Synthesis of High-Quality TS-1 Zeolites Using Precursors of Diol-Based Polymer and Tetrapropylammonium Bromide for 1-Hexene Epoxidation
Abstract
:1. Introduction
2. Results and Discussion
3. Discussion of the Formation Process of the TS-1 Zeolites
4. Catalytic Performance
5. Materials and Methods
5.1. Reactant Agents
5.2. Synthesis of Ti-BDO-Si/TPABr Composite Precursors
5.3. Synthesis of TS-1 Zeolites from Polymer Composite Precursors
5.4. Characterization
5.5. Catalytic Tests
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taramasso, M.; Perego, G.; Notari, B. Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides. U.S. Patent 4,410,501, 18 October 1983. [Google Scholar]
- Tsai, S.-T.; Chao, P.-Y.; Tsai, T.-C.; Wang, I.; Liu, X.; Guo, X.-W. Effects of pore structure of post-treated TS-1 on phenol hydroxylation. Catal. Today 2009, 148, 174–178. [Google Scholar] [CrossRef]
- Wilkenhöner, U.; Langhendries, G.; van Laar, F.; Baron, G.V.; Gammon, D.W.; Jacobs, P.A.; van Steen, E. Influence of Pore and Crystal Size of Crystalline Titanosilicates on Phenol Hydroxylation in Different Solvents. J. Catal. 2001, 203, 201–212. [Google Scholar] [CrossRef]
- Hu, Y.; Du, C.; Wang, T.; Luo, G. Highly efficient and greener synthesis of TS-1 in a flow system by recycling the mother liquid. Microporous Mesoporous Mater. 2019, 288, 109585. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, X.; Wang, X.; Shi, C. The synthesis of pure and uniform nanosized TS-1 crystals with a high titanium content and a high space–time yield. Inorg. Chem. Front. 2021, 8, 5260–5269. [Google Scholar] [CrossRef]
- Wróblewska, A.; Tołpa, J.; Kłosin, D.; Miądlicki, P.; Koren, Z.C.; Michalkiewicz, B. The application of TS-1 materials with different titanium contents as catalysts for the autoxidation of α-pinene. Microporous Mesoporous Mater. 2020, 305, 110384. [Google Scholar] [CrossRef]
- Wróblewska, A.; Makuch, E.; Miądlicki, P. The studies on the limonene oxidation over the microporous TS-1 catalyst. Catal. Today 2016, 268, 121–129. [Google Scholar] [CrossRef]
- Tekla, J.; Tarach, K.A.; Olejniczak, Z.; Girman, V.; Góra-Marek, K. Effective hierarchization of TS-1 and its catalytic performance in cyclohexene epoxidation. Microporous Mesoporous Mater. 2016, 233, 16–25. [Google Scholar] [CrossRef]
- Feng, X.; Duan, X.; Yang, J.; Qian, G.; Zhou, X.; Chen, D.; Yuan, W. Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: Effects of Si/Ti molar ratio and Au loading. Chem. Eng. J. 2015, 278, 234–239. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, T.; Bai, R.; Zhang, P.; Yu, J. A one-step rapid synthesis of TS-1 zeolites with highly catalytically active mononuclear TiO6 species. J. Mater. Chem. A 2020, 8, 9677–9683. [Google Scholar] [CrossRef]
- Li, H.; Xu, B.; Deng, B.; Yan, X.; Zheng, Y. Epoxidation of 1-hexene with hydrogen peroxide over nitrogen-incorporated TS-1 zeolite. Catal. Commun. 2014, 46, 224–227. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Li, L.; Bai, R.S.; Gao, S.Q.; Feng, Z.C.; Zhang, Q.; Yu, J.H. Amino acid-assisted synthesis of TS-1 zeolites containing highly catalytically active TiO6 species. Chin. J. Catal. 2021, 42, 2189–2196. [Google Scholar] [CrossRef]
- Fan, W.; Fan, B.; Shen, X.; Li, J.; Wu, P.; Kubota, Y.; Tatsumi, T. Effect of ammonium salts on the synthesis and catalytic properties of TS-1. Microporous Mesoporous Mater. 2009, 122, 301–308. [Google Scholar] [CrossRef]
- Yan, M.; Jin, F.; Ding, Y.; Wu, G.; Chen, R.; Wang, L.; Yan, Y. Synthesis of Titanium-Incorporated MWW Zeolite by Sequential Deboronation and Atom-Planting Treatment of ERB-1 as an Epoxidation Catalyst. Ind. Eng. Chem. Res. 2019, 58, 4764–4773. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Yu, Y.; Liu, D.; Fang, N.; Lin, Y.; Xu, D.; Li, F.; Liu, Y.; He, M. TS-1 zeolite with homogeneous distribution of Ti atoms in the framework: Synthesis, crystallization mechanism and its catalytic performance. J. Catal. 2021, 404, 990–998. [Google Scholar] [CrossRef]
- Van der Pol, A.J.H.P.; Verduyn, A.J.; van Hooff, J.H.C. Why are some titanium silicalite-1 samples active and others not? Appl. Catal. A Gen. 1992, 92, 113–130. [Google Scholar] [CrossRef]
- Huang, D.-G.; Zhang, X.; Liu, T.-W.; Huang, C.; Chen, B.-H.; Luo, C.-W.; Ruckenstein, E.; Chao, Z.-S. Synthesis of High-Performanced Titanium Silicalite-1 Zeolite at Very Low Usage of Tetrapropyl Ammonium Hydroxide. Ind. Eng. Chem. Res. 2013, 52, 3762–3772. [Google Scholar] [CrossRef]
- Chen, L.H.; Li, Y.; Su, B.L. Hierarchy in materials for maximized efficiency. Natl. Sci. Rev. 2020, 7, 1626–1630. [Google Scholar] [CrossRef]
- Soekiman, C.N.; Miyake, K.; Hayashi, Y.; Zhu, Y.; Ota, M.; Al-Jabri, H.; Inoue, R.; Hirota, Y.; Uchida, Y.; Tanaka, S.; et al. Synthesis of titanium silicalite-1 (TS-1) zeolite with high content of Ti by a dry gel conversion method using amorphous TiO2–SiO2 composite with highly dispersed Ti species. Mater. Today Chem. 2020, 16, 100209. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Wang, L.; Wu, Q.; Bian, C.; Pan, S.; Meng, X.; Xiao, F.-S. Solvent-free synthesis of titanosilicate zeolites. J. Mater. Chem. A 2015, 3, 14093–14095. [Google Scholar] [CrossRef]
- Gordon, C.P.; Engler, H.; Tragl, A.S.; Plodinec, M.; Lunkenbein, T.; Berkessel, A.; Teles, J.H.; Parvulescu, A.N.; Coperet, C. Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature 2020, 586, 708–713. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, X.; Wang, X.; Li, G.; Zhou, J.; Yu, J.; Li, C. The active sites in different TS-1 zeolites for propylene epoxidation studied by ultraviolet resonance Raman and ultraviolet visible absorption spectroscopies. Catal. Lett. 2001, 72, 3–4. [Google Scholar]
- Wang, B.; Guo, Y.; Zhu, J.; Ma, J.; Qin, Q. A review on titanosilicate-1 (TS-1) catalysts: Research progress of regulating titanium species. Coord. Chem. Rev. 2023, 476, 214931. [Google Scholar] [CrossRef]
- Li, M.; Yan, X.; Zhu, M.; Zhou, D. Theoretical investigation on the spectroscopic properties and catalytic activities of the Ti-Hydroperoxo intermediates in titanosilicate zeolites. Microporous Mesoporous Mater. 2020, 299, 110133. [Google Scholar] [CrossRef]
- Ramachandran, C.; Du, H.; Kim, Y.; Kung, M.; Snurr, R.; Broadbelt, L. Solvent effects in the epoxidation reaction of 1-hexene with titanium silicalite-1 catalyst. J. Catal. 2008, 253, 148–158. [Google Scholar] [CrossRef]
- Zhao, P.; Li, Z.; Zhang, Y.; Cui, D.; Guo, Q.; Dong, Z.; Qi, G.; Xu, J.; Deng, F. Tuning Lewis acid sites in TS-1 zeolites for hydroxylation of anisole with hydrogen peroxide. Microporous Mesoporous Mater. 2022, 335, 111840. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Q.; Li, Y.; Feng, X.; Chai, Y.; Liu, C. Seed-assisted synthesis of hierarchical nanosized TS-1 in a low-cost system for propylene epoxidation with H2O2. Appl. Surf. Sci. 2019, 483, 652–660. [Google Scholar] [CrossRef]
- Wang, H.; Du, G.; Chen, S.; Su, Z.; Sun, P.; Chen, T. Steam-assisted strategy to fabricate Anatase-free hierarchical titanium Silicalite-1 Single-Crystal for oxidative desulfurization. J. Colloid Interface Sci. 2022, 617, 32–43. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, H.; Song, Y.; Xu, W.; Meng, X.; Li, J. High-efficiency synthesis of enhanced-titanium and anatase-free TS-1 zeolite by using a crystallization modifier. Inorg. Chem. Front. 2021, 8, 3077–3084. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Chen, G.; Chen, M.; Bai, R.; Jia, M.; Yu, J. Synthesis of anatase-free nano-sized hierarchical TS-1 zeolites and their excellent catalytic performance in alkene epoxidation. J. Mater. Chem. A 2018, 6, 9473–9479. [Google Scholar] [CrossRef]
- Xing, J.; Yuan, D.; Liu, H.; Tong, Y.; Xu, Y.; Liu, Z. Synthesis of TS-1 zeolites from a polymer containing titanium and silicon. J. Mater. Chem. A 2021, 9, 6205–6213. [Google Scholar] [CrossRef]
- Gleeson, D.; Sankar, G.; Richard, C.; Catlow, A.; Meurig Thomas, J.; Spanó, S.; Bordiga, G.; Zecchina, A.; Lamberti, C. The architecture of catalytically active centers in titanosilicate (TS-1) and related selective-oxidation catalysts. Phys. Chem. Chem. Phys. 2000, 2, 4812–4817. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Zhang, X.; Zhang, Q.; Zhai, Y.; Lv, G.; Li, M.; Li, M. One-step synthesis of anatase-free hollow titanium silicalite-1 by the solid-phase conversion method. Microporous Mesoporous Mater. 2022, 331, 111676. [Google Scholar] [CrossRef]
- Lesthaeghe, D.; Vansteenkiste, P.; Verstraelen, T.; Ghysels, A.; Kirschhock, C.E.A.; Martens, J.A.; Speybroeck, V.V.; Waroquier, M. MFI Fingerprint: How Pentasil-Induced IR Bands Shift during Zeolite Nanogrowth. J. Phys. Chem. C 2008, 112, 9186–9191. [Google Scholar]
- Aziz, F.F.A.; Jalil, A.A.; Triwahyono, S.; Mohamed, M. Controllable structure of fibrous SiO2–ZSM-5 support decorated with TiO2 catalysts for enhanced photodegradation of paracetamol. Appl. Surf. Sci. 2018, 455, 84–95. [Google Scholar] [CrossRef]
- Liu, M.; Li, J.; Chen, X.; Song, J.; Wei, W.; Wen, Y.; Wang, X. Preparation of anatase-free hierarchical titanosilicalite-1 in favor of allyl chloride epoxidation. Microporous Mesoporous Mater. 2021, 326, 111388. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, Y.; Li, T.; Yu, J.; Yang, H.; Liu, M.; Guo, X. Bulky macroporous titanium silicalite-1 free of extraframework titanium for phenol hydroxylation. Microporous Mesoporous Mater. 2022, 336, 111884. [Google Scholar] [CrossRef]
- Bi, M.; Song, S.; Li, Z.; Zhang, B.; Zhao, L.; Guo, K.; Li, J.; Chen, L.; Zhao, Q.; Cheng, W.; et al. In situ encapsulated molybdovanaphosphodic acid on modified nanosized TS-1 zeolite catalyst for deep oxidative desulfurization. Microporous Mesoporous Mater. 2022, 335, 111799. [Google Scholar] [CrossRef]
- Jiao, Y.; Adedigba, A.-L.; He, Q.; Miedziak, P.; Brett, G.; Dummer, N.F.; Perdjon, M.; Liu, J.; Hutchings, G.J. Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. Catal. Sci. Technol. 2018, 8, 2211–2217. [Google Scholar] [CrossRef]
- Zuo, Y.; Liu, M.; Ma, M.; Wang, Y.; Guo, X.; Song, C. Enhanced Catalytic Activity on Post-Synthesized Hollow Titanium Silicalite-1 with High Titanium Content on the External Surface. ChemistrySelect 2016, 1, 6160–6166. [Google Scholar] [CrossRef]
- Zuo, Y.; Liu, M.; Zhang, T.; Hong, L.; Guo, X.; Song, C.; Chen, Y.; Zhu, P.; Jaye, C.; Fischer, D. Role of pentahedrally coordinated titanium in titanium silicalite-1 in propene epoxidation. RSC Adv. 2015, 5, 17897–17904. [Google Scholar] [CrossRef]
- Tsunoji, N.; Opanasenko, M.V.; Kubů, M.; Čejka, J.; Nishida, H.; Hayakawa, S.; Ide, Y.; Sadakane, M.; Sano, T. Highly Active Layered Titanosilicate Catalyst with High Surface Density of Isolated Titanium on the Accessible Interlayer Surface. ChemCatChem 2018, 10, 2536–2540. [Google Scholar] [CrossRef]
- Blasco, T.; Camblor, M.A.; Corma, A.; Perez-Pariente, J. The state of Ti in titanoaluminosilicates isomorphous with zeolite beta. J. Am. Chem. Soc. 1993, 115, 11806–11813. [Google Scholar] [CrossRef]
- Zhang, T.; Zuo, Y.; Liu, M.; Song, C.; Guo, X. Synthesis of Titanium Silicalite-1 with High Catalytic Performance for 1-Butene Epoxidation by Eliminating the Extraframework Ti. ACS Omega 2016, 1, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Jia, Q.; Cao, Y.; Liu, L.; Guo, Z. The effect of acid treatment on the active sites and reaction intermediates of the low-cost TS-1 in propylene epoxidation. RSC Adv. 2017, 7, 24046–24054. [Google Scholar] [CrossRef]
- Yang, D.; Wang, H.; Wang, W.; Peng, S.; Yang, X.; Xu, X.; Jia, S. Nickel-Modified TS-1 Catalyzed the Ammoximation of Methyl Ethyl Ketone. Catalysts 2019, 9, 1027. [Google Scholar] [CrossRef]
- Hosseiniamoli, H.; Setiawan, A.; Adesina, A.A.; Kennedy, E.M.; Stockenhuber, M. The stability of Pd/TS-1 and Pd/silicalite-1 for catalytic oxidation of methane–understanding the role of titanium. Catal. Sci. Technol. 2020, 10, 1193–1204. [Google Scholar] [CrossRef]
- Pang, C.; Xiong, J.; Li, G.; Hu, C. Direct ring C H bond activation to produce cresols from toluene and hydrogen peroxide catalyzed by framework titanium in TS-1. J. Catal. 2018, 366, 37–49. [Google Scholar] [CrossRef]
- Huang, M.; Wen, Y.; Wei, H.; Zong, L.; Gao, X.; Wu, K.; Wang, X.; Liu, M. The Clean Synthesis of Small-Particle TS-1 with High-Content Framework Ti by Using NH4HCO3 and Suspended Seeds as an Assistant. ACS Omega 2021, 6, 13015–13023. [Google Scholar] [CrossRef]
- Zhang, J.H.; Yue, M.B.; Wang, X.N.; Qin, D. Synthesis of nanosized TS-1 zeolites through solid transformation method with unprecedented low usage of tetrapropylammonium hydroxide. Microporous Mesoporous Mater. 2015, 217, 96–101. [Google Scholar] [CrossRef]
- Smeets, V.; Boissière, C.; Sanchez, C.; Gaigneaux, E.M.; Peeters, E.; Sels, B.F.; Dusselier, M.; Debecker, D.P. Aerosol Route to TiO2–SiO2 Catalysts with Tailored Pore Architecture and High Epoxidation Activity. Chem. Mater. 2019, 31, 1610–1619. [Google Scholar] [CrossRef]
- Li, R.; Linares, N.; Sutjianto, J.G.; Chawla, A.; Garcia-Martinez, J.; Rimer, J.D. Ultrasmall Zeolite L Crystals Prepared from Highly Interdispersed Alkali-Silicate Precursors. Angew. Chem. Int. Ed. 2018, 57, 11283–11288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ren, S.; Guo, Q.; Shen, B. Synthesis of hierarchically porous zeolite TS-1 with small crystal size and its performance of 1-hexene epoxidation reaction. Microporous Mesoporous Mater. 2021, 326, 111395. [Google Scholar] [CrossRef]
- Xue, T.; Liu, H.; Wang, Y.; Wu, H.; Wu, P.; He, M. Seed-induced synthesis of small-crystal TS-1 using ammonia as alkali source. Chin. J. Catal. 2015, 36, 1928–1935. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Yao, J.; Yang, X. Effects of crystal size and pore structure on catalytic performance of TS-1 in the isomerization of styrene oxide to phenyl acetaldehyde. Microporous Mesoporous Mater. 2017, 247, 16–22. [Google Scholar] [CrossRef]
- Li, M.; Zhai, Y.; Zhang, X.; Wang, F.; Lv, G.; Rosine, A.; Li, M.; Zhang, Q.; Liu, Y. (NH4)2SO4-assisted synthesis of thin-walled Ti-rich hollow titanium silicalite-1 zeolite for 1-hexene epoxidation. Microporous Mesoporous Mater. 2022, 331, 111655. [Google Scholar] [CrossRef]
- Ruan, H.; Wang, K.; Bing, C.; Fan, X.; Lv, G.; Zhang, X.; Wang, F.; Wang, Y.; Cai, W. Investigation of the Ti active site in TS-1 for phenol hydroxylation via seed and dissolution-recrystallization methods. Mol. Catal. 2024, 568, 114524. [Google Scholar] [CrossRef]
- Su, Y.; Li, F.; Zhou, Z.; Qin, J.; Wang, X.; Sun, P.; Wu, W. Acidic-treated TS-1 zeolites with high titanium for cyclohexanone efficient oximation. Mol. Catal. 2022, 533, 112752. [Google Scholar] [CrossRef]
- Yang, J.; Liu, S.; Liu, Y.; Zhou, L.; Wen, H.; Wei, H.; Shen, R.; Wu, X.; Jiang, J.; Li, B. Review and perspectives on TS-1 catalyzed propylene epoxidation. iScience 2024, 27, 109064. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, F.; Zhai, Y.; Wang, K.; Xu, Z.; Zhang, X.; Li, M.; Li, M.; Zhang, X. Two-step synthesis of Ti-rich surface TS-1 with controllable microenvironment of titanium species. Appl. Catal. A Gen. 2023, 651, 119023. [Google Scholar] [CrossRef]
- Potts, D.S.; Komar, J.K.; Jacobson, M.A.; Locht, H.; Flaherty, D.W. Consequences of Pore Polarity and Solvent Structure on Epoxide Ring-Opening in Lewis and Brønsted Acid Zeolites. JACS Au 2024, 4, 3501–3518. [Google Scholar] [CrossRef]
- Lv, G.; Deng, S.; Yi, Z.; Zhang, X.; Wang, F.; Li, H.; Zhu, Y. One-pot synthesis of framework W-doped TS-1 zeolite with robust Lewis acidity for effective oxidative desulfurization. Chem. Commun. 2019, 55, 4885–4888. [Google Scholar] [CrossRef] [PubMed]
- Rac, V.; Rakić, V.; Miladinović, Z.; Stošić, D.; Auroux, A. Influence of the desilication process on the acidity of HZSM-5 zeolite. Thermochim. Acta 2013, 567, 73–78. [Google Scholar] [CrossRef]
Sample | Si/Ti a | SBET b (m2·g−1) | Smic c (m2·g−1) | Sext c (m2·g−1) | Vmicro c (cm3·g−1) | Vmeso d (cm3·g−1) |
---|---|---|---|---|---|---|
TS-1_con | 57.7 | 409 | 185 | 225 | 0.10 | 0.43 |
TS-1_0B | 54.6 | 395 | 358 | 36 | 0.18 | 0.06 |
TS-1_0.05B | 61.6 | 413 | 370 | 42 | 0.19 | 0.08 |
TS-1_0.10B | 48.5 | 420 | 376 | 36 | 0.20 | 0.06 |
TS-1_0.15B | 51.6 | 409 | 367 | 34 | 0.19 | 0.04 |
TS-1_ref | 50.5 | 418 | 360 | 50 | 0.19 | 0.16 |
Catalyst | Conv./% mol | Sel./% mol |
---|---|---|
TS-1_con | 31.8% | 97.6% |
TS-1_0B | 35.6% | 97.9% |
TS-1_0.05B | 36.1% | 97.8% |
TS-1_0.10B | 49.7% | 98.6% |
TS-1_0.15B | 42.0% | 97.8% |
TS-1_ref | 34.6% | 98.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chang, X.; Zhan, J.; Bi, C.; Dong, Z.; Sun, S.; Jia, M. Synthesis of High-Quality TS-1 Zeolites Using Precursors of Diol-Based Polymer and Tetrapropylammonium Bromide for 1-Hexene Epoxidation. Catalysts 2024, 14, 939. https://doi.org/10.3390/catal14120939
Sun Y, Chang X, Zhan J, Bi C, Dong Z, Sun S, Jia M. Synthesis of High-Quality TS-1 Zeolites Using Precursors of Diol-Based Polymer and Tetrapropylammonium Bromide for 1-Hexene Epoxidation. Catalysts. 2024; 14(12):939. https://doi.org/10.3390/catal14120939
Chicago/Turabian StyleSun, Yuting, Xinyu Chang, Junling Zhan, Chongyao Bi, Zhehan Dong, Shuaishuai Sun, and Mingjun Jia. 2024. "Synthesis of High-Quality TS-1 Zeolites Using Precursors of Diol-Based Polymer and Tetrapropylammonium Bromide for 1-Hexene Epoxidation" Catalysts 14, no. 12: 939. https://doi.org/10.3390/catal14120939
APA StyleSun, Y., Chang, X., Zhan, J., Bi, C., Dong, Z., Sun, S., & Jia, M. (2024). Synthesis of High-Quality TS-1 Zeolites Using Precursors of Diol-Based Polymer and Tetrapropylammonium Bromide for 1-Hexene Epoxidation. Catalysts, 14(12), 939. https://doi.org/10.3390/catal14120939