Photocatalytic Selective Degradation of Catechol and Resorcinol on the TiO2 with Exposed {001} Facets: Roles of Two Types of Hydroxyl Radicals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.2. A Comparative Study of Selective Degradation of CT and RE
2.3. The Effect of pH on the Photocatalytic Degradation System
2.4. Comparison of Adsorption of CT and RE on TiO2
2.5. EPR Result Analysis and Mechanism
3. Materials and Methods
3.1. Sample Preparation
3.2. Characterization
3.3. Photodegradation Experiments
3.4. Bach Adsorption Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, J.-H.; Ellis, A.V.; Hsieh, Y.-H.; Tung, C.-H.; Shen, S.-Y. Electrocatalytic characterization and dye degradation of Nano-TiO2 electrode films fabricated by CVD. Sci. Total Environ. 2009, 407, 5914–5920. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, W.-P.; Pan, J.R.; Huang, C.; Su, Y.-C.; Juang, Y.-J. Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Sci. Total Environ. 2010, 408, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.P.; Brar, S.K.; Daghrir, R.; Tyagi, R.D.; Picard, P.; Surampalli, R.Y.; Drogui, P. Photocatalytic degradation of carbamazepine in wastewater by using a new class of whey-stabilized nanocrystalline TiO2 and ZnO. Sci. Total Environ. 2014, 485, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Chen, B.; Sun, X.; Qu, K.; Ma, F.; Du, M. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Sci. Total Environ. 2015, 508, 525–533. [Google Scholar] [CrossRef]
- Kuang, L.; Zhao, Y.; Zhang, W.; Ge, S. Roles of Reactive Oxygen Species and Holes in the Photodegradation of Cationic and Anionic Dyes by TiO2 under UV Irradiation. J. Environ. Eng. 2016, 142, 04015065. [Google Scholar] [CrossRef]
- Murakami, Y.; Endo, K.; Ohta, I.; Nosaka, A.Y.; Nosaka, Y. Can OH radicals diffuse from the UV-Irradiated photocatalytic TiO2 surfaces? laser-induced-fluorescence study. J. Phys. Chem. C. 2007, 111, 11339–11346. [Google Scholar] [CrossRef]
- Nosaka, Y.; Komori, S.; Yawata, K.; Hirakawa, T.; Nosaka, A.Y. Photocatalytic OH radical formation in TiO2 aqueous suspension studied by several detection methods. Phys. Chem. Chem. Phys. 2003, 5, 4731–4735. [Google Scholar] [CrossRef]
- Wu, Y.C.; Liu, Z.M.; Li, Y.R.; Chen, J.T.; Zhu, X.X.; Na, P. Construction of 2D-2D TiO2 nanosheet/layered WS2 heterojunctions with enhanced visible-light-responsive photocatalytic activity. Chin. J. Catal. 2019, 40, 60–69. [Google Scholar] [CrossRef]
- Ksibi, M.; Zemzemi, A.; Boukchina, R. Photocatalytic degradability of substituted phenols over UV irradiated TiO2. J. Photochem. Photobiol. A-Chem. 2003, 159, 61–70. [Google Scholar] [CrossRef]
- Lv, K.; Guo, X.; Wu, X.; Li, Q.; Ho, W.; Li, M.; Ye, H.; Du, D. Photocatalytic selective oxidation of phenol to produce dihydroxybenzenes in a TiO2/UV system: Hydroxyl radical versus hole. Appl. Catal. B 2016, 199, 405–411. [Google Scholar] [CrossRef]
- Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols an a titanium dioxide-fluoride system. Langmuir 2000, 16, 8964–8972. [Google Scholar] [CrossRef]
- Muggli, D.S.; Ding, L.F. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. Appl. Catal. B 2001, 32, 181–194. [Google Scholar] [CrossRef]
- Xu, Y.; Lv, K.; Xiong, Z.; Leng, W.; Du, W.; Liu, D.; Xue, X. Rate enhancement and rate inhibition of phenol degradation over irradiated anatase and rutile TiO2 on the addition of NaF: New insight into the mechanism. J. Phys. Chem. C. 2007, 111, 19024–19032. [Google Scholar] [CrossRef]
- Montoya, J.F.; Salvador, P. The influence of surface fluorination in the photocatalytic behaviour of TiO2 aqueous dispersions: An analysis in the light of the direct–indirect kinetic model. J. Phys. Chem. C. 2010, 94, 97–107. [Google Scholar] [CrossRef]
- Park, J.S.; Choi, W. Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2. Langmuir 2004, 20, 11523–11527. [Google Scholar] [CrossRef] [PubMed]
- Dozzi, M.; Selli, E. Specific facets-dominated anatase TiO2: Fluorine-mediated synthesis and photoactivity. Catalysts 2013, 3, 455–485. [Google Scholar] [CrossRef]
- Janczyk, A.; Krakowska, E.; Stochel, G.; Macyk, W. Singlet oxygen photogeneration at surface modified titanium dioxide. J. Am. Chem. Soc. 2006, 128, 15574–15575. [Google Scholar] [CrossRef] [PubMed]
- Lana-Villarreal, T.; Rodes, A.; Perez, J.M.; Gomez, R. A spectroscopic and electrochemical approach to the study of the interactions and photoinduced electron transfer between catechol and anatase nanoparticles in aqueous solution. J. Am. Chem. Soc. 2005, 127, 12601–12611. [Google Scholar] [CrossRef]
- Li, C.; Koenigsmann, C.; Ding, W.; Rudshteyn, B.; Yang, K.R.; Regan, K.P.; Konezny, S.J.; Batista, V.S.; Brudvig, G.W.; Schmuttenmaer, C.A.; et al. Facet-Dependent Photoelectrochemical Performance of TiO2 Nanostructures: An Experimental and Computational Study. J. Am. Chem. Soc. 2015, 137, 1520–1529. [Google Scholar] [CrossRef]
- Lv, K.; Cheng, B.; Yu, J.; Liu, G. Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 2012, 14, 5349. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.L.; Xu, Y.M. Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO2: The difference in the production of reactive species. J. Phys. Chem. B. 2006, 110, 6204–6212. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Lu, S. Photocatalytic selective oxidation of phenol in suspensions of titanium dioxide with exposed {001} facets. Appl. Surf. Sci. 2013, 277, 94–99. [Google Scholar] [CrossRef]
- Li, T.Y.; Tian, B.Z.; Zhang, J.L.; Dong, R.F.; Wang, T.T.; Yang, F. Facile Tailoring of Anatase TiO2 Morphology by Use of H2O2: From Microflowers with dominant {101} facets to microspheres with exposed {001} facets. Ind. Eng. Chem. Res. 2013, 52, 6704–6712. [Google Scholar] [CrossRef]
- Wang, M.J.; Zhang, F.; Zhu, X.D.; Qi, Z.M.; Hong, B.; Ding, J.J.; Bao, J.; Sun, S.; Gao, C. DRIFTS evidence for facet-dependent adsorption of gaseous toluene on TiO2 with relative photocatalytic properties. Langmuir 2015, 31, 1730–1736. [Google Scholar] [CrossRef]
- Ding, X.; Ruan, H.; Zheng, C.; Yang, J.; Wei, M. Synthesis of TiO2 nanoparticles with tunable dominant exposed facets (010), (001) and (106). Crystengcomm 2013, 15, 3040–3044. [Google Scholar] [CrossRef]
- Mao, J.; Ye, L.Q.; Li, K.; Zhang, X.H.; Liu, J.Y.; Peng, T.Y.; Zan, L. Pt-loading reverses the photocatalytic activity order of anatase TiO2 {001} and {010} facets for photoreduction of CO2 to CH4. Appl. Catal. B 2014, 144, 855–862. [Google Scholar] [CrossRef]
- Sun, B.J.; Zhang, L.; Wei, F.; Al-Ammari, A.; Xu, X.R.; Li, W.P.; Chen, C.T.; Lin, J.B.; Zhang, H.; Sun, D.P. In situ structural modification of bacterial cellulose by sodium fluoride. Carbohydr. Polym. 2020, 231, 115765. [Google Scholar] [CrossRef]
- Luppi, E.; Urdaneta, I.; Calatayud, M. Photoactivity of Molecule-TiO2 clusters with time-dependent density-functional theory. J. Phys. Chem. A 2016, 120, 5115–5124. [Google Scholar] [CrossRef]
- Rodrguez, R.; Blesa, M.A.; Regazzoni, A.E. Surface Complexation at the TiO2 (anatase)/aqueous solution interface: Chemisorption of catechol. J. Colloid Interface Sci. 1996, 177, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Gulley-Stahl, H.; Hogan, P.A.; Schmidt, W.L.; Wall, S.J.; Buhrlage, A.; Bullen, H.A. Surface complexation of catechol to metal oxides: An TR-FTIR, adsorption, and dissolution study. Environ. Sci. Technol. 2010, 44, 4116–4121. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yan, W.; Jing, C. Dynamic adsorption of catechol at the goethite/aqueous solution interface: A molecular-scale study. Langmuir 2012, 28, 14588–14597. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; You, C.F.; Tan, Z.C. Enhanced photocatalytic oxidation of SO2 on TiO2 surface by Na2CO3 modification. Chem. Eng. J. 2018, 350, 89–99. [Google Scholar] [CrossRef]
- Li, L.X.; Abe, Y.; Kanagawa, K.; Usui, N.; Imai, K.; Mashino, T.; Mochizuki, M.; Miyata, N. Distinguishing the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method. Anal. Chim. Acta 2004, 512, 121–124. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, F.; Gao, J.; Lang, D. Photocatalytic Selective Degradation of Catechol and Resorcinol on the TiO2 with Exposed {001} Facets: Roles of Two Types of Hydroxyl Radicals. Catalysts 2022, 12, 378. https://doi.org/10.3390/catal12040378
Jiang F, Gao J, Lang D. Photocatalytic Selective Degradation of Catechol and Resorcinol on the TiO2 with Exposed {001} Facets: Roles of Two Types of Hydroxyl Radicals. Catalysts. 2022; 12(4):378. https://doi.org/10.3390/catal12040378
Chicago/Turabian StyleJiang, Feng, Jiansha Gao, and Di Lang. 2022. "Photocatalytic Selective Degradation of Catechol and Resorcinol on the TiO2 with Exposed {001} Facets: Roles of Two Types of Hydroxyl Radicals" Catalysts 12, no. 4: 378. https://doi.org/10.3390/catal12040378