) expression appears. The
integration between modern information and communication technologies (ICTs) and the
conventional power grid contributed to the spreading of this term [1]. The definition of
SG is different from one organization to another; however, the simple definition of the SG
expression is transferring power and information in a two-way system [2].

The main function of the SG is collecting data from transmission lines, distribution
substations, and customers and for analysis in a data communications network linked with
the power grid. Based on this data, SG can forecast its suppliers’ and customers’ needs for
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power management [3]. Traditional power grid sources are mainly dependent on fossil
fuels. An increase in the prices of conventional fossil fuels as well as their finite nature
means that the need to discover other efficient and low-cost power sources is not optional.

The race to discover the cheapest power sources is not the main problem; the sustain
capability of these sources is the main issue. Renewable energy sources (RESs), also referred
to as green power sources, are the only sources that meet these demands [4]. Global
warming is one of the main reasons that electricity suppliers depend on and encourage
clean and safe renewable power resource usage for maintaining and achieving the required
end-user power demands with low carbon dioxide emissions. RESs, e.g., sun, wind, water,
biomass, geothermal, and tidal sources, are promising, safe, clean power sources not only
for their sustainability but also due to their usage reducing the greenhouse emissions that
harm the environment [5]. Integrating these types of sources within the modern SG results
in what is called the green smart grid (GSG). The GSG is a smart power grid that uses
only renewable energy sources. One of the prominent RESs is the sun, which has massive
energy, enough to meet the power demand of the entire planet in one day [6].

Researchers focus on obtaining the maximum power output from this tremendous
power source. This is done by collecting the incoming radiation either on the surface
of solar panels to generate electricity directly or by using it as thermal energy and then
converting it into electrical energy using thermoelectrical generators (TEGs) [7]. The SG
combines renewable energy sources with old conventional sources in the real power world
to avoid the continuous disruption of distributed energy resources (DERs) due to climate
change. For financial and technological reasons, combining multiple generator modules
makes it more difficult to control the power system to run at constant output. Without the
assistance of a smarter grid, it is difficult to supervise and monitor the cost-effective and
coordinated operation of such a power system. As a result, SG is critical for a robust future
power grid [8].

The expanding population and the need for sustainable energy have boosted global
demand for electricity. However, increased demand has resulted in challenges such as
power outages, voltage fluctuations, and transmission network congestion. To address
these issues, the concept of an SG has evolved. SG solutions use self-healing properties and
real-time data processing to reduce outages, losses, and voltage fluctuations. Integrating
renewable energy sources into the primary power-producing system is also important [9].
This integration entails increasing the use of energy storage devices and stabilizing system
voltage. The SG relies on reliable and fast data transmission, which is made possible by
communication infrastructure. The SG delivers effective power transmission and efficient
resource utilization by collecting and analyzing data linked to power generation and con-
sumption [10]. However, traditional grids face many limitations and challenges, including
the following [11,12]:

• Infrastructure: Many grids were built decades ago and are now nearing the end of
their useful lives. This aging infrastructure frequently degrades over time, demanding
regular maintenance and growing more prone to collapse. As a result, operational
expenses rise, and the danger of outages increases, emphasizing the critical need for
modernization and replacement of obsolete components.

• Reliability and resilience: Ensuring the reliability of the SG is a critical challenge for
current power infrastructures. Power outages can arise from equipment failure, natural
disasters, or cyber-attacks, affecting power delivery to customers and businesses. Severe
weather phenomena, such as hurricanes, wildfires, and snowstorms, have the potential
to cause significant harm to grid infrastructure, resulting in long-lasting power outages.
This emphasizes the importance of implementing stronger resilience measures.

• Integration of renewable sources: The increasing integration of renewable energy
sources, such as solar and wind power, poses considerable hurdles due to their in-
termittent nature. Unlike traditional power sources, renewables create electricity in
response to weather conditions. This intermittency complicates maintaining a contin-
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uous power supply, necessitating modern grid management and storage systems to
ensure stability and reliability.

• Demand growth and load management: Regulating peak demand becomes more
complex as electricity demand rises. Additional capacity is necessary during peak
times, typically resulting in higher operational expenses, because this capacity is
underutilized during off-peak hours. Effective load balancing across regions and
times is extremely difficult, demanding advanced forecasting techniques and real-time
management to ensure grid stability and efficiency.

• Technological integration: The adoption of smart grid technologies offers various
advantages, including increased efficiency and dependability. However, integrating
these advanced systems into existing infrastructure is difficult and expensive. Ensuring
interoperability between new technologies and existing grid components is a huge
undertaking that necessitates careful planning and commitment.

Next-generation SGs are expected to be more renewable, robust, efficient, distributed,
reconfigurable, and interactive, with faster response to face any crises with higher power
quality, as global resources become scarcer and power users demand higher quality and
reliability [13]. We consider developing novel SG based on the Internet of Things and
distributed edge computing technologies to overcome such challenges. Deploying such
novel technologies for smart grids provides a reliable infrastructure for the grid and better
management and control. This increases the grid’s overall performance and provides the
next generation of SGs. The main contributions of this work are summarized as follows.

• Developing a main IoT-based control unit between the generation and distribution
parts of the SGs. This control unit deploys distributed computing technology to assist
IoT nodes. The unit is responsible for monitoring and controlling power generation
and consumption.

• Developing an IoT unit to improve the performance of power generation plants,
including solar arrays used for power generation. The unit has a direct interface to the
main IoT control unit.

• Developing a data monitoring network to monitor power generation and usage and
assist grid decision making.

• Developing a distributed computing edge model to assist data handling over the
network. The model deploys a hierarchical structure of heterogeneous edge servers,
including multiple access edge (MEC) and fog servers.

• Performance assessment of the developed systems.

2. Related Works

Integrating IoT technology into smart grids has attracted considerable attention from
academia and industry, owing to its ability to improve energy systems’ effectiveness,
reliability, and sustainability. IoT-enabled smart grids utilize interconnected devices, real-
time data analytics, and modern communication networks to optimize power generation,
distribution, and consumption [14,15]. Many existing works have considered developing
IoT-based frameworks for smart and green smart grids. Each framework mainly focuses
on one or more aspects of smart grids, including energy efficiency, reliability, availability,
and security. This section presents the parts of these frameworks that are most related to
our proposed work.

The latest developments in smart grids went beyond deploying IoT to improving the
deployment and performance of IoT networks. Recent technologies have been introduced
with IoT to provide efficient smart grids. M. Jamshidi et al. [16] developed a connectivity-
based platform for edge computing-powered smart grids. The authors also considered
proposing platforms for integrating the metaverse into the proposed smart grid. The
work provided a highly efficient GSM triplexer specifically engineered for 5G-enabled
IoT applications within sustainable smart grid edge computing environments and the
metaverse. This triplexer was designed to operate at 0.815, 1.58, and 2.65 GHz, targeting the
specific frequency bands essential for 5G applications. The triplexer features a pioneering
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physical design, including an incredibly small size, making it the smallest triplexer ever
created in comparison to earlier designs. The triplexer indicated the lowest levels of
insertion losses achieved so far, surpassing the performance of current triplexers by a
wide margin. This work focused mainly on the physical layer design for IoT-based smart
grids; however, our developed work considers an end-to-end framework covering all
communication layers and subsystems.

The IoT-enabled smart grid provides two-way communication among connected
devices and technologies, enabling the system to recognize and respond to human needs.
The authors of [17] developed and implemented an IoT-based power monitoring system
designed to measure and analyze critical electrical parameters, including the voltage,
current, active power, and energy consumption of various loads. Using modern IoT
technologies, the system provided a solution for real-time monitoring and administration
of electrical data, considerably improving the capacities of both customers and electric
power corporations within the smart grid. The core component of the system was the
IoT-based software program ‘ThingSpeak’, which acts as a platform for collecting real-time
electrical data from customers. ThingSpeak offers continuous collecting, visualization, and
analysis of electrical characteristics, providing real-time insights into energy use patterns.
This work mainly considered the application layer of the smart grid; however, our proposed
framework investigated all communication layers.

S. Poorna et al. [18] investigated the implementation of IoT-based smart sensor technology
to enhance smart grid systems’ reliability and power efficiency. The authors introduced a
framework that integrated key monitoring, communication, and analysis elements. The
monitoring component includes current and voltage sensors directly connected to consumer
loads, providing real-time data on electrical parameters. The communication component
comprises an Arduino sensor and a WiFi module, facilitating seamless wireless communication
between the sensors and the central monitoring system. The analysis component is a remote
service that processes data to create voltage profiles, energy reports, and detailed voltage and
current readings. This program allows extensive monitoring and assessment of the smart
grid’s performance. The suggested framework’s performance was evaluated using a variety
of characteristics, including voltage, current, power, perceived power, and energy. These
factors were measured and analyzed during testing to guarantee the system’s reliability and
efficiency. Integrating IoT-based smart sensors into the smart grid enhanced power efficiency
and reliability and enabled proactive energy consumption and distribution control.

As IoT-based smart grids become increasingly important for regulating fluctuating
electricity demand, the wide range of equipment necessary to realize these cyber-physical
systems (CPSs) poses substantial security issues. The authors of [19] tackled these concerns
by presenting a mutual authentication and key agreement approach for smart grid appli-
cations that secures communications while also protecting user privacy. The suggested
approach uses both elliptic curve encryption (ECC) and physical unclonable function (PUF)
modules. This dual technique ensures the secrecy and integrity of the data sent inside
the smart grid network. The security analysis of the proposed approach demonstrated
its robust defense capabilities against various threats, including those aimed at message
integrity and secrecy on the communication channel and physical attacks on the hardware.
This robustness is crucial for ensuring the integrity and security of smart grid activities. The
proposed security model was tested for practicality on an Arduino UNO microcontroller. A
full comparative performance evaluation was carried out, demonstrating that the proposed
model is secure and resource-efficient.

Despite the potential of IoT-based smart grids, the communication network’s intrin-
sic openness and the devices’ resource restrictions present serious security and privacy
challenges. A. Zahoor et al. [20] addressed these issues by developing a private blockchain-
based access control protocol for IoT-based smart grids utilizing PUF technology. The
protocol allows secure and efficient data flow between service providers and smart meters.
In this approach, the participating service providers form a peer-to-peer (P2P) network,
with each peer node responsible for securely generating blocks from acquired data. The
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newly formed block is then verified and added to the blockchain network by all peer nodes
using a voting-based consensus method. The protocol takes advantage of PUF’s unique
capabilities to improve security by establishing a hardware-based root of trust, ensuring
that only legitimate devices can access the network. Blockchain technology secures data
transfer by generating an immutable ledger of all transactions, preventing manipulation
and ensuring data integrity. The authors evaluated the protocol’s security using the random
or real (RoR) model, which simulates probable attack scenarios and tests the durability of
our security mechanisms. The findings of the security analysis showed that the protocol is
more efficient than existing alternatives and has better security qualities, such as resistance
to spoofing, man-in-the-middle attacks, and unauthorized access.

Integrating renewable energy resources into the smart grid provides considerable
financial and environmental benefits. However, the absence of real-time monitoring for
these renewable energy-based microgrids and substations creates issues such as inefficient
resource allocation, poor load management, grid instability, and insufficient real-time
decision-making. Z. Ullah et al. [21] proposed an IoT-based monitoring and control system
for power substations and distributed renewable-energy-based smart grids. They aimed to
improve visibility and decision-making capabilities for integrating and segregating these
grids within the power distribution networks. The work used IoT technology to effectively
manage load distribution, addressing industrial, domestic, commercial, and electric vehicle
demands to prevent power fluctuations and contingencies. The authors used HOMER
Grid® software to analyze annual power production and consumption patterns, allowing
for more proactive energy management decisions. The suggested IoT-based solution
enabled real-time monitoring of power characteristics, resulting in improved load control
and smart grid integration, lowering energy costs and carbon emissions. The model was
validated using a prototype that shows real-time monitoring and control. This allows
power distribution companies to manage loads more efficiently during peak demand or
crises. This strategy improved grid stability and energy efficiency, demonstrating the value
of IoT technology in furthering smart grid integration and optimizing load control inside
power distribution networks.

Smart grids use bidirectional communication technologies, in which smart meters con-
nect with multiple organizations and collect data from the electrical grid. This interaction
gives specialized features to various energy market participants. M. Orlando et al. [22]
proposed a distributed metering infrastructure that offers bidirectional communication,
self-configuration, and auto-update capabilities. The proposed solution features three-
phase smart meters designed according to fundamental IoT principles. The introduced
smart meters can run multiple algorithms for smart grid management either onboard or
distributed across the network. The system’s auto-update feature allows for the seamless
addition, updating, or removal of these algorithms in real time. The authors evaluated the
work using the Opal-RT tool, demonstrating that the proposed infrastructure performs
efficiently, with Internet data transmission latency remaining within acceptable limits. This
confirms that the developed architecture is suitable for real-time grid operations and can
support the deployment of innovative services without compromising performance.

In [23], the authors investigated the deployment and performance evaluation of
IoT-based smart energy management systems (SEMSs) across various settings, including
industrial, commercial, building, and warehouse environments. The SEMS is designed to
optimize energy usage and enhance efficiency in these diverse applications, providing a
comprehensive solution for energy management. The SEMS shows flexibility and adapt-
ability by being utilized in many environments, including industrial facilities, commercial
buildings, residential complexes, and warehouses, each with distinct energy consumption
patterns and needs. The SEMS provides instantaneous monitoring and regulation of energy
usage using IoT technologies. Sensors and IoT devices gather data on different energy
characteristics, which are subsequently analyzed to enhance energy utilization. The SEMS
was evaluated for its effectiveness in conserving energy within air-conditioning systems
as a specific test case. This evaluation highlights the system’s ability to target significant
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energy-consuming components and implement strategies for energy reduction. The SEMS
achieved substantial energy conservation, with savings ranging from 5% to 53% across dif-
ferent settings. This wide range of savings proves the system’s effectiveness in adapting to
various energy management needs and optimizing consumption accordingly. The system
utilizes real-time data to make informed decisions about energy usage. This data-driven
approach ensures that energy management strategies are based on current consumption
patterns, leading to more effective conservation measures. The research demonstrated the
practical application and benefits of the SEMS through detailed case studies. These case
studies provide concrete examples of how the system is implemented and the tangible
results it achieves in different environments.

To demonstrate the proposed framework’s novelty compared with the existing meth-
ods, we introduce Table 1. This table summarizes the main features of the previously
mentioned studies and approaches, including key technologies, performance metrics, and
evaluation approaches.

Table 1. Main features of existing approaches compared with the proposed framework.

Ref. Renewable Energy Sources
Key Technologies

Evaluation Performance Metrics
IoT Fog MEC Blockchain AI/ML

[16] x
√

x
√

x x Simulation-based
• Frequency response
• Compact size of triplexer
• Insertion losses

[17] x
√

x x x x Experiment-based • Energy consumption
• Load management

[18] x
√

x x x x Simulation-based • Reliability
• Energy consumption

[19] x
√

x x x x Experiment-based • Threat detection
• Resistance to attacks

[20] x
√

x x
√

x Simulation-based • Resistance to attacks

[21]
√ √

x x x x Simulation-based • Energy cost
• Load management

[22] x
√

x x x x Simulation-based • Latency

[23] x
√

x x x x Experimental-based -

Proposed
√ √ √ √

x x Simulation-based
• Energy efficiency
• Reliability
• Availability

3. Proposed Smart Grid System

The proposed model can control and manage power generation and the usage of this
power in a specified area. To meet the loads of a specified area, the proposed system calcu-
lates and monitors the loads of the end nodes, including homes, factories, and buildings.
The proposed model looks deeper inside these nodes, dividing the loads into critical and
non-critical loads to balance the grid loads and achieve customer satisfaction. Additionally,
it aligns the grid’s power generation capacity with clean, affordable power, and only a
sophisticated control and management system can make this happen.

The proposed system consists of three different layers. The first layer is the input
power source; in our case, solar power is the main source. The second layer is the brain and
the connection between the power generation and end consumer layers, which controls
and manages a specific area’s grid generation and loads. The third layer is the consumer or
the load side, which includes the power consumption devices located at different places,
including homes, offices, and factories. Figure 1 presents the structure of the proposed
system. In the following, we introduce the three layers deeply by mentioning the main
functions of each layer and how it works.
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A. The first layer (power generation layer)

Two power sources are considered for the proposed system, which may be working
together or working independently according to the needs of the end devices, i.e., devices
at the third layer. The main source is the solar power plant, which consists of solar panel
arrays, power banks (batteries), controllers, and inverters. This source represents the grid’s
main and bulky input power, which provides power for all grid branches. The second
power source is a small distributed photovoltaic (PV) system with solar panels on the
building’s roofs or windows.

The power extracted from these PV systems is directed through the controller and
inverter to convert it into alternating current (AC) power. At the end of this layer, the AC
power passes through the IoT-based management and metering layer, i.e., the second layer,
for calculating and monitoring the produced and consumed power.

B. The second layer (IoT control and management layer)

The second layer is the IoT-based control and management layer, which is considered the
proposed model’s organizer. It calculates and provides the proper needs for each side, either
by collecting, monitoring, and controlling the power grid usage details such as the congestion,
peaks, and outage times of the grid behavior or by informing the end consumers about their
consumption rate and how to reduce it by controlling their end devices. To provide these
capabilities for a smart power grid, IoT devices, IoT gateways, and edge computing servers
are utilized. The main parts of this layer are introduced as follows.

• IoT devices: IoT technology is used in the proposed system to improve the performance
of power generation, distribution, and consumption rate. IoT devices are used to
monitor the output of the solar panels and the end devices’ consumption rate, and
other IoT devices are deployed to monitor and control the whole grid traffic load and
capacity. Also, some of these devices are used to control the PV arrays to enhance
their efficiency by tracking the sun, cleaning its surface, or controlling the loads on
the end device side. These IoT nodes are integrated using inter-integrated circuit (I2C)
connections for wired interfaces and are assumed to support both dedicated short- and
long-range communication interfaces, including Wi-Fi, Zigbee, and LoRaWAN. All
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these devices deal with a huge amount of data, either by sending or receiving data [24].
The IoT gateway is the perfect solution for controlling, analyzing, and securing this
valuable amount of data with different devices and communication protocols.

• IoT gateways: An IoT gateway is the optimum solution for handling the data for smart
and fast power grid response in different scenarios. This comes from the multiple
IoT devices mentioned in the previous section in a way that ensures the right action
in a short time. It collects, analyzes, and manages data from different sensors. Also,
it secures the collected data from intrusions or hacking while sending them via the
Internet to cloud servers or edge computing servers [25].

• Edge computing servers: Edge computing servers at the edge of the end consumer
nodes are used for collecting and processing the data before sending it to the main
monitoring and controlling station. They are also used for storing these valuable
data in the case of communication drop between them or for reducing the data traffic
according to their programmed functions. This makes communication and monitoring
of the power grid behavior known and ready for any unusual intrusions or drops. The
edge computing servers offer more accurate and faster responses for decision making
in different scenarios [26].

C. The third layer (consumption layer)

The third layer is the end user or consumer side, which is the main layer of the
proposed model. This layer can consume power according to the controlled loads. The
loads are controlled to achieve an efficient consumption rate. This happens by calculating
the power consumption for each device and sending these measurements to the end user
and the grid operators by using embedded IoT sensors that measure and monitor the power
for both. Consumer satisfaction is one of the main purposes of this model, and it includes
the following [27,28]:

• Offering real-time monitoring and controlling their premises and their consumption rate.
• Making a profit by selling their extra energy to the grid.
• Reducing their consumption rate during grid congestion or peak hours.
• Scheduling and controlling their devices’ operation times according to their needs

by dividing them into two sections; critical and non-critical loads. The critical loads
cannot be lowered under any circumstances, and they differ according to the end
user’s willingness. The critical load for a building full of offices differs from that of
homes or factories; each has a different definition of the critical load. While non-critical
loads can be de-energized or lowered according to the power grid peak hours or
congestion times.

4. Performance Enhancement of the Generation Subsystem

This section investigates the structure of both power generation sources, describes
each source’s main components, and suggests ways to improve their performance.

4.1. Distributed PV Subsystems

The distributed PV system is a kind of grid-tied connected PV system that is less
expensive and easier to install than stand-alone PV systems. Figure 2 presents the main
components of the PV system. It consists of several PV panels connected in series on the
buildings’ roofs. The output goes to the DC/AC inverter to convert it and make it suitable
for consumer use or the grid if their loads are low [29].

The solar tracking system is exploited to increase the efficiency of the proposed PV
system. This is done by inserting multiple sensors into the PV panels or arrays to track the
sun. There are two types of sun tracking: single- or dual-axis tracking. Single-axis tracking,
or one-dimensional tracking, is more effective than fixed PV systems and also presents
lower cost than a dual-axis sun tracking, or two-dimensional tracking, PV system [30].

The proposed work uses the single axis sun tracking PV system by using light detection
sensors (LDRs) to detect the light intensity and send it to the microcontroller, which
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compares the output of the top to that of the bottom sensors mounted on the PV array,
calculates the proper angle, and sends it to the servo motor to move the PV array at the
right angle to collect the maximum output radiation from the sun. The system deploys
current and voltage sensors to measure the output power from the PV array. Figure 3
displays the flowchart of the proposed efficient tracking system.
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The automatic sun tracking technique compares the LDR values and executes an action
by moving the PV array according to the comparison results. The PV system’s output
is connected to the grid through the smart metering device, which calculates the power
consumption of end users, either from the PV system or the grid. Also, the smart meter
calculates the benefit difference for the customer if the output of the PV system is larger
than the loads or for the grid utility operator if the output is insufficient for the loads.

4.2. Grid Main Power Source (PV Power Plants)

PV power plants are usually planted in rural areas where the land cost is low and
the land available is extensive; thus, they are built outside of large cities. In the proposed
model, a PV power plant is used as the main source of electricity for the grid to reduce
greenhouse the gas emissions and power costs that come from traditional diesel engine
generators, which depend only on fossil fuel. The cost of traditional power plant generation
is growing higher due to the increasing price of fossil fuels [31]. Figure 4 presents the
proposed PV power plant, which consists of a large number of PV strings made from a
huge number of PV panels connected to each other in series to make the PV array; the
strings are connected to the inverters through the string box and then through the grid.
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The installation cost of the PV power plant is considered a problem, especially if we
add the cost of the power used to move the arrays to track the sun. The sun tracking power
increases according to the wind speed and direction. To avoid this cost in PV plants in the
proposed model, good-quality dust, humidity, and wind speed sensors are installed on PV
arrays. The reason for using these types of sensors is that the PV plants are installed in rural
areas. There is a high probability of dust and sand accumulating, which is carried by the wind,
in addition to the humidity in these areas, which is the reason for the formation of a layer of
mud on the surface of the panels. Dust and humidity are the reasons behind the reduction of
the output power of the PV panel and, consequently, the output power of the PV plant [32].
As a monitoring node, the proposed model adds dust, humidity, and wind speed sensors on
multiple power plant sections. According to the power plant area, every node on the PV plant
is connected to another node or directly to the gateway via a wired or wireless connection.
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Also, it adds current and voltage sensors for each array to help monitor the PV plant’s power,
which is discussed later in the monitoring subsystem section.

5. Monitoring Subsystems

The proposed system uses IoT networks, and IoT nodes are distributed on the whole
grid to achieve effective real-time monitoring through the proposed power grid model. IoT
networks are used to achieve real-time monitoring of two different categories: grid power
monitoring and data monitoring between the grid operator and the end user.

5.1. Power Monitoring System

The function of the power monitoring network is to monitor the current and voltage
of each node in the system. The nodes are distributed throughout the system from the
generation layer, passed by the grid power transmission lines, and end on the customer
side. Current and voltage sensors are installed on the generation nodes to measure the
PV arrays and the inverter output and transmission lines to detect any changes in the
power transmission values through the grid due to any intrusions or power drops and also
measuring the output of the distributed generations (DGs) on the end user layer. In the
following, we introduce the monitoring subsystems at different parts of the network.

A. Distributed PV monitoring subsystem

The monitoring nodes in the DG layer are used to constantly measure the output of
the PV arrays and the inverter of the DG. Each node consists of PV panels, i.e., PV arrays;
and current and voltage sensors, i.e., I&V sensors, inserted on the PV array output and
on the inverter output for each DG node [33]. The taken measurements are amplified
and converted into a digital form to be processed. The data go to the microcontroller
for processing and handling before being sent to the higher level of the communication
network. Figure 5 shows the main structure of the DG node. By collecting this huge amount
of data from the system, any drops or attenuations can be easily monitored.
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B. PV power plant monitoring subsystem

The PV power plant monitoring nodes are distributed through the generation plants.
The monitoring nodes are distributed to cover the whole generation section by dividing the
generation plant area into sections or strings. Monitoring the I&V behavior for the strings
and DC inverters can be achieved by inserting the I&V sensors on the output of each string
and the inverters. The collected data from the I&V sensors are regulated and converted
into a digital form. The microcontroller processes these types of data before sending the
data on to the next communication level. Figure 6 shows the main components of the PV
power plant monitoring subsystem.
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C. Transmission line monitoring subsystem

The distributed monitoring nodes on the transmission lines consist of I&V sensors, a
conditioning circuit containing regulating and analog-to-digital conversion (ADC) circuits,
and a microcontroller with a built-in wireless transmission module, e.g., Wi-Fi. All these
components are combined and installed on transmission line towers for real-time power
monitoring through the whole grid. The collected data are processed and sent through
the communication network. The monitoring node’s purpose is to continuously monitor
the power lines by checking for the presence of power and measuring it through the grid
transmission lines. Collecting this information from the distributed nodes can detect any
drop, intrusion, or harmful attenuation through the power grid. Figure 7 shows the main
components of the transmission line monitoring subsystem.
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5.2. Data Monitoring Network

The amount of data measured by IoT sensors is huge and vital, so there is a need to
handle and protect this data. Securing and protecting these data occurs on the grid utility
operator side according to the proposed algorithm previously introduced in Section 3. This
process starts from the sensor itself, according to its resources, and ends with the grid
operator’s core network servers. The sensors’ collected data are transferred through the
network using the transmission line monitoring nodes as a bridge in case of low coverage or
drops. The monitoring network nodes are used for achieving grid reliability and real-time
monitoring of the whole grid. Figure 8 presents the data monitoring nodes and data flow
through the whole grid monitoring network.
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6. Edge Computing Model

The huge amount of data explained in the monitoring network subsection clarifies
the importance of these types of data. Transferring these amounts of data between the
multiple monitoring nodes on the whole grid ending with the monitoring station should be
defined and explained. Due to the large capacity of the transferred data between nodes, the
latency and the energy consumption are the main factors of the communication network.
This section will explain the multiple levels of communication and the responsibility for
each level from the communication energy and latency-aware point of view. These two
communication factors are important, especially in our proposed power grid model, which
is concerned with achieving real-time monitoring of the grid with a minimum amount
of energy.
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The proposed SG deploys a hierarchal structure of distributed edge computing units.
The considered SG deploys two heterogeneous edge servers: MEC and fog. The proposed
hierarchal edge computing scheme consists of four main levels deployed at different
locations of the SG. Figure 9 presents the main levels of the proposed edge computing
model for the developed SG. The first level represents the main edge cloud deployed at
the main IoT control and monitoring level. This level represents the interface between
remote servers and the SG. The second level is the MEC servers distributed over each main
distribution area. The distribution area is divided into main areas, referred to as urban
regions, served by MEC servers with powerful resources. This level has direct high-speed
fiber connections to the main MEC. Also, these servers have direct connections with IoT
gateways. The third edge computing level is the MEC servers deployed to serve different
regions inside each urban area. Each urban area is divided into smaller distribution areas,
referred to as districts. Each district is served by a MEC server with lower resources
than urban MEC servers. Table 2 provides variants of possible computing devices that
can be deployed in the proposed grid. The table provides the main category of each
device, the specifications of the devices, and the main applications of the device. Also, the
manufacturer and a link to each device’s specifications are introduced in the table.
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We consider our previously developed offloading scheme developed in [34] to en-
able efficient data transfer between multiple communication levels. Computing tasks are
handled on IoT devices if there are sufficient resources or offloaded to higher-level edge
servers. Fog nodes handle tasks received from IoT nodes or move them to district MEC
servers based on the available resources. Tasks that cannot be handled by district MECs are
offloaded to urban MECs to be handled or terminated based on the available resources.
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Table 2. Variants of possible endpoint computing devices.

Category Ref. Device Model Manufacturers Main Features Applications

Smart meters

[35] OpenWay Riva
CENTRO Itron

• Hybrid meter
• Robust functionality
• High-performance communications

capabilities
• Supports both RF mesh and PLC

communications
• Distributed intelligence platform

• Meter-to-grid applications

[36] E450 m Landis+Gyr

• Residential meters
• Multi-energy data collector
• Remote two-way communication

node
• Supports multiple communication

technologies
• Integrates with various utility

management systems
• Programmable demand-response

functions

• Meter-to-grid applications

Smart sensors

[37] Gridsense Line IQ Franklin Electric

• Fault and load monitor device
• Has a wireless interface to the

controller
• Hot stick installation
• Has multiple communication

interfaces

• Provides real-time monitoring
of line current and voltage

[38] EPM 7100 GE Grid Solutions

• Supports hybrid wired and wireless
connections, including RJ45 Ethernet
or IEEE 802.11 WiFi connection

• Enables advanced analysis and
predictive maintenance

• Supports RS485 output speaking
Modbus protocol

• A multifunction power
quality meter that provides
data on a wide range of
electrical parameters

• Detects power problems at
early stages

Edge IoT
gateways

[39] Cisco IR829 Cisco

• Industrial integrated services routers
• Provides integrated storage and

computing capability for edge
applications

• Supports multiple communication
interfaces, including cellular and
low-power wide-area network
(LPWAN) interfaces

• IoT gateway that provides an
interface to the Internet

[40] UTX-3117 Advantech

• Has a high-performance, low-power
Intel processor (Intel Apollo Lake
E3900 series and N series Processor)

• Has the ability to be integrated with
multiple IoT platforms

• Supports different types of operating
systems, including Linux and
Windows

• IoT gateway that provides an
interface to the Internet

Embedded
devices [41] FETMX8MM-C Forlinx Embedded

Technology

• System on module (SoM) based on
NXP’s i.MX8M Mini processor

• Has embedded memory
• Has high-performance computing
• Has multiple communication

interfaces, including cellular and IoT
dedicated interfaces

• Specialized computing device
integrated into a larger
system to perform dedicated
functions

• IoT and industrial
applications

Programmable
logic controllers

(PLCs)
[42] SIMATIC S7-1200 Siemens • Modular PLC system • Automation and control tasks

MEC

[43] Jetson Xavier NX NVIDIA • High-performance MEC
• Edge intelligence server • Edge computing applications

[44] Intel Movidius Myriad X Intel
• A vision processing unit designed for

AI and computer vision tasks at the
edge

• Edge computing applications

Switch [45] Cisco Catalyst IE3400 Cisco
• Software-based segmentation and

flow visibility for security-threat
detection and isolation

• Industrial Ethernet switching
applications

• Platform for extending IoT
connectivity

7. Simulation and Results

In this section, we evaluate the performance of the proposed system and subsystems.
We simulated the developed framework, including subsystems and algorithms, and carried
out experiments to assess the performance of the subsystems.
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7.1. Simulation Setup

We simulated a system in which the main power generation source is a solar panel
PV system with the data introduced in the dataset available in [46]. We considered the
Java-based event-driven-based simulator introduced in [47,48] for this evaluation. The
simulator was built on the CloudSim platform. The National Renewable Energy Laboratory
collected the data, which consists of one million solar cell systems. The output data from the
generation planet, i.e., the solar panel PV system, were fed to the distribution area through
the IoT control and monitoring unit. We considered a distribution area, i.e., a consumption
area, of a square shape of 10 km per side, near the area of Cairo city, the capital of Egypt.
This area was divided into four main square areas of 5 Km per side, representing the city’s
four main urban areas. Each urban area was divided into districts of one Km square area.
Figure 10 presents the topology of the simulated consumption area.
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The main IoT control and monitoring system was connected to the main cloud server,
referred to as the main MEC, to handle and store the system data. A MEC server was
located at the center of each main urban area and is referred to as the urban MEC. Each
district was served by a MEC server, referred to as the district MEC. The urban MEC is a
powerful server with a higher computing capacity than the district MEC. The district MECs
in the same urban area are connected to the urban MEC. For each district region, twenty
fog nodes are normally distributed to serve houses in the district area. All end devices
share their computing tasks with nearby fog nodes. Figure 11 presents the topology of
the distributed edge computing devices over the system. Table 3 presents the considered
parameters during the simulation.
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We considered measuring the energy efficiency before and after deploying the proposed
framework for performance evaluation. This evaluation is from the energy point of view
for the overall proposed system. However, we also considered evaluating the proposed
grid’s communication network, including the communicated data’s reliability and system
availability. In this part of the evaluation, we mainly consider the IoT edge computing system.
For this evaluation, we simulated the system for different categories of end-device loads.
This is to ensure the performance of the network under different real conditions. Ten load
categories were considered for the system evaluation. The first load category maps to a low
grid loading, while the tenth load category maps to a high grid loading.
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Table 3. Simulation parameters.

Parameter Value

Consumption area 10 km × 10 km
Area of urban region 5 km × 5 km

Number of urban regions 4
Area of district region 1 km × 1 km

Number of district regions per urban area 25
Number of district MECs 4 × 25
Number of urban MECs 4

Number of fog nodes 4 × 25 × 20
MEC placement equidistant

Bandwidth of IoT gateway 868 MHz
Packet size 32 Byte

District MEC—Storage 16 Gb
Urban MEC—Storage 32 Gb

Fog node—Storage 2048 Mb
District MEC—Processing ϵ[2.4,3.2] GHz
Urban MEC—Processing ϵ[3.2,4.7] GHz

Fog node—Processing ϵ[0.7,2.4] GHz
Max. server load (fog) 20 events/s

Max. server load (MEC) 50 events/s
Data traffic 3 packets

7.2. Results and Discussion

Figures 12–15 present the average energy efficiency for the four considered urban
areas. We compared the energy efficiency of the proposed system with IoT nodes and
edge computing servers with the traditional grid. Each figure of the four figures presents
the average energy efficiency of each district in a zone. i.e., urban area, of the four zones
for the two compared grids. We calculated the average energy efficiency for each district
among all deployed end devices. The proposed IoT-based grid achieved higher energy
efficiency than the traditional grid for all districts in the four zones. The proposed system
outperformed the traditional grid in terms of energy efficiency by an average of 24.3%.
This is due to the efficient management of the IoT nodes deployed at the different levels
of the grid. Controlling the energy at different levels through IoT nodes reduces energy
consumption and waste.
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Moving to the proposed communication network with the introduced edge computing
model and the deployed offloading scheme, the systems achieved improved performance
in terms of availability and reliability and outperformed the existing traditional networks.
Figures 16–19 present the average packet delivery ratio (PDR), as a percentage, for different
zones in the system. Figure 16 presents the average PDR for all communicated packets of
the first zone. The system was simulated for ten different load categories, and the PDR
was measured for each. As the load increases, the communication overhead increases
due to the massive exchange of control messages. The proposed grid achieved a higher
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packet delivery ratio in all communication networks covering the four zones by an average
of 28%. This metric mainly maps to the network reliability, and thus, the proposed grid
outperforms traditional grids in terms of network reliability, as indicated in the results
presented in Figures 16–19. The main reason behind this performance improvement is the
deployment of distributed edge computing, fog, and MEC.
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We considered another metric for evaluating the IoT-based edge computing network:
the efficiency of utilizing network resources. We mainly considered evaluating the effi-
ciency of utilizing resources of edge servers since we deployed four hierarchical levels
of these servers. This deployment increases the overall cost, which makes it necessary
to ensure that the proposed grid needs such deployment and that this cost is paid for
higher efficiency. Figures 20–23 present the average efficiency of utilizing resources for
the fog nodes deployed in each district. Three measures were calculated for each district;
each of these was calculated as a load category. Three load categories were considered:
low, medium, and high load. The value calculated for each district represents the average
resource utilization value of all fog nodes deployed in this district. The figures indicate that
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the proposed grid utilizes fog computing resources efficiently, even at high load values. The
proposed model utilizes an average of 90.5% of fog computing resources, outperforming
existing edge computing models [34].
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Figures 24–27 present the utilization efficiency of all district MEC servers deployed
in all system zones. The efficiency of utilizing district MEC resources was measured at
three different load categories. This is to test the system for all possible real situations.
The proposed model utilizes the district MEC with an average of 92.9%. Also, Figure 28
presents the efficiency of utilizing urban MEC computing resources under the different
load categories. The system uses the urban MEC resources with an average of 93.8%.
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Summing up, the proposed edge-computing-based green grid reduces energy over-
consumption and achieves higher energy management efficiency. Also, the proposed grid
is highly reliable and available. The proposed model also facilitates the integration and
management of renewable energy sources. The proposed grid is mainly limited to the capa-
bilities of the edge-computing nodes. While the proposed grid was approved to achieve
different benefits that match the demands of the upcoming generations of smart grids, this
all comes at the overall cost of the grid.

8. Conclusions

As sustainability becomes a top priority for governments and companies, the adoption
of green smart grids is essential for creating a strong and adaptable energy future that meets
evolving consumer demands and environmental goals. This study provides a promising
solution for future energy systems, highlighting the significance of innovative technology
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in building a sustainable energy environment. This work provides an end-to-end IoT-based
green smart grid that meets the demands of next-generation grids. The work introduced
solar energy as a renewable energy and integrated it with the traditional grids through an IoT
control scheme. This integration of solar cells with smart grids represents a significant shift
toward sustainable and efficient energy management. The proposed IoT-based green smart
grid framework deploys distributed edge computing at different levels to improve energy
management and minimize consumption. Two main edge computing units were deployed
to support data gathering and decision making over the proposed green grid: fog and MEC
units. A method of integrating such edge units into the grid was introduced, and the required
approaches to facilitate the work of these nodes were developed. The proposed framework
was tested considering energy efficiency, data reliability, and resource efficiency. The results
indicated a reduction in energy use of 24.3%, highlighting the potential for such systems
to greatly outperform existing grids. Moreover, the proposed edge-computing-based grid
outperformed traditional models in the latency and reliability of communicated data.
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