Advances and Challenges in Zeolite-Based Catalysts for the Selective Catalytic Oxidation of Ammonia
Abstract
:1. Introduction
2. Fundamentals of NH3-SCO Reactions
3. Key Characteristics of Zeolites for NH3-SCO Catalysis
4. Zeolite Supported Metal Catalysts for NH3-SCO
4.1. Effects of Zeolite Frameworks on Metal Catalysts
4.2. Noble Metal-Based Zeolite Catalysts
4.3. Non-Noble Metal-Based Zeolite Catalysts
4.4. Bimetallic Zeolite Catalysts
5. Mechanistic Pathways in NH3-SCO on Zeolite Catalysts
6. Challenges and Strategies in Zeolite-Based NH3-SCO Catalysts
6.1. Poisoning and Resistance Strategies
6.2. Hydrothermal Stability and Enhancement Strategies
6.3. High Cost and Cost-Reduction Strategies
6.4. By-Product Formation and Control Strategies
6.5. Limited Low-Temperature Activity and Improvement Strategies
7. Future Directions and Prospects
7.1. Innovative Synthesis Techniques for Enhanced Catalytic Performance
7.2. Computational Tools for Catalyst Design and Optimization
7.3. Scaling up Zeolite-Based Catalysts for Industrial Applications
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amhamed, A.I.; Shuibul Qarnain, S.; Hewlett, S.; Sodiq, A.; Abdellatif, Y.; Isaifan, R.J.; Alrebei, O.F. Ammonia Production Plants—A Review. Fuels 2022, 3, 408–435. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Yan, Y.Y.; Kong, S.F.; Deng, Q.M.; Qin, S.; Yao, L.Q.; Zhao, T.L.; Qi, S.H. Benefits of refined NH3 emission controls on PM2.5 mitigation in Central China. Sci. Total Environ. 2022, 814, 151957. [Google Scholar] [CrossRef]
- Jabłońska, M.; Mollá Robles, A. A Comparative Mini-Review on Transition Metal Oxides Applied for the Selective Catalytic Ammonia Oxidation (NH3-SCO). Materials 2022, 15, 4770. [Google Scholar] [CrossRef] [PubMed]
- Im, H.G.; Lee, M.J.; Kim, W.G.; Kim, S.J.; Jeong, B.; Ye, B.; Lee, H.; Kim, H.D. High-Dispersed V2O5-CuOX Nanoparticles on h-BN in NH3-SCR and NH3-SCO Performance. Nanomaterials 2022, 12, 2329. [Google Scholar] [CrossRef] [PubMed]
- Song, D.D.; Shao, X.Z.; Yuan, M.L.; Wang, L.; Zhan, W.C.; Guo, Y.L.; Guo, Y.; Lu, G.Z. Selective catalytic oxidation of ammonia over MnOx-TiO2 mixed oxides. RSC Adv. 2016, 6, 88117–88125. [Google Scholar] [CrossRef]
- Sun, H.C.; Wang, H.; Qu, Z.P. Construction of CuO/CeO2 Catalysts via the Ceria Shape Effect for Selective Catalytic Oxidation of Ammonia. ACS Catal. 2023, 13, 1077–1088. [Google Scholar] [CrossRef]
- Jabłońska, M. Progress on Noble Metal-Based Catalysts Dedicated to the Selective Catalytic Ammonia Oxidation into Nitrogen and Water Vapor (NH3-SCO). Molecules 2021, 26, 6461. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Qiu, J.; Ma, Y.; Wang, C.; Sun, X.; Li, K.; Ning, P.; Wang, F. Advances in selective catalytic oxidation of ammonia (NH3-SCO): A review of catalyst structure-activity relationship and design principles. Chin. Chem. Lett. 2024, 35, 108432. [Google Scholar] [CrossRef]
- Li, P.; Zhang, R.; Liu, N.; Royer, S. Efficiency of Cu and Pd substitution in Fe-based perovskites to promote N2 formation during NH3 selective catalytic oxidation (NH3-SCO). Appl. Catal. B 2017, 203, 174–188. [Google Scholar] [CrossRef]
- Vu, X.; Armbruster, U.; Martin, A. Micro/Mesoporous Zeolitic Composites: Recent Developments in Synthesis and Catalytic Applications. Catalysts 2016, 6, 183. [Google Scholar] [CrossRef]
- Qiu, Z.; Yang, G.; Li, L.; Peng, S.; Nan, M.; Zhang, J.; Li, L.; Hou, Y.; Chen, X. Tailoring the local environment of silver in SSZ-13 zeolites for low-temperature catalytic oxidation of ammonia. Appl. Surf. Sci. 2022, 598, 153856. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, Y.; Li, Z.; Shan, Y.; Shan, W.; Shi, X.; Yu, Y.; Zhang, C.; Li, K.; Ning, P.; et al. Promoting effect of acid sites on NH3-SCO activity with water vapor participation for Pt-Fe/ZSM-5 catalyst. Catal. Today 2021, 376, 311–317. [Google Scholar] [CrossRef]
- Martinez-Ortigosa, J.; Lopes, C.W.; Agostini, G.; Palomares, A.E.; Blasco, T.; Rey, F. AgY zeolite as catalyst for the selective catalytic oxidation of NH3. Microporous Mesoporous Mater. 2021, 323, 111230. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Zhang, Y.; Yang, W.; Gan, L.; Li, K.; Chen, J.; Li, J. Comparison of NH3-SCO performance over CuOx/H-SSZ-13 and CuOx/H-SAPO-34 catalysts. Appl. Catal. A 2019, 585, 117119. [Google Scholar] [CrossRef]
- Zhang, T.; Chang, H.; You, Y.; Shi, C.; Li, J. Excellent Activity and Selectivity of One-Pot Synthesized Cu–SSZ-13 Catalyst in the Selective Catalytic Oxidation of Ammonia to Nitrogen. Environ. Sci. Technol. 2018, 52, 4802–4808. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Q.; Wang, D.; Hong, Z.; Qu, Z.; Li, X. Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen. Sep. Purif. Technol. 2019, 209, 1016–1026. [Google Scholar] [CrossRef]
- Gao, F.; Zheng, Y.; Kukkadapu, R.K.; Wang, Y.; Walter, E.D.; Schwenzer, B.; Szanyi, J.; Peden, C.H.F. Iron Loading Effects in Fe/SSZ-13 NH3-SCR Catalysts: Nature of the Fe Ions and Structure–Function Relationships. ACS Catal. 2016, 6, 2939–2954. [Google Scholar] [CrossRef]
- Guo, J.; Yang, W.; Zhang, Y.; Gan, L.; Fan, C.; Chen, J.; Peng, Y.; Li, J. A multiple-active-site Cu/SSZ-13 for NH3-SCO: Influence of Si/Al ratio on the catalytic performance. Catal. Commun. 2020, 135, 105751. [Google Scholar] [CrossRef]
- Ghosh, R.S.; Le, T.T.; Terlier, T.; Rimer, J.D.; Harold, M.P.; Wang, D. Enhanced Selective Oxidation of Ammonia in a Pt/Al2O3@Cu/ZSM-5 Core–Shell Catalyst. ACS Catal. 2020, 10, 3604–3617. [Google Scholar] [CrossRef]
- Yao, P.; Li, J.; Pei, M.; Liu, F.; Xu, H.; Chen, Y. Engineering a PtCu Alloy to Improve N2 Selectivity of NH3–SCO over the Pt/SSZ-13 Catalyst. ACS Appl. Mater. Interfaces 2024, 16, 14694–14703. [Google Scholar] [CrossRef]
- Wang, H.; Murayama, T.; Lin, M.; Sakaguchi, N.; Haruta, M.; Miura, H.; Shishido, T. Understanding the Distinct Effects of Ag Nanoparticles and Highly Dispersed Ag Species on N2 Selectivity in NH3–SCO Reaction. ACS Catal. 2022, 12, 6108–6118. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Wang, C.; Xu, G.; Chu, B.; Zhang, C.; He, H. Progress on selective catalytic oxidation of ammonia (NH3-SCO) over Ag-based catalysts. Catal. Today 2022, 423, 113990. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, Z.; Wang, X.; Li, Y.; Hou, C.; Li, L.; Zhang, J.; Nan, M.; Yang, G. Advancing highly selective low-temperature ammonia oxidation: Hydrophobic silicalite-1 shell confining silver nanoparticles on Cu/ZSM-5 core. Chem. Eng. J. 2024, 493, 152605. [Google Scholar] [CrossRef]
- Lopes, C.W.; Martinez-Ortigosa, J.; Góra-Marek, K.; Tarach, K.; Vidal-Moya, J.A.; Palomares, A.E.; Agostini, G.; Blasco, T.; Rey, F. Zeolite-driven Ag species during redox treatments and catalytic implications for SCO of NH3. J. Mater. Chem. A 2021, 9, 27448–27458. [Google Scholar] [CrossRef]
- Gao, F.; Liu, Y.; Sani, Z.; Tang, X.; Yi, H.; Zhao, S.; Yu, Q.; Zhou, Y. Advances in selective catalytic oxidation of ammonia (NH3–SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic performances and reaction mechanisms. J. Environ. Chem. Eng. 2021, 9, 104575. [Google Scholar] [CrossRef]
- An, Q.; Xu, G.; Liu, J.; Wang, Y.; Yu, Y.; He, H. Designing a Bifunctional Pt/Cu-SSZ-13 Catalyst for Ammonia-Selective Catalytic Oxidation with Superior Selectivity. ACS Catal. 2023, 13, 6851–6861. [Google Scholar] [CrossRef]
- Long, R.Q.; Yang, R.T. Superior ion-exchanged ZSM-5 catalysts for selective catalytic oxidation of ammonia to nitrogen. Chem. Commun. 2000, 17, 1651–1652. [Google Scholar] [CrossRef]
- Dann, E.K.; Gibson, E.K.; Blackmore, R.H.; Catlow, C.R.A.; Collier, P.; Chutia, A.; Erden, T.E.; Hardacre, C.; Kroner, A.; Nachtegaal, M.; et al. Structural selectivity of supported Pd nanoparticles for catalytic NH3 oxidation resolved using combined operando spectroscopy. Nat. Catal. 2019, 2, 157–163. [Google Scholar] [CrossRef]
- Decarolis, D.; Clark, A.H.; Pellegrinelli, T.; Nachtegaal, M.; Lynch, E.W.; Catlow, C.R.A.; Gibson, E.K.; Goguet, A.; Wells, P.P. Spatial Profiling of a Pd/Al2O3 Catalyst during Selective Ammonia Oxidation. ACS Catal. 2021, 11, 2141–2149. [Google Scholar] [CrossRef]
- Jabłońska, M.; Król, A.; Kukulska-Zajac, E.; Tarach, K.; Chmielarz, L.; Góra-Marek, K. Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen. J. Catal. 2014, 316, 36–46. [Google Scholar] [CrossRef]
- Han, F.; Yuan, M.; Mine, S.; Sun, H.; Chen, H.; Toyao, T.; Matsuoka, M.; Zhu, K.; Zhang, J.; Wang, W.; et al. Formation of Highly Active Superoxide Sites on CuO Nanoclusters Encapsulated in SAPO-34 for Catalytic Selective Ammonia Oxidation. ACS Catal. 2019, 9, 10398–10408. [Google Scholar] [CrossRef]
- Akah, A.C.; Nkeng, G.; Garforth, A.A. The role of Al and strong acidity in the selective catalytic oxidation of NH3 over Fe-ZSM-5. Appl. Catal. B 2007, 74, 34–39. [Google Scholar] [CrossRef]
- Jabłońska, M.; Palkovits, R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour—Recent trends and open challenges. Appl. Catal. B 2016, 181, 332–351. [Google Scholar] [CrossRef]
- Gang, L.; Anderson, B.G.; van Grondelle, J.; van Santen, R.A. NH3 oxidation to nitrogen and water at low temperatures using supported transition metal catalysts. Catal. Today 2000, 61, 179–185. [Google Scholar] [CrossRef]
- Gang, L.; van Grondelle, J.; Anderson, B.G.; van Santen, R.A. Selective Low Temperature NH3 Oxidation to N2 on Copper-Based Catalysts. J. Catal. 1999, 186, 100–109. [Google Scholar] [CrossRef]
- Kwak, J.H.; Tran, D.; Burton, S.D.; Szanyi, J.; Lee, J.H.; Peden, C.H.F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J. Catal. 2012, 287, 203–209. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Liu, Y.; Li, P.; Chen, H.; Wang, F.R.; Teoh, W.Y. Selective catalytic oxidation of ammonia over nano Cu/zeolites with different topologies. Environ. Sci. Nano 2020, 7, 1399–1414. [Google Scholar] [CrossRef]
- Góra-Marek, K.; Tarach, K.A.; Piwowarska, Z.; Łaniecki, M.; Chmielarz, L. Ag-loaded zeolites Y and USY as catalysts for selective ammonia oxidation. Catal. Sci. Technol. 2016, 6, 1651–1660. [Google Scholar] [CrossRef]
- Rutkowska, M.; Pacia, I.; Basąg, S.; Kowalczyk, A.; Piwowarska, Z.; Duda, M.; Tarach, K.A.; Góra-Marek, K.; Michalik, M.; Díaz, U.; et al. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes. Microporous Mesoporous Mater. 2017, 246, 193–206. [Google Scholar] [CrossRef]
- Xue, J.; Wang, X.; Qi, G.; Wang, J.; Shen, M.; Li, W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature. J. Catal. 2013, 297, 56–64. [Google Scholar] [CrossRef]
- Jabłońska, M. Progress on Selective Catalytic Ammonia Oxidation (NH3-SCO) over Cu-Containing Zeolite-Based Catalysts. ChemCatChem 2020, 12, 4490–4500. [Google Scholar] [CrossRef]
- Yu, T.; Wang, J.; Huang, Y.; Shen, M.; Li, W.; Wang, J. NH3 Oxidation Mechanism over Cu/SAPO-34 Catalysts Prepared by Different Methods. ChemCatChem 2014, 6, 2074–2083. [Google Scholar] [CrossRef]
- Qi, G.; Gatt, J.E.; Yang, R.T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl3. J. Catal. 2004, 226, 120–128. [Google Scholar] [CrossRef]
- Góra-Marek, K.; Brylewska, K.; Tarach, K.A.; Rutkowska, M.; Jabłońska, M.; Choi, M.; Chmielarz, L. IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes. Appl. Catal. B 2015, 179, 589598. [Google Scholar] [CrossRef]
- Shrestha, S.; Harold, M.P.; Kamasamudram, K.; Kumar, A.; Olsson, L.; Leistner, K. Selective oxidation of ammonia to nitrogen on bi-functional Cu–SSZ-13 and Pt/Al2O3 monolith catalyst. Catal. Today 2016, 267, 130–144. [Google Scholar] [CrossRef]
- Dhillon, P.S.; Harold, M.P.; Wang, D.; Kumar, A.; Joshi, S.Y. Optimizing the dual-layer Pt/Al2O3 + Cu/SSZ-13 washcoated monolith: Selective oxidation of NH3 to N2. Catal. Today 2021, 360, 426–434. [Google Scholar] [CrossRef]
- Zhao, Y.; Yi, X.; Dou, B.; Zhang, C.; Zhao, Z.; Bin, F. Evolution of specific reaction pathways for the ammonia selective catalytic oxidation reaction over Cu-Ce/SSZ-13 catalysts: Effect of coupling of copper-cerium with zeolite. Sep. Purif. Technol. 2024, 349, 127727. [Google Scholar] [CrossRef]
- Lan, T.; Zhao, Y.; Deng, J.; Zhang, J.; Shi, L.; Zhang, D. Selective catalytic oxidation of NH3 over noble metal-based catalysts: State of the art and future prospects. Catal. Sci. Technol. 2020, 10, 5792–5810. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Lin, J.; Wang, Y.; Shi, X.; Yu, Y.; He, H. Unraveling the Mechanism of Ammonia Selective Catalytic Oxidation on Ag/Al2O3 Catalysts by Operando Spectroscopy. ACS Catal. 2021, 11, 5506–5516. [Google Scholar] [CrossRef]
- Tan, W.; Cai, Y.; Yu, H.; Xie, S.; Wang, M.; Ye, K.; Ma, L.; Ehrlich, S.N.; Gao, F.; Dong, L.; et al. Tuning the Interaction between Platinum Single Atoms and Ceria by Zirconia Doping for Efficient Catalytic Ammonia Oxidation. Environ. Sci. Technol. 2023, 57, 15747–15758. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Zang, Y.; Wang, H.; Liu, C.; Wei, L.; Wang, Y.; He, L.; Wang, W.; Zhang, Z.; et al. Elimination of NH3 by Interfacial Charge Transfer over the Ag/CeSnOx Tandem Catalyst. ACS Catal. 2023, 13, 1449–1461. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, S.; Chen, M.; Han, J.; Yang, G.; Wang, Q.; Di, J.; Li, H.; Wu, W.; Yu, J. Coaxial 3D Printing of Zeolite-Based Core–Shell Monolithic Cu-SSZ-13@SiO2 Catalysts for Diesel Exhaust Treatment. Adv. Mater. 2024, 36, 2302912. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wei, Y.; Zhang, T.; Bai, Y.; Qi, Y.; Han, J.; Li, L.; Yu, J. Coaxial 3D Printing Enabling Mn/CHA@Pd/CHA Zeolite-Based Core–Shell Monoliths for Efficient Passive NOx Adsorbers. Adv. Funct. Mater. 2024, 34, 2409837. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, M.; Ren, X.; Wang, Q.; Han, J.; Wu, W.; Yang, X.; Wang, S.; Yu, J. One-Pot Three-Dimensional Printing Robust Self-Supporting MnOx/Cu-SSZ-13 Zeolite Monolithic Catalysts for NH3-SCR. CCS Chem. 2022, 4, 1708–1719. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Huang, J.; Yang, G. Advances and Challenges in Zeolite-Based Catalysts for the Selective Catalytic Oxidation of Ammonia. Catalysts 2025, 15, 204. https://doi.org/10.3390/catal15030204
Chen X, Huang J, Yang G. Advances and Challenges in Zeolite-Based Catalysts for the Selective Catalytic Oxidation of Ammonia. Catalysts. 2025; 15(3):204. https://doi.org/10.3390/catal15030204
Chicago/Turabian StyleChen, Xiaoxin, Jun Huang, and Guoju Yang. 2025. "Advances and Challenges in Zeolite-Based Catalysts for the Selective Catalytic Oxidation of Ammonia" Catalysts 15, no. 3: 204. https://doi.org/10.3390/catal15030204
APA StyleChen, X., Huang, J., & Yang, G. (2025). Advances and Challenges in Zeolite-Based Catalysts for the Selective Catalytic Oxidation of Ammonia. Catalysts, 15(3), 204. https://doi.org/10.3390/catal15030204